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The Effect of Conducting Boundaries on the Onset of
Convection in a Porous Layer Which is Heated from
Below by Internal Heating

Afiqah Nadzirah Mohammad1 · D. Andrew S. Rees1,2 ·
Abdelkader Mojtabi2,3

Abstract The onset of convection in a porous layer heated from below is considered, and
we determine how the presence of two solid but heat-conducting bounding plates of finite
thickness alters the manner in which convection ensues. Heat is generated by the lower
plate (with an insulating lower boundary), but the upper one is passive with a fixed upper
boundary temperature. It is shown that this composite layer may mimic in turn one of the
three different types of classical single-layer onset problems which are well-known in the
literature. The type which is selected (or indeed whether it corresponds to a transitional case)
depends quite critically on the precise values of the relative thickness of the solid layers and
their conductivity ratio. It is also shown that care needs to be taken over declaring that the
solid plates are thin: extreme values of the conductivity ratio can yield a stability criterion
which appears to be different from that suggested by the imposed boundary conditions.

Keywords Natural convection · Porous medium · Linear stability · Dispersion relation ·
Conducting bounding layers

List of symbols

C Specific heat (in Sect. 2)
d Conductivity ratio (ks/kpm)
g Gravity
h Dimensional thickness of solid layer
H Dimensional thickness of porous layer
k Wavenumber
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kf , kpm, ks Conductivities of fluid, porous medium and solid, respectively
K Permeability
p Pressure
q Rate of heat generation
Ra Darcy–Rayleigh number
t Time
T Dimensional temperature
u, w Horizontal and vertical velocities, respectively
x , z Horizontal and vertical coordinates, respectively

Greek characters

β Thermal expansion coefficient
δ Depth ratio
�T Temperature drop across the porous layer
θ Nondimensional fluid temperature
� Perturbation temperature
μ Dynamic viscosity
ρ Density
ψ Streamfunction
	 Perturbation streamfunction

Superscripts and subscripts

basic Basic state
f Fluid
pm Porous medium
ref Lower interface temperature (basic state)
upper Upper surface
c Critical value
s Solid
1 Lower solid layer
2 Porous layer
3 Upper solid layer
′ Derivative with respect to z

ˆ Dimensional quantity

1 Introduction

The modelling of convective instability in porous layers now has a very strong heritage.
The foundational works are by Lapwood (1948) and Horton and Rogers (1945), and these
determined the criterion for the onset of convective instability in a horizontal porous layer
which is heated frombelow. In addition, the upper and lower boundarieswere considered to be
impermeable and subject to constant fixed temperatures, and the porousmediumwas isotropic
and homogeneous. Other types of boundary condition, such as a constant heat flux or constant
pressure, may be applied in a variety of different ways; Table 6.1 in Nield and Bejan (2013)
gives a comprehensive account of the critical values of the Rayleigh number andwavenumber



for these different combinations. The effects of confinement, such as convection in a cuboidal
cavity and in a cylindrical cavity (with a circular horizontal planform), were considered by
Beck (1972) and Bau and Torrance (1981), respectively. Unlike the corresponding pure
fluid configurations, there exist aspect ratios of the cuboid and radii of the cylinder for
which the critical Darcy–Rayleigh number is identical with that of the infinite unconfined
layer.

The literature is now replete with the study of how the onset and subsequent devel-
opment of convection is altered by the presence of different effects, such as Brinkman
effects, non-Boussinesq effects, the presence of imperfections such as sinusoidally varying
boundary temperatures, throughflow effects, rotation, layering, anisotropy, internal heat-
ing, local thermal nonequilibrium, more than one diffusing species and unsteady basic
states; note that this list, while long, is not comprehensive. Although some work has been
reported on configurations where two porous sublayers are separated by a solid interme-
diate sublayer (see Postelnicu 1999; Jang and Tsai 1988; Patil and Rees 2014; Straughan
2014 for systems of this general type), we are presently interested three-layer systems
where a porous sublayer is bounded by two heat-conducting but impermeable solid sub-
layers.

Mojtabi and Rees (2011) considered such a three-layer system subject to constant heat
flux boundary conditions, and this was motivated by the need to model an experimental
system where solid boundaries do not have zero thickness and idealised boundary con-
ditions cannot be applied in practice. It was found that the critical parameters (namely
the Darcy–Rayleigh number and wavenumber) and the shape of the neutral curve depend
quite strongly on the thickness of the solid boundaries and their conductivity relative to
that of the porous sublayer. For example, when the solid sublayers are sufficiently highly
conducting, the full system may be made to resemble a single porous layer system with
constant temperature boundary conditions. In addition, there is a locus in parameter space
where the neutral curve has a quartic minimum at zero wavenumber, and this locus sepa-
rates the regime within which the more usual parabolic minimum at nonzero wavenumbers
exists from that where the parabolic minimum is at zero wavenumber. A second study
was undertaken by Rees and Mojtabi (2011) where constant temperature boundary con-
ditions were applied. There are many qualitative similarities between this study and the
previous one by the same authors except that there is no quartic minimum, and the zero
critical wavenumber limit is obtained as the solid conductivities tend to zero. Rees and
Mojtabi (2011) also provided a weakly nonlinear analysis to determine regimes within
which postcritical convection takes the form of rolls or patterns with square planform;
this was an extension of the work of Riahi (1983) who considered solid layers of infinite
thickness. A paper by Rees and Mojtabi (2013) also considered the effect on the onset
of convection of a horizontal pressure gradient. If was found that there is a thermal drag
caused by the stationary solid boundaries which reduces the velocity of the cells along the
layer.

In the present paper, we consider the linear stability of a configuration which has some
similarities to those of Mojtabi and Rees (2011) and Rees and Mojtabi (2011). Here, the
lower solid sublayer is insulated on its lower surface, but its interior is subject to a uniform
rate of heat generation, while the upper sublayer is subject to a constant temperature. It is
shown in the Appendix that this may bemapped onto a systemwhere the lower solid sublayer
is subject to a constant heat flux but without heat generation within the sublayer. While this
may seem to be a simple intermediate case between those of Mojtabi and Rees (2011) and
Rees and Mojtabi (2011), three different limiting cases for the critical parameters are found
in different asymptotic regions of parameter space, and this is a novel finding.
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Fig. 1 Definition sketch of the configuration being studied. The porous layer is sandwiched between two
impermeable but thermally conducting layers

2 Governing Equations and Basic Solution

We consider a three-layer system as shown in Fig. 1. It consists of a central uniform porous
layer (layer 2) within which convective flow may occur, and this is embedded between two
thermally conducting but impermeable layers. These solid layers have identical properties,
namely thickness, conductivity and heat capacity. A uniformly cold temperature is imposed
on the upper surface of the upper solid layer (layer 3), while the lower layer (layer 1) is subject
to uniform Joule heating but its lower surface is insulated. Thus, all the heat is generated
within the lowest sublayer and passes out through the upper surface, and a potentially unstable
temperature gradient is formed. The origin of the coordinate system is located at the bottom
of the porous layer with x̂ being the horizontal coordinate and ẑ the vertical coordinate.

The full set of governing equations are as follows. For layer 1 (−h ≤ ẑ ≤ 0):

(ρC)s
∂T1
∂ t̂

= ks

(
∂2T1
∂ x̂2

+ ∂2T1
∂ ẑ2

)
+ q; (1)

for the porous layer (0 ≤ z ≤ H ):

∂ û

∂ x̂
+ ∂ŵ

∂ ẑ
= 0, (2)

û = −K

μ

∂ p̂

∂ x̂
, ŵ = −K

μ

∂ p̂

∂ ẑ
+ ρf ḡβK

μ
(T2 − Tref ), (3)

(ρC)pm
∂T2
∂ t̂

+ (ρC)f

(
u

∂T2
∂ x̂

+ w
∂T2
∂ ẑ

)
= kpm

(
∂2T2
∂ x̂2

+ ∂2T2
∂ ẑ2

)
; (4)

and for the upper layer (H ≤ z ≤ H + h):

(ρC)s
∂T3
∂ t̂

= ks

(
∂2T3
∂ x̂2

+ ∂2T3
∂ ẑ2

)
. (5)

In these equations, the numerical subscripts refer to the appropriate sublayer, and Tref is the
basic temperature of the interface between the porous sublayer and the lower solid sublayer
for the purely conducting situation. The boundary and interface conditions are given by,



ẑ = −h : ∂T1
∂z

= 0,

ẑ = 0 : ŵ = 0, T1 = T2, ks
∂T1
∂ ẑ

= kpm
∂T2
∂ ẑ

,

ẑ = H : ŵ = 0, T2 = T3, kpm
∂T2
∂ ẑ

= ks
∂T3
∂ ẑ

,

ẑ = H + h : T3 = Tupper.

(6)

The basic state consists of no flow (û = ŵ = 0) and a steady ẑ-dependent temperature. It
is a straightforward if tedious matter to determine the conduction profiles in each layer:

T1 = Tupper + q
[3h2
2ks

+ Hh

kpm

]
− q

ks

(ẑ + h)2

2
,

T2 = Tupper + q
[h2
ks

]
− qh

kpm
(ẑ − H),

T3 = Tupper − qh

ks
(ẑ − H − h).

(7)

The temperature drop across the porous layer will be used as the temperature scale for the
purposes of nondimensionalisation. This value is

�T = qHh

kpm
, (8)

and we see that the temperature, Tref , of the lower interface temperature is given by,

Tref = Tupper + q
[h2
ks

+ Hh

kpm

]
. (9)

We may now nondimensionalise by introducing the following scalings,

(x̂, ẑ) = H(x, z), t̂ = H2

kpm/(ρC)pm
t, (û, ŵ) = kpm

(ρC)fH
(u, w), p̂ = μkpm

K (ρC)f
p,

T = Tref + �T θ. (10)

Thus, Eqs. (2) and (3) become,

∂u

∂x
+ ∂w

∂z
= 0, (11)

u = −∂p

∂x
, w = −∂p

∂z
+ Ra θ, (12)

Here, the Darcy–Rayleigh number, Ra, is defined as,

Ra = ρf ḡβK H �T

μ(kpm/(ρC)f ))
, (13)

where �T is given in terms of q in Eq. (8). The three heat transport equations become,



(ρC)s

ks

kpm
(ρC)pm

∂θ1

∂t
= ∂2θ1

∂x2
+ ∂2θ1

∂z2
+ 1

dδ
, (14)

∂θ2

∂t
+ u

∂θ2

∂x
+ w

∂θ2

∂z
= ∂2θ2

∂x2
+ ∂2θ2

∂z2
, (15)

(ρC)s

ks

kpm
(ρC)pm

∂θ3

∂t
= ∂2θ3

∂x2
+ ∂2θ3

∂z2
, (16)

where

d = ks
kpm

and δ = h

H
(17)

are the respective conductivity and thickness ratios between the solid and porous sublayers.
The boundary and interface conditions given in Eq. (6) become,

z = −δ : ∂θ1

∂z
= 0,

z = 0 : ŵ = 0, θ1 = θ2, d
∂θ1

∂z
= ∂θ2

∂z
,

z = 1 : ŵ = 0, θ2 = θ3,
∂θ2

∂z
= d

∂θ3

∂z
,

z = 1 + δ : θ3 = −1 − δ

d
.

(18)

The apparently unusual boundary condition for θ3 at z = 1 + δ has been defined in such a
way that the temperature field varies between 0 and −1 within the porous layer. Thus, the
basic solution is given by

θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− z(z + 2δ)

2dδ
(−δ ≤ z ≤ 0),

−z (0 ≤ z ≤ 1),

−1 − z − 1

d
(1 ≤ z ≤ 1 + δ).

(19)

While there is a unit change in temperature across the porous layer, the overall temperature
drop over the whole system is 1+3δ/2d, and this increases as either the thickness of the solid
sublayers increase or their conductivity decreases. Five representative profiles of the basic
temperature field are given in Fig. 2 for the case δ = 0.5; profiles for other values of δ display
the same qualititative features. The insulating condition at z = −1 − δ is evident because
of the zero gradient. By design, the temperature profile in the porous layer is independent of
the values of both d and δ.

Figure 2 shows that there is little variation in the temperature within the solid sublayers
when d is large. This happens quite naturally because of the need to conserve the heat flux
across the interface. And then, when d takes small values, there is a very large variation in
temperature within the solid sublayers.

3 Perturbation Analysis

The basic state consists of the temperature profiles given in Eq. (19) with no flow. Since
Squire’s theorem may be shown easily to apply, i.e. that all three-dimensional disturbances
may be decomposed into a sum or integral of two-dimensional ones, we need to consider
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Fig. 2 Basic state temperature profiles for the cases with δ = 0.5: d = 0.25, 0.5 (short dashes), d = 1
(continuous) and d = 2, 4 (long dashes)

only two-dimensional disturbances. Therefore, we adopt a streamfunction/temperature for-
mulation using, u = −ψz and w = ψx , which guarantees that the equation of continuity,
Eq. (11), is satisfied. Although the heat transport equations in the two solid sublayers remain
unchanged, Eqs. (12) and (15) take the following forms,

∂2ψ

∂x2
+ ∂2ψ

∂z2
= Ra

∂θ

∂x
, (20)

∂θ2

∂t
+ ∂ψ

∂x

∂θ2

∂z
− ∂ψ

∂z

∂θ2

∂x
= ∂2θ2

∂x2
+ ∂2θ2

∂z2
. (21)

We may now introduce a disturbance of infinitesimally small amplitude using,

ψ = ψbasic + 	, θ j = θ j, basic + � j ( j = 1, 2, 3), (22)

whereψbasic = 0 and the basic temperature fields are given in Eq. (19). On neglecting powers
of the disturbances, the linearised stability equations take the form,

(
(ρC)s

ks

kpm
(ρC)pm

)
∂�1

∂t
= ∂2�1

∂x2
+ ∂2�1

∂z2
, (23)

∂2	

∂x2
+ ∂2	

∂z2
= Ra

∂�2

∂x
, (24)

∂�2

∂t
= ∂2�2

∂x2
+ ∂2�2

∂z2
+ ∂	

∂x
, (25)

(
(ρC)s

ks

kpm
(ρC)pm

)
∂�3

∂t
= ∂2�3

∂x2
+ ∂2�3

∂z2
. (26)



These equations are to be solved subject to the homogeneous form of the boundary conditions
given in (18), with the addition of

	 = 0 on both z = 0 and z = 1. (27)

It may also be shown easily that the principle of exchange of stabilities applies, and therefore,
the onset of convection is stationary and the time derivatives in Eqs. (23)–(26) may be
neglected. If the domain is of infinite horizontal extent, then we may Fourier-decompose
disturbances into independent monochromatic cells. Thus, we set,

	(x, z, t) → i	(z)eikx + c.c., � j (x, z, t) → � j (z)e
ikx + c.c., (28)

where k is the horizontal wavenumber. Equations (23)–(26) reduce to

�′′
1 − k2�1 = 0, (29)

	 ′′ − k2	 = Ra k�2, (30)

�′′
2 − k2�2 = k	2, (31)

�′′
3 − k2�3 = 0, (32)

where primes denote derivatives with respect to z.
The equations for �1 and �3 may be solved analytically and converted into suitable

boundary conditions for �2 upon application of the interface conditions, as follows. For
Layer 1, Eq. (29) has the solution,

�1 = E cosh(kz) + F sinh(kz). (33)

The application of the boundary condition, �′
1(−δ) = 0, means that this solution may now

be written in the form,

�1 = E
[
cosh(kz) + tanh(kδ) sinh(kz)

]
. (34)

Application of the interface conditions at z = 0, namely that �1 = �2 and d�′
1 = �′

2
allows us to eliminate the arbitrary constant, E , to yield

�′
2(0) = �2(0)kd tanh(kδ), (35)

which is regarded as a boundary condition for �2 that models perfectly the variation of �1

in the lower sublayer. A similar analysis for �3 yields

�′
2(1) = −�2(1)kd coth(kδ). (36)

The linear stability problem has now been reduced to solving Eqs. (30) and (31) subject to
the two thermal boundary conditions given in (35) and (36), together with those in Eq. (27).

4 Dispersion Relation

Equations (30) and (31) form a fourth-order homogeneous system, and there are four inde-
pendent solutions. These may be written in the following form,

	 = √
Ra

(
A cosh λz + B sinh λz + C cos σ z + D sin σ z

)
, (37)

�2 = A cosh λz + B sinh λz − C cos σ z − D sin σ z, (38)



where A, B, C and D are arbitary constants, and where

λ =
√
k(

√
Ra + k), σ =

√
k(

√
Ra − k). (39)

The Darcy–Rayleigh number is found always to lie above the curve, Ra = k2, and therefore,
the value of σ is always purely real.

If we now apply the boundary conditions, (27), (35) and (36), then we obtain the following
matrix/vector system for the four arbitrary constants:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

cosh λ sinh λ cos σ sin σ

−2kd tanh(kδ) λ 0 −σ

λ sinh λ+ λ cosh λ+ σ sin σ− −λ cos λ−
kd coth(kδ) cosh λ kd coth(kδ) sinh λ kd coth(kδ) cos σ kd coth(kδ) sin σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

B

C

D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(40)

This system has nonzero solutions only when the determinant of the matrix is zero. After
some manipulation, we find that this determinantal condition is equivalent to

λσ
(
1 − cosh λ cos σ

)
− (1 + 2d2)k2 sinh λ sin σ

−kd
(
tanh kδ + coth kδ

)(
σ sinh λ cos σ + λ cosh λ sin σ

)
= 0. (41)

It is impossible to solve this equation analytically to give Ra in terms of k, d and δ, and
therefore, we resort to numerical means. A simple Newton-Raphson may be used easily to
determine neutral curves as k varies for fixed values of d and δ. A slightly more complicated
version was also written in order to find critical values, i.e. those values of k and Ra at the
lowest point of the neutral curve. The manner in which this was undertaken is precisely as
described in Rees and Mojtabi (2011) and Rees and Genç (2011) and is therefore omitted
here. The codes were written in quadruple precision in Fortran90 because it was found that
this amount of precision was required to obtain accurate computations when d and δ take
values which are as small as 10−10 and as large as 1010.

5 Results and Discussion

Inwhat follows there are three sets of critical datawhich are useful references. For the classical
Darcy-Bénard layer, the critical values of the Darcy–Rayleigh number and wavenumber are,

CT/CT: Rac = 4π2, kc = π, (42)

where the appelation, CT/CT, refers to the fact that both the upper and lower boundary
conditions correspond to a constant temperature.When both surfaces are subject to a constant
heat flux, we have

CHF/CHF: Rac = 12, kc = 0. (43)

Finally, when either surface is subject to a constant temperature, while the other is subject to
a constant heat flux, we have

CT/CHF: Rac = 27.097 627 920, kc = 2.326 214 580. (44)
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Fig. 3 Onset profiles for the streamfunction (lower curves) and the temperature (upper curves) for the
wavenumber, k = 2: a δ = 0.4 with d = 0.01 (dotted), 0.1, 1, 10 and 100; b d = 5 with δ = 0.01,
0.03, 0.1, 0.3 and 1

5.1 Onset Profiles

We begin by showing, in Fig. 3, a selection of onset profiles (	, �) so that the effect of vari-
ations in the two nondimensional parameters, d and δ, on those profiles may be seen. In both



frames the temperature profile,�, takes positive values, while the streamfunction disturbance
profile, 	, takes negative values. The profiles have been scaled so that the maximum magni-
tude is precisely unity for easy comparison. Given our definition of the streamfunction, the
values of	 turn out conveniently to be negativewhen� is positive. Althoughwe have set k =
2 in all cases, the qualitative trends shown in Fig. 3 do not change for different wavenumbers.

Figure 3a shows the effect of variations in d when δ = 0.4. When d takes large values, the
solid sublayers are highly conducting and we see therefore that the disturbance temperature
is almost perfectly constant; this situation is close to the CT/CT single-layer case mentioned
above.At the opposite extreme, d � 1, the solid layers are poor conductors, and this gives rise
to relatively large variations in�within the solid regions, aswas seen for the basic conduction
profiles, and only small variations within the porous sublayer. This is approximately the
CHF/CHF case mentioned above. It is also interesting to note that the streamfunction profile
hardly varies at all over the whole range of values of d.

Figure 3b shows the effect of changing the depth, δ, of the solid sublayers. We have
chosen a fairly representative value for the conductivity ratio, d = 5, and this case shows an
interesting transition in the profiles from one which is close to being of CT/CT type when δ

is large (i.e. thick solid sublayers) to one which is almost indistinguishable from a CT/CHF
type when δ is small. In such cases, the very thin solid sublayers appear to be yield stability
properties and profiles which are identical to cases where the layers are entirely absent. We
will see later that this initial hypothesis turns out not to be that straightforward in general,
and attention must be paid to the magnitude of δ in comparison with that of d.

5.2 Neutral Curves

Figure 4 shows a small selection of neutral stability curves for some typical values of the
parameters, d and δ, where each lies in the range, 10−3–103. These curves show the standard
unimodal form with a clearly identifiable minimum value; numerical investigations indicate
that unimodal curves are always obtained for the present configuration. The uppermost curve
(d = 103) in all four cases is almost exactly identical to that for the classical Darcy-Bénard
problem (CT/CT) for which the critical values are Rac = 4π2 and kc = π . This is because
the solid layers are highly conducting which means that temperature variations are rapidly
damped, and therefore the interfaces act as perfectly conducting boundary conditions. That
said, the critical values for the d = 103 curve when δ = 10−3 are very slightly smaller
than the classical values, but this is difficult to see graphically. On the other hand, the lowest
curves (d = 10−3) for all four cases change quite substantially as δ increases, and the critical
values decrease quitemarkedly. Indeed, when δ is large, the highly insulating bounding layers
mimic the CHF/CHF porous layer for which Rac = 12 and k = 0.

On the other hand, from these graphs, it is possible to find out how quickly the neutral
curves change as d varies. It is clear that there is almost no change in the location of the
neutral curve when d increases from 10−2 to 102 when δ = 10−3. But when δ = 103, there
is a rapid change as d increases from 10−1 to just below 101; outside of these ranges there is
little variation. While we have gleaned this information from Fig. 4, it is clear that we need to
consider the variations in the critical parameters themselves, rather than by observing further
examples of neutral curves.

An extensive set of computations has therefore been undertaken to determine the critical
values ofRa and k in the ranges 10−6 ≤ δ ≤ 106 and 10−10 ≤ d ≤ 1010, and these are shown
in Fig. 5. Referring to both frames in this figure, we see that the general behaviour of the
critical values is that they pass from the CHF/CHF case via the CT/CHF case to the CT/CT
case as d increases from exceptionally small values to exceptionally large values. When the
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solid sublayers are comparable to the thickness of the porous layer, or larger, then there is
a direct transition from CHF/CHF to CT/CT which is quite quick near d = 100 when d is
increasing. But when δ < 10−3, there is range centred on d = 100 where the composite layer
resembles the CT/CHF layer with very high accuracy. Figure 6 shows a close-up image of
the central region of the wavenumber curves in Fig. 5. This shows that, when δ = 10−5, the
composite layer mimics a CT/CHF single layer when 10−2 < δ < 102, and when δ = 10−6,
this happens when 10−3 < δ < 103.

In the close-up view, we also see that there is an undershoot in the critical wavenumber as
d decreases whenever δ is sufficiently small. This presages the passage towards the CT/CHF
equivalence. It is unclear what the physical reason for this might be, but a similar behaviour
does not occur for the critical Darcy–Rayleigh number.

5.3 Summary

An alternative view of the curves shown in Fig. 5 is provided by Fig. 7, which shows contour
representations of both Rac and kc in the ranges, 10−10 ≤ d, δ ≤ 1010. A grid with 100 inter-
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vals in both directions was used for these figures. We now see clearly how the (d, δ) plane is
divided into three very distinct regions with smooth transitions between these regions. Gener-
ally, the right-hand side corresponds to being equivalent to a CT/CT single layer, the left-hand
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side to a CHF/CHF layer, while the triangular wedge is a CT/CHF configuration. Therefore,
our composite layer is clearly capable of supporting three different types of behaviour.

Earlier, a statement wasmade that what constitutes a narrow solid layer is not a straightfor-
ward concept. In Fig. 6, if we choose δ = 10−5 to represent a very thin pair of solid sublayers,
then we should expect this to represent the single-layer CT/CHF case simply because 10−5

is exceptionally small. However, the critical values correspond to the single-layer CT/CHF
critical values only when d lies in the range 10−4 < d < 104. Outside of this range, we
obtain the CHF/CHF casewhen d < 10−9 and the CT/CT casewhen d > 105. These extreme
values for d overrule our standard intuition of what ‘thin’ means in the context of the stability.
Of course, if one takes the alternative viewpoint that d is fixed, but δ decreases, then one will
always eventually obtain a CT/CHF configuration.

It is clear from the two subfigures in Fig. 7 that the transitions between the three main
regions take place at

d ∼ 100 100 < δ,

d > 100 : dδ ∼ 1,

d < 100 : d ∼ δ.

(45)

Finally, Fig. 7 also shows as dotted lines the locus of points which correspond to the
CT/CHF critical values given in Eq. (44). While the locus of points for Rac forms a straight
vertical line which passes downwards through d = 100, the locus of values of kc which
satisfies (44) travels in a diagonal direction. However, the values of kc which are within the
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triangular region at the bottom of that contour plot and which are close to d = 100 are also
within 10−6 of the CT/CHF value in Eq. (44). This corresponds almost perfectly with the
curves given in Fig. 6.

6 Conclusions

We have conducted a linear stability analysis to determine the effect on stability criterion of
having two solid but identical bounding sublayers above and below a saturated porous layer
where the lower sublayer generates heat internally. The equations were nondimensionlised
in such a way that the Darcy–Rayleigh number is based on the temperature drop across the
porous layer. There are two parameters, namely the conductivity ratio between the solid and
porous sublayers, d and the relative thickness of the bounding plates, δ. Therefore, we have
been able to provide a comprehensive account of the stability properties over a very wide
range of values of the parameters. The stability criteria were determined by finding the zeros
of a dispersion relation and by minimisation over the wavenumber.

It has been found that the addition of conducting layers above and below the porous layer
allows the stability criteria to vary quite substantially and, in particular, to allow this com-
posite layer to mimic one of three standard single-layer configurations, namely the CT/CT,
CT/CHF and the CHF/CHF cases. This type of behaviour is quite different from that of
Mojtabi and Rees (2011) where the composite layer which they studied only displayed two
types of limiting behaviour.

From the practical point of view of constructing an experimental configuration, we have
shown that the presence of a physically thin pair of solid bounding plates does not necessarily
guarantee that the stability properties correspond to the type (namelyCT/CHF) corresponding
to the boundary conditions which are applied. Rather, when δ is very small, only a certain
range of values of d will yield the CT/CHF onset criterion.

We do not know at this stage whether the rolls which we have considered will form the
stable mode of convection at values of the Darcy–Rayleigh number which are just above
the critical values. Given the conclusions of Riahi (1983) and Rees and Mojtabi (2011), we
feel that it is quite likely that square cells are likely to be preferred when the conductivity
of the bounding sublayers is sufficiently small, but this aspect would need to be considered
quantitatively elsewhere. However, it is very likely indeed that both the roll and square cell
patterns will arise from supercritical bifurcations, and therefore, all the results presented here
will also be valid should square cells be the preferred pattern post-onset.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

The aim of this Appendix is to show that the problem solved in the main body of this paper
is equivalent to solving one where the lower solid sublayer does not have heat generation but
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is subject to a constant heat flux at its lower boundary. Specifically Eq. (1) is replaced by,

(ρC)s
∂T1
∂ t̂

= ks

(
∂2T1
∂ x̂2

+ ∂2T1
∂ ẑ2

)
, (46)

and the ẑ = −h boundary condition, Eq. (6) by

− ks
∂T1
∂z

= q. (47)

This means that the basic temperature profiles become,

T1 = Tupper + q
[ h

ks
+ H

kpm

]
− q

ks
ẑ,

T2 = Tupper + q
[ h

ks

]
− q

kpm
(ẑ − H),

T3 = Tupper − q

ks
(ẑ − H − h).

(48)

The temperature drop across the porous layer is, therefore,

�T = qH

kpm
, (49)

and the interface temperature at ẑ = 0, Tref , is given by,

Tref = Tupper + q
[ h

ks
+ H

kpm

]
. (50)

Nondimensionalisation now takes place as given in Eq. (10) where �T is given by Eq. (49).
After nondimensionalisation, Eq. (14) is replaced by

(ρC)s

ks

kpm
(ρC)pm

∂θ1

∂t
= ∂2θ1

∂x2
+ ∂2θ1

∂z2
, (51)

and the z = −δ boundary condition in Eq. (18) is rendered homogeneous. Finally, the basic
temperature profile in Eq. (19) becomes,

θ =

⎧⎪⎪⎨
⎪⎪⎩

− z

d
(−δ ≤ z ≤ 0),

−z (0 ≤ z ≤ 1),

−1 − z − 1

d
(1 ≤ z ≤ 1 + δ),

(52)

where the only change is in sublayer 1. The perturbation analysis described in §3 and the
dispersion relation in §4 now apply to this alternative situation without change.
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