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Analytical and numerical stability analysis of Soret-driven
convection in a horizontal porous layer: The effect of vertical
vibrations�

Soumaya Ouadhani1,2, Ali Abdennadher2, and Abdelkader Mojtabi1,a

1 IMFT, UMR CNRS/INP/UPS No. 5502, UFR MIG, Paul Sabatier University, 118 Narbonne street,
31062 Toulouse cedex, France

2 Carthage University, LIM Laboratory, Polytechnic School of Tunisia, BP 743, 2078 Marsa, Tunisia

Abstract. The authors studied the effect of vertical high-frequency and small-amplitude vibrations on the
separation of a binary mixture saturating a porous cavity. The horizontal bottom plate was submitted
to constant uniform heat flux and the top one was maintained at constant temperature while no mass
flux was imposed. The influence of vertical vibrations on the onset of convection and on the stability
of the unicellular flow was investigated for positive separation ratio ψ. The case of high-frequency and
small-amplitude vibrations was considered so that a formulation using time averaged equations could
be used. For an infinite horizontal porous layer, the equilibrium solution was found to lose its stability
via a stationary bifurcation leading to unicellular flow or multicellular one depending on the value of ψ.
The analytical solution of the unicellular flow was obtained and separation was expressed in terms of
Lewis number, separation ratio and thermal Rayleigh number. The direct numerical simulations using
the averaged governing equations and analytical stability analysis showed that the unicellular flow loses
its stability via oscillatory bifurcation. The vibrations decrease the value of ψuni, which allows species
separation for a wide variety of binary mixtures. The vibrations can be used to maintain the unicellular
flow and allow species separation over a wider range of Rayleigh numbers. The results of direct numerical
simulations and analytical model are in good agreement.

1 Introduction

Double-diffusive convection caused by temperature and
concentration gradients in a porous medium is a classi-
cal example of the problems that reveal the interaction of
different instability mechanisms. Reviews of recent devel-
opments and publications in this field can be found in [1].
A great number of works in this field of research are de-
voted to investigation into high-frequency and small am-
plitude vibration. Khallouf et al. [2] considered a square
differentially heated cavity filled with a porous medium
saturated by a pure fluid and subjected to linear harmonic
oscillations in the vertical direction. In their study, the
authors used a Darcy-Boussinesq model and a direct for-
mulation. Gershuni et al. [3] have studied the stability of
a substantially linear mechanical equilibrium solution for
an horizontal layer of a binary mixture subjected to ver-
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tical thermal gradient under the effect of high-frequency
vibrations. The thermovibrational convection in a fluid
received more attention than the thermovibrational con-
vection in a porous medium. A good summary of this work
was achieved by Gershuni et al. [4, 5].

In the case of a horizontal porous layer saturated by a
pure fluid, heated from below or from above Zenkovskaya
et al. [6] and Bardan et al. [7] used the Darcy model in-
cluding the non-stationary term and adopted the time-
averaged equations formulation to study the influence of
high-frequency and small-amplitude vibrations on the on-
set of convection. They found that vertical vibrations sta-
bilize the rest solution. Charrier-Mojtabi et al. [8] inves-
tigated the influence of vibrations on Soret-driven con-
vection in a horizontal porous cell heated from below or
from above. They showed that the vertical vibrations had
a stabilizing effect while the horizontal vibrations had a
destabilizing effect. Elhajjar et al. [9] have studied the
influence of the vertical vibration of high frequency and
small amplitude on separation for a cell with horizontal
walls maintained at constant but different temperatures.
The linear stability of the unicellular flow obtained was
analyzed analytically and numerically. They concluded



that the unicellular flow associated with a field of lami-
nate concentration leads to the horizontal separation of
binary mixture components. They found that the vibra-
tions have a stabilizing effect, leading to an increase of
the critical value of the Rayleigh number corresponding
to the transition between the unicellular and multicellular
flow. Consequently vertical vibration allows species sepa-
ration for a wide variety of binary mixtures. The validity
of the average approach for the description of vibrational
convection in porous medium differs from the case with
homogeneous fluid and is not widely known. This point
is developed in more details in the paper by Lyubimov et
al. [10]. The authors investigated the onset and nonlinear
regimes of convection in a two-layer system composed of
a horizontal pure fluid layer and a fluid-saturated porous
layer subjected to the gravity field and high-frequency vi-
brations.

In the present paper, we use the same formulation as
the one used by Charrier-Mojtabi et al. [8] for a shallow
porous cavity saturated by a binary mixture. The cavity
bounded by horizontal infinite or finite boundaries. The
bottom horizontal plate is submitted to constant uniform
heat flux and the top one is maintained at constant tem-
perature, while no mass flux is imposed. We verify that it
is possible to carry out the species separation of a binary
mixture in this geometrical configuration. We consider the
case of high-frequency and small-amplitude vibrations, so
that a formulation using time averaged equations can be
employed. The results of the linear stability analysis of the
mechanical equilibrium and the unicellular flow in an infi-
nite porous layer is studied analytically and using spectral
method.

2 Mathematical formulation

We consider a rectangular cavity with aspect ratio A =
L/H, where H is the height of the cavity along the vertical
axis and L is the width along the horizontal axis (fig. 1).
The aspect ratio is assumed infinite in the stability anal-
ysis. The cavity is filled with a porous medium saturated
by a binary fluid for which the Soret effect is taken into
account. Dirichlet and Neumann boundary conditions for
temperature are applied to the horizontal walls (z = 0,
z = H). The vertical walls (x′ = 0, x′ = L) are imperme-
able and adiabatic. All the boundaries are assumed rigid.
The cavity is subjected to linear harmonic oscillations in
the vertical direction (amplitude b and dimensional fre-
quency �). For the governing equations, we adopt the
Boussinesq approximation and Darcy equation for which
the non-stationary term is taken into account.

We set all the properties of the binary fluid constant
except the density ρ in the buoyancy term, which depends
linearly on the local temperature and mass fraction:

ρ = ρr[1 − βT (T ′ − Tr) − βC(C ′ − Cr)], (1)

where ρr is the fluid mixture density at temperature Tr

and mass fraction Cr. βT and βC are the thermal and
concentration expansion coefficients respectively.

Fig. 1. A rectangular cavity, H is the height and L is the
width, the low horizontal plate is submitted to constant uni-
form heat flux and the top one is maintained to a constant
temperature while no mass flux is imposed

When we consider the referential related to the os-
cillating system, the gravitational field g is replaced by
g + b�2 sin(� t′)ez where ez is the unit vector along the
vertical axis (vibration axis) and t′ the dimensional time.

The reference scales are H for the length, σH2/a
for the time, with a = λ∗/(ρc)f and σ = (ρc)∗/(ρc)f

(where λ∗ and (ρc)∗ are, respectively, the effective ther-
mal conductivity and volumetric heat capacity of the
porous medium), a/H for the velocity (a is the effective
thermal diffusivity), ΔT = q′H/λ∗ for the temperature
and ΔC = −ΔT Ci(1 − Ci)D∗

T /D∗ for the mass frac-
tion, where Ci, D∗

T , D∗ are the initial mass fraction, the
thermodiffusion and the mass diffusion coefficients of the
denser component, respectively. The dimensionless tem-
perature and mass fraction are, respectively, defined by
T = (T ′ − T2)/ΔT , C = (C ′ − Ci)/ΔC.

Thus, the dimensionless governing conservation equa-
tions for mass, momentum, energy and chemical species,
where the Soret effect is taken into account, are
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · V =0,

B∂tV + V =−∇P + Ra(T + ψC)(1 − R sin(ωt))ez,

∂tT + V · ∇T =∇2T,

ε∂tC + V · ∇C =
1
Le

(∇2C −∇2T ),

(2)
where B = Da(ρc)f/(ρc)∗εPr is the inverse Vadasz num-
ber (B = 1/V a), Da = K/H2 is the Darcy number and
K the permeability of the porous medium.

The problem under consideration depends on eight
non-dimensional parameters: the thermal Rayleigh num-
ber, Ra = KgβT HΔT/aν, R = bω′2/g, the separation ra-
tio ψ = −(βc/βT ) (DT /D)Ci(1 − Ci), the Lewis number
Le = a∗/D∗, the normalized porosity ε = ε∗(ρc)f/(ρc)∗
(where ε∗ is the porosity), the dimensionless frequency
ω = ω′2(ρc)∗H2/a∗(ρc)f , the aspect ratio A and the
factor B. The dimensionless boundary conditions are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V · n = 0, ∀M ∈ ∂Ω,

∂C

∂z
=

∂T

∂z
= −1, z = 0 ∀x ∈ [0, A],

∂C

∂z
=

∂T

∂z
, z = 1 ∀x ∈ [0, A],

T = 0, z = 1 ∀x ∈ [0, A],
∂C

∂x
=

∂T

∂x
= 0, x = 0, A ∀z ∈ [0, 1].

(3)



In the momentum equation the term B∂V /∂t is usually
neglected since B is of order 10−6. However, in our prob-
lem, high-frequency vibrations cause very large accelera-
tions, making it necessary to consider this non-stationary
term [6].

3 The averaged equations

In the limiting case of high-frequency and small-amplitude
vibrations, the averaging method can be applied to study
thermal vibrational convection. According to this method,
each field (V , P , T , C) is subdivided into two parts: the
first part varies slowly with time (i.e., the characteristic
time is large with respect to the period of the vibrations)
and the second one varies quickly with time (i.e., the char-
acteristic time is of the order of magnitude of the vibra-
tional period):

(V , P, T, C) = (V ∗, P ∗, T ∗, C∗)(t) + (u′, p′, θ′, c′)(ω, t).
(4)

Here, V ∗, P ∗, T ∗, C∗ are the averaged fields (i.e., the
mean value of the field calculated over the period τ =
2π/ω) of the velocity, pressure, temperature and mass
fraction. The decoupling between the pulsational parts
of the velocity and the pressure is obtained by using a
Helmholtz decomposition:

(T ∗ + ψC∗)ez = W + ∇ξ, (5)

where W is the solenoidal part of (T ∗+ψC∗)ez satisfying
∇ · W = 0. Thus, the averaged flow equations are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · V ∗ = 0,

B∂tV
∗ + V ∗ = −∇P ∗ + (Ra(T ∗ + ΨC∗)

+Rv

(

∇T ∗ +
Ψ

ε∗
∇C∗

)

· W )ez,

∂tT
∗ + (V ∗ · ∇)T ∗ = ∇2T ∗,

ε∂tC
∗ + (V ∗ · ∇)C∗ =

1
Le

(∇2C∗ −∇2T ∗),

(T ∗ + ψC∗)ez = W + ∇ξ,

∇ · W = 0.

(6)

In addition to the boundary conditions (6)–(10) applied
to the mean fields, we assume that

W · n = 0 on ∂Ω. (7)

The modified vibrational Rayleigh number Rv =
Ra2R2B

2(B2ω2+1) characterizes the intensity of the vibrations.

4 Linear stability of the equilibrium solution
in an infinite horizontal porous layer

The stability of the equilibrium solution was studied by
Charrier-Mojtabi et al. [8]. They restricted their study to

the case Le = 2 for which the fluid considered is in the
gaseous state, and so the Dufour effect should be taken
into account. We extended this study to the case of a high
Lewis number and we focused on the transition from the
equilibrium solution to the unicellular flow obtained for
binary mixtures.

This problem admits a mechanical equilibrium solution
characterized by

V ∗
0 = 0, T ∗

0 = −z + cst, C∗
0 = −z +

1
2

, W0 = 0.

(8)
In order to analyze the stability of this conductive so-

lution, we introduce the velocity stream function ψ′, tem-
perature θ, the transformation η = c − θ, and finally, the
solenoidal stream function ϕ′, characterized by vx = ∂ψ′

∂z ,
vz = −∂ψ′

∂x and wx = ∂ϕ′

∂z , wz = −∂ϕ′

∂x .
We assumed that the perturbations

(ψ̃′(z), θ̃(z), c̃(z), ϕ̃′(z)) are small. The perturbation
quantities are chosen as follows:

(ψ′, θ, c, ϕ′) =
(
ψ̃′(z), θ̃(z), c̃(z), ϕ̃′(z)

)
eIkxx+σt. (9)

We introduce a new function η̃ = c̃ − θ̃. The system of
equations can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Bσ + 1)(D2 − k2)ψ̃′ + Raik((1 + ψ)θ̃ + ψη̃)

−Rvϕ̃′k2

(

1 +
ψ

ε

)

= 0,

(D2 − k2)θ̃ − σθ̃ − ikψ̃′ = 0,

(D2 − k2)η̃/Le − εσ(η̃ + θ̃) − ikψ̃′ = 0,

(D2 − k2)ϕ̃′ + ik((1 + ψ)θ̃ + ψη̃) = 0,

(10)

where D = ∂
∂z , k is the wave number in the horizontal

(ox) direction, I2 = −1, and σ is the temporal exponential
growth rate of perturbation. The corresponding boundary
conditions are

⎧
⎪⎪⎨

⎪⎪⎩

z = 0: ψ̃′ = ϕ̃′ =
∂θ̃

∂z
=

∂η̃

∂z
= 0;

z = 1: ψ̃′ = ϕ̃′ = θ̃ =
∂η̃

∂z
= 0.

(11)

4.1 Limiting case of the long-wave mode instability

We study the special case of the long-wave mode theo-
retically. In some related studies in fluid media, Razi et
al. [11] showed that the asymptotic analysis results in a
closed form relation for the stability threshold. In order
to obtain such a relation, a regular perturbation method
with the wave number as the small parameter is performed
(for simplifying the procedure), we drop the tilde symbol
and we expand (ψ′, θ, η, ϕ′, σ) as

(ψ′, θ, η, ϕ′, σ) =
∞∑

n=0

kn(ψ′
n, θn, ηn, ϕ′

n, σn), (12)



with boundaries conditions:
⎧
⎪⎪⎨

⎪⎪⎩

z = 0: ψ′
n = ϕ′

n =
∂θn

∂z
=

∂ηn

∂z
= 0;

z = 1: ψ′
n = ϕ′

n = θn =
∂ηn

∂z
= 0.

(13)

By substituting expressions in the amplitude equations re-
sulting from the linear stability analysis and factoring the
same order of k, we find a sequential system of equations:

For the zeroth order (k0):

ψ′
0 = 0, ϕ′

0 = 0, θ0 = 0, η0 = cst, σ0 = 0. (14)

At order 1, we get:
{

θ1 = 0, ψ′
1 = −IRaψη0(z2 − z)/2, η1 = cst,

ϕ′
1 = −Iψη0(z2 − z)/2, σ1 = 0

(15)

and at order 2:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ2 = Raψη0(z4 − 2z3 + 1)/24,

ψ′
2 = −IRaψη1(z2 − z)/2,

η2 =
η0z

2

2
(Leεσ2 + 1) +

RaLeψη0

24
z3(z − 2),

ϕ′
2 = −Iψη1(z2 − z)/2.

(16)

After involving the solvability condition, we find:

εσ2 =
1
Le

− ψ
Ra

12
. (17)

We note that σ2 is real indicating that the conductive
solution loses stability through a stationary bifurcation.
For the marginal stability σ2 is set equal to zero and we
obtain the Rayleigh number:

Ra =
12

ψLe
. (18)

4.2 Stability analysis results for arbitrary values
of wave number

The disturbances are developed in terms of polynomial
functions verifying all the boundary conditions except
those along the inner plates:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ′ =
N∑

n=1

an(1 − z)zn,

θ=b1

(

z2 − 2
3
z3

)

+ b2

(
z3−1

)
+

N∑

n=1

bn+2(1−z)2zn+1,

η = d1 + d2

(

z2 − 2
3
z3

)

+
N∑

n=1

dn+2(1 − z)2zn+1,

ϕ′ =
N∑

n=1

en(1 − z)zn.

(19)
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Fig. 2. Effect of vertical vibration on the onset of convection
for Le = 100, ε = 0.5 and B = 10−6.

0

0.5

1

1.5

2

2.5

0 0.01 0.02 0.03 0.04

Rv = 0

Rv = 10

Rv = 50

k c

ψ

Fig. 3. Effect of vertical vibration on the critical wave number
at the onset of convection for Le = 100, ε = 0.5 and B = 10−6.

The Tau spectral method used is similar to the
Galerkin method. The test functions used for ψ′, θ, ϕ′

and η verify all the boundary conditions.
For ψ > 0 the first bifurcation is stationary. The re-

sults are presented in the stability diagram Rac = f(ψ)
and kc = f(ψ). Figures 2 and 3 illustrate the effect of vi-
bration on the onset of convection. For the case Le = 100,
ε = 0.5, B = 10−6 and for Rv = 0, 10, 50, it can be noted
that Rac increases with Rv whereas kc decreases with Rv.
Figure 4 shows the influence of vibrations on ψuni, the
separation ration beyond which the critical wave number
vanishes (kc = 0), decreases. We note that ψuni decreases
and becomes close to zero when Rv increases. So by adding
vibrations, we can separate most binary mixtures. In the
case Rv = 0, we obtain ψuni = 1

10
39 Le−1

. Table 1 provides a
comparison of the critical Rayleigh and wave numbers of
the classical situation (absence of vibration) with the sit-
uation under different values of vibrational Rayleigh num-
ber.
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Fig. 4. Effect of the vertical vibration on the onset of the
unicellular separation ratio beyond which the flow at the onset
of convection becomes unicellular for ε = 0.5 and B = 10−6.

Table 1. Comparison of the critical Rayleigh and the wave
number for Le = 100, ε = 0.5 and B = 10−6.

ψ Rv = 0 Rv = 10 Rv = 50

Rac kc Rac kc Rac kc

0 27.10 2.33 30.35 2.12 40.43 1.66

0.001 23.56 2.20 26.55 1.97 35.29 1.48

0.002 20.75 2.09 23.49 1.83 30.98 1.31

0.004 16.59 1.90 18.88 1.57 24.16 0.99

0.005 15.03 1.81 17.11 1.45 21.41 0.83

5 Analytical solution of the unicellular flow

In the case of a shallow cavity (A � 1) in order to solve
the problem analytically, the parallel flow approximation
is considered [9, 12]. The streamlines are assumed to be
parallel to the horizontal walls except for the vicinity of
the vertical walls. In this case, the vertical component of
velocity can be neglected. The temperature and mass frac-
tion profiles are written as the sum of two terms: the first
one defining the linear longitudinal variation and the sec-
ond one giving the transverse distribution: The basic flow,
denoted with a subscript 0, is then given as follows:

{
V0 = U(z)ex, T0 = bx + h(z),

C0 = mx + g(z), W0 = W1(z)ex,
(20)

where b and m are, respectively, the unknown constant
temperature gradient and mass fraction gradient in the
x-direction. For the stationary state, when the above-
mentioned assumptions are made and the corresponding
boundary conditions are considered, we obtain the veloc-
ity, temperature and concentration fields:

⎧
⎪⎨

⎪⎩

U(z) = −ψ0(2z − 1), W1(z) = − ψ0

Ra
(2z − 1),

T0 = −z + 1, C0 = mx + g(z),
(21)
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Fig. 5. Curve of dimensional mass fraction gradient mdim for a
mixed water ethanol (60.88% by weight of water), for (βc = 0.2,
K = 10−9, C0 = 0.5, D = 4 ·10−10, DT = 10−12, ν = 3 ·10−6).

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 =
1
2
Raψm,

g(z) =
ψ0mLe(6z2 − 4z3 − 1)

12
+

1 − mA

2
− z,

m =
5Leψ0

Le2ψ2
0 + 30

.

(22)

Then we have 2ψ0
3Le2 + (60 − 5RaLeψ)ψ0 = 0 whose

solutions are ψ0 = 0 and ψ0 = ± 1
2

√
10RaLeψ−120

Le .
The dimensionless and the dimensional mass fraction

gradient are

m=±
√

10RaLeψ − 120
RaLeψ

, mdim =
√

10q1q2HΔT − 120
H2q1

,

(23)
where q1 = Kgβc/νD and q2 = −C0(1 − C0)DT /D.

Figure 5 illustrates the evaluation of the dimensional
mass fraction gradient mdim according to H and ΔT for
a mixed water ethanol (60.88% by weight of water). It
follows that for a fixed height of the cavity H, the mass
fraction gradient will be so much greater than ΔT is great,
while the H that maximizes the mass fraction gradient
depends on the choice of ΔT , which is equal to Hmax =

16
q1q2ΔT .

6 Linear stability analysis of the unicellular
flow

In order to analyse the stability of the unicellular flow, we
introduce the perturbation of the vertical velocity compo-
nent w, the perturbation of the vertical component of W ,
w2, the perturbation of temperature θ, the concentration
c and the transformation η = c − θ. The disturbances are
developed in the form of normal modes. It is assumed that
the perturbation quantities are sufficiently small so that
the second-order terms may be neglected. The system of



equations for the amplitudes can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Bσ + 1)(D2 − k2)w + Rak2[(1 + ψ)θ + ψη]

+Rv

[

IkDw2

(

b +
ψ

ε
m

)

+k2w2

(

DT0 +
ψ

ε
DC0

)

+Ik3w2[(1+ψ)θ + ψη]
]

=0,

Ik(D2 − k2)θ − σIkθ − wIkDT0 + Uk2θ + bDw=0,

Ik

Le
(D2 − k2)(η + θ) − σIk(η + θ) − wIkDC0

+Uk2(η + θ) + mDw = 0,

(D2 − k2)w2 + k2[(1 + ψ)θ + ψη] = 0.

(24)
The corresponding boundary conditions are given as

⎧
⎪⎪⎨

⎪⎪⎩

w = 0, θ =
∂η

∂z
= 0, w2 = 0 for z = 1,

w = 0,
∂θ

∂z
=

∂η

∂z
= 0, w2 = 0 for z = 0.

(25)

The linear stability equations were solved using the
4th-order Galerkin method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w =
N∑

n=1

an(1 − z)zn,

θ= b1

(
z2 − 1

)
+ b2

(
z3 − 1

)
+

N∑

n=1

bn+2

(
z2 − 1

)
zn+1,

η = d1 + d2

(

z2 − 2
3
z3

)

+
N∑

n=1

dn+2(1 − z)2zn+1,

w2 =
N∑

n=1

en(1 − z)zn.

(26)
For the value of ψ and Le studied, the critical Rayleigh
number leading to stationary bifurcation is always higher
than the one leading to Hopf bifurcation. So, in this study
we focus on the critical number related to the Hopf bifur-
cation. The results are illustrated in table 2 for the case
ψ = 0.3, Le = 100, ε = 0.5, A = 10 and B = 10−6,
the vertical vibrations have a stabilizing effect on convec-
tive motions and increase the value of the critical thermal
Rayleigh number Rac. Thus the vibrations can be used to
maintain the unicellular flow and allow species separation
over a wider range of Rayleigh numbers. It should be men-
tioned that vibrations reduce the critical wave numbers kc

and the Hopf frequency ωc. This means that vibrations can
also be used to decrease the number of convective cells at
the transition from the unicellular flow to the multicellular
flow.

Table 2. Effect of vibrations on the critical values of the
Rayleigh number Rac, wave number kc and frequency ωc asso-
ciated with the transition from unicellular to multicellular flow
for ψ = 0.3, Le = 100, ε = 0.5 and B = 10−6.

Rv kc Rac ωc

0 5.25 16.87 1.55

10 4.98 17.09 1.44

30 4.54 17.39 1.27

50 4.20 17.55 1.14

70 3.94 17.59 1.04

7 2D Numerical simulations

The averaged equations (eq. (6)) with the associated
boundary conditions were solved using the finite element
method. The influence of vibrations on the onset of con-
vection was investigated for a cell of aspect ratio A = 10
for Le = 100 and ε = 0.5 (B is fixed to 10−6). It was
observed that the critical parameters of the bifurcations
differed very little between the case A = 10 and the
case of a cell of infinite horizontal extention. A structured
mesh 150 × 30 was used for the finite element method
for A = 10. For the onset of stationary convection, the
results for Le = 100 are presented in figs. 6 and 7. For
ψ = 0.02, without vibration (Rv = 0), the critical param-
eters Rac = 5.78, kc = 1.00 are obtained from the linear
stability analysis. For the same value of ψ but with vi-
brations (Rv = 10), we obtain Rac = 6, kc = 0 from the
linear stability analysis, so the critical wave numbers is
zero, which means that the flow at the onset of convection
is unicellular. To confirm this result, we used the direct nu-
merical simulation to study the case ψ = 0.02 for a value
of Ra close to the critical value (Ra = 6) first without
vibrations (Rv = 0) and then with vibrations (Rv = 10).

Fig. 6. Streamlines for Le = 100, ψ = 0.02, Ra = 6. (a) Rv =
0 (without vibration); (b) Rv = 10. A multicellular flow is
obtained at the transition from the equilibrium solution for
Rv = 0, whereas a unicellular flow is obtained for Rv = 10.

Fig. 7. Streamlines for Le = 100, ψ = 0.01, Ra = 12.2.
(a) Rv = 10 (without vibration); (b) Rv = 50. A multicel-
lular flow is obtained at the transition from the equilibrium
solution for Rv = 10, whereas a unicellular flow is obtained for
Rv = 50.



Figure 6(a) shows the streamlines for Rv = 0. In this case,
the flow is multicellular and we cannot use the horizon-
tal cell to separate the components of a binary mixture.
Figure 6(b) shows the streamlines for the same values of
all the parameters but with vibrations. It can be observed
that vibrations modify the structure of the flow from mul-
ticellular to unicellular. Similar results were obtained for
ψ = 0.01 (fig. 7).

8 Conclusions

The two-dimensional thermosolutal Soret-driven convec-
tion under mechanical vibration was studied analytically
and numerically. The vibration was in the limiting range
of high frequency and small amplitude and its direction
was taken parallel to the temperature gradient. The ge-
ometries considered were an infinite horizontal layer and
a confined cavity. The linear stability analysis of equilib-
rium and unicellular solutions were studied for the positive
value of ψ. The equilibrium solution was found to lose its
stability via a stationary bifurcation. For the long-wave
mode, the Rayleigh number was obtained as Ra = 12

Leψ . It
was observed that the vertical vibrations have a stabiliz-
ing effect on convection. The vibrations could be used to
decrease the value of the separation factor leading to the
unicellular flow ψuni, allowing separation in the binary
mixture in a horizontal cell for a broad range of binary
mixtures. The dimensional mass fraction gradient mdim

was defined according to H and ΔT . It followed that, for
a fixed height of the cavity H, the mass fraction gradient
increases with ΔT , while the height that maximizes the
mass fraction gradient is Hmax = 16

q1q2ΔT . The expression

of the analytical relation is S = A ·
√

10RaLeψ−120
RaLeψ giving

that the separation value is identical to the one obtained
by Elhajjar et al. [9] for a cell with horizontal walls main-
tained at constant but different temperatures.
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