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June 20, 2017

Abstract

Within the mining discipline, mine planning is the component that studies how to
transform the information about the ore resources into value for the owner. For open-
pit mines, an optimal block scheduling maximizes the discounted value of the extracted
blocks (period by period), called the net present value (NPV). However, to be feasible, a
mine schedule must respect the slope constraints. The optimal open-pit block scheduling
problem (OPBSP) consists, therefore, in finding such an optimal schedule. On the one
hand, we introduce the dynamical optimization approach to mine scheduling in the
deterministic case, and we propose a class of (suboptimal) adaptive strategies, the so-
called index strategies. We show that they provide upper and lower bounds for the
NPV, and we provide numerical results. On the other hand, we introduce a theoretical
framework for OPBSP under uncertainty and learning.

Keywords: mine planning, open-pit block scheduling problem, optimization, index
strategies, uncertainty, learning.

1 Introduction

Within the mining discipline, mine planning is the component that studies how to transform
the information about the ore resources into value for the owner. Among the first decisions
taken in the mine planning process is the choice of an exploitation method: it can be open-
pit, that is achieved by digging from the surface, or it can be underground mining, that
is done by constructing shafts and tunnels to access the mineralized zones. Other relevant
products of the planning process are the production plan, that indicates how much will be
produced at each time period, and the mine scheduling, that backs up the production plan by
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specifying what parts of the mine will be extracted in order to reach the production. A mine
scheduling is constructed by means of a block model, which is a partition of the terrain into a
3-dimensional array of regular blocks. For each block, geostatisticians construct estimations
on the different parameters like ore content, density, etc. The block model is considered an
input to the mine planning process.

The operation of a mine is constrained by the overall capacity of transportation, which
is translated into a number of tons per period (for example, a number of tons per day) and
therefore in the number of blocks that can be extracted from the mine. Similarly, the overall
tonnage of blocks for processing is also bounded by the plant processing capacity. Notice
that, in the case of open-pit mines, not all blocks qualify for processing as an important part
of the blocks may not contain enough material to have revenue but must be extracted in
order to access attractive blocks.

Open-pit mines are also “special” in the sense that extraction must respect slope con-
straints: in order to reach blocks by digging from the surface, there is a minimum set of
blocks that have to be extracted before. Indeed, the shape of the pit must be such that
the stability of the walls and the accessibility are possible. This translates into a set of
precedence constraints between the blocks. Other additional constraints to the operation of
the mine may include blending constraints, which limit the average value of processed blocks
for a certain attribute (like rock hardness or pollutant contents).

Considering all these elements, a mine scheduling can be seen as a (non injective) mapping
from the set of blocks towards the time periods. Several blocks share the same extraction
time. An optimal block scheduling maximizes the discounted value of the extracted blocks
(period by period), called the net present value (NPV). However, to be feasible, a mine
schedule must respect the capacity, blending and slope constraints. The optimal open-
pit block scheduling problem (OPBSP) consists, therefore, in finding such an optimal block
scheduling.

Related to block scheduling, and central in this article, is the notion of block sequence.
A block sequence is a total order on the set of blocks, such that a larger rank means a later
extraction (due to precedence constraints). Block sequences can be easily converted into
block schedules by grouping blocks so that the overall capacities and blending constraints
are satisfied (or, equivalently, replacing the slope constraints by the precedences given by
the sequence).

The OPBSP is mostly formulated in a deterministic setting, where all values are supposed
to be known to the planner before the planning phase: block model, prices and the operation
of the mine (no failure). The traditional approach to optimal OPBSP uses Binary Integer
Programming (see Appendix A). A very general formulation of OPBSP is due to Johnson
(Johnson, 1968, 1969), which presented the problem of block scheduling under slope, capacity
and blending constraints (the last ones given by ranges of the processed ore grade) within a
multi-destination setting (that is, the optimization procedure yields as an output the process
to apply to a given block). Unfortunately, the computational capabilities at the time made
impossible to solve the formulation of Johnson for realistic case studies. Alternatively to
the work of Johnson, Lerchs and Grossman (Lerchs and Grossman, 1965) proposed a very
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simplified version of OPBSP in which block destinations are fixed in advance and the only
constraint considered is the slope constraint, that is, the problem reduces to select a subset
of blocks such that the contained value is maximized while the precedence constraint induced
by the slope angles are held. This problem is known as the ultimate pit or final pit problem.
Lerchs and Grossman also presented two key results: i) an efficient algorithm for solving the
ultimate pit problem; ii) reducing the economic value of any given block makes the optimal
solution of the ultimate pit problem to shrink (that is, if the values of the blocks decrease,
the new solution is a subset of the original one). These two properties allow to produce
nested pits and therefore, by trial and error, to introduce time and look for block sequences
that satisfy other constraints like capacity. More detailed reviews can be found in (Newman,
Rubio, Caro, Weintraub, and Eurek, 2010) (for a broad survey on operations research in
mining) and (Chicoisne, Espinoza, Goycoolea, Moreno, and Rubio, 2011) (for the specific
case of open-pit). Finally, an approach closer to the one that will be taken in this article
is due to (Goodwin, Seron, Middleton, Zhang, Hennessy, Stone, and Menabde, 2006) which
abstract the mine as a set of columns and embed the problem in the context of control
theory.

Regarding mine planning under uncertainty, since the beginning of the nineties, an in-
creasing number of open-pit mining strategies with uncertainty have been developed, follow-
ing two articles by Ravenscroft (Ravenscroft, 1992), and Denby and Schofield (Denby and
Schofield, 1995). The first one presents the conditional simulation, which is a technique used,
for a mine with a known distribution, to generate sets of equally probable profiles called sce-
narios. We shall not dwell on the issue of the design of statistical models of ore distribution
with uncertainty, using geostatistical tools such as kriging or others (Krige, 1984; Journel,
1983; Dowd, 1989; Lajaunie, 1990; Sichel, Dohm, and Kleingeld, 1995), and their simula-
tion. The Denby and Schofield (Denby and Schofield, 1995) paper explains how to include
uncertainty in a genetic algorithm, without precisely fixing the probabilistic frame. Since
almost two decades, most of the stochastic models are based on the Ravenscroft approach,
and present heuristics using a predefined set of scenarios. Dimitrakopoulos has been one of
the driving force behind this trend, and has developped a large number of scenario-based
strategies (Godoy and Dimitrakopoulos, 2004; Dimitrakopoulos and Ramazan, 2004; Dim-
itrakopoulos, Martinez, and Ramazan, 2007; Dimitrakopoulos and Ramazan, 2008). The
solution is generally searched as a planning, that is an open-loop strategy: we have to plan
and apply the entire scheduling without modifying it in the process of extraction, even if we
get more information on the profile by discovering the exact value of the blocks. Golamne-
jad, Osanloo, and Karimi (Golamnejad, Osanloo, and Karimi, 2006) and Boland, Dumitrescu
and Froyland (Boland, Dumitrescu, and Froyland, 2008) have also developped scenario-based
strategies with a well defined mathematical and probabilistic framework: stochastic program-
ming on a scenario tree. This allows solutions to be defined on a tree rather than only on
a line (time), which clearly is an improvement. We are interested in how the mine schedul-
ing optimization problem is formulated and possibly solved under uncertainty. We aim at
designing solutions as adaptive strategies.

The paper is organized as follows, where our objectives are twofold. On the one hand,
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we introduce in Section 2 the dynamical optimization approach to mine scheduling in the
deterministic case. In Section 3, we propose a class of (suboptimal) adaptive strategies to
attack the optimal OPBSP, the so-called index strategies. We show that they provide upper
and lower bounds for the NPV. We provide numerical results in Section 4. On the other
hand, we introduce in Section 5 a theoretical framework for OPBSP under uncertainty and
learning.

2 The dynamical approach to open-pit block schedul-

ing

As in (Goodwin, Seron, Middleton, Zhang, Hennessy, Stone, and Menabde, 2006), we define
the mine state as a collection of pit depths at a certain number of surface locations and we
represent the evolution of this state via a dynamic model that uses mining action as control
input. In this setting, an admissible profile is one that respects local angular constraints at
each point, and the open-pit mine optimal scheduling problem consists in finding a sequence
of blocks and admissible profiles which maximizes the intertemporal discounted extraction
profit.

2.1 A state control dynamical model

To simplify the description of the algorithms in this section, we will identify the blocks by
vertical position d ∈ {1, . . . , D} (d for depth) and by its horizontal position c ∈ C (c for
column). In the sequel, it will also be convenient to see the mine as a collection of columns
C of cardinal C indexed by c, each column containing D blocks. We assume that blocks are
extracted sequentially under the following hypothesis:

• it takes one time unit to extract one block (thus, the time unit is different from the
one in Appendix A);

• only blocks at the surface may be extracted;

• a block cannot be extracted if the slope made with its neighbors is too high, due to
geotechnical constraints on mine wall slopes;

• a retirement option is available where no block is extracted.

Denote discrete time by t = t0, . . . , T , where the horizon T may be finite or infinite. At
time t, the state of the mine is a profile

x(t) =
(
xc(t)

)
c∈C ∈ X = {1, . . . , D + 1}C (1)

where xc(t) ∈ {1, . . . , D+1} is the vertical position of the top block with horizontal position
c ∈ C.
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An admissible profile is one that respects local angular constraints at each point, due to
physical requirements. A state x = (xc)c∈C is said to be admissible if the geotechnical slope
constraints are respected in the sense that

‖xc′ − xc‖ ≤ 1 , ∀c′ ∈M(c) , c ∈ C , (2)

where M(c) is the set made of columns adjacent to column c. Denote by A ⊂ X, the set of
admissible states satisfying the above slope constraints (2). Notice that ‖xc′ − xc‖ ≤ 1 may
be replaced by ‖xc′ − xc‖ ≤ k according to slope constraints, or even by non-isotropic local
slope constraints. Implicitely, all cuboids have the same dimensions, but we could deal with
less regular situations.

A decision is the selection of a column in C, the top block of which will be extracted.
A decision may also be the retirement option, that we shall identify with an additional
fictituous column denoted ∞. Thus, a decision c is an element of the set

C = C ∪ {∞} . (3)

The relation between columns sequencing and blocks scheduling is explicited in §4.2 in the
Appendix.

At time t, if a column c(t) ∈ {1, . . . , C} is chosen at the surface of the open-pit mine,
the corresponding block is extracted and the profile x(t) =

(
xd(t)

)
d∈C becomes

xd(t+ 1) =

{
xd(t) + 1 if d = c(t)
xd(t) else.

In case of retirement option c(t) =∞, then x(t+ 1) = x(t) and the profile does not change.
In other words, the dynamics is given by x(t+ 1) = F

(
x(t), c(t)

)
where

Fd(x, c) =

{
xd + 1 if d = c ∈ C
xd if d 6= c or d =∞ .

(4)

Indeed, the top block of column d is no longer at depth xd(t) but at xd(t) + 1, while all other
top blocks remain. Of course, not all decisions c(t) = d are possible either because there are
no blocks left in column d (xd = D + 1) or because of slope constraints.

When in state x ∈ A, the decision c ∈ C is admissible if the future profile F (x, c) ∈ A,
namely if it satisfies the geotechnical slope constraints. This may easily be transformed into
a condition c ∈ B(x), where

B(x) := {c ∈ C | F (x, c) ∈ A} . (5)

2.2 Intertemporal profit maximization

The open-pit mine optimal scheduling problem consists of finding a sequence of admissible
blocks which maximizes an intertemporal discounted extraction profit. It is assumed that
the value of blocks differs in depth and column because richness of the mine is not uniform
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among the zones as well as costs of extraction. The profit model states that each block
has an economic value V(d, c) ∈ R, supposed to be known (in the deterministic case). By
convention V(d,∞) = 0 when the retirement option is selected. Selecting a column c(t) ∈ C
at the surface of the open-pit mine, and extracting the corresponding block at depth xc(t)(t)
yields the value V

(
xc(t)(t), c(t)

)
. When c(t) = ∞, there is no corresponding block and the

following notation xc(t)(t) = x∞(t) is meaningless, but this is without incidence since the
value V

(
x∞(t),∞

)
= 0.

With a discounting factor function ρ(t) (for instance, ρ(t) = ρt, or ρ(t) = ρy(t) for a yearly
discount, where y(t) = b t

v
c is the “year” of time t and v is the number of blocks extracted

per year), the value of a sequence (finite or infinite)

c(·) :=
(
c(t0), . . . , c(T )

)
(6)

is given by the criterion

J
(
c(·)
)

:=
T∑
t=t0

ρ(t)V
(
xc(t)(t), c(t)

)
. (7)

Finding the value of the mine is solving the optimization problem

J? := max{
T∑
t=t0

ρ(t)V
(
xc(t)(t), c(t)

)
,
(
c(·), x(·)

)
, c(t) ∈ B

(
x(t)

)
} , (8)

where the maximum is over among all sequences
(
c(·), x(·)

)
which satisfy the slope con-

straints (5). Any such sequence
(
c?(·), x?(·)

)
such that J

(
c?(·)

)
= J? is an optimal scheduling

sequence.

2.3 Dynamic programming equation and the curse of dimension-
ality

Theoretically, the open-pit mine optimal scheduling problem can be solved by dynamic
programming (Bellman, 1957; Whittle, 1982; Bertsekas, 2000). It is well known that the
dynamic programming approach suffers from the curse of dimensionality. Indeed, to give a
flavor of the numerical complexity of the problem, the set A of acceptable states has a cardinal
of order 210 × 34 = 82 944 for a cubic 4× 4× 4 mine, and of order 216 × 38 × 4 ≈ 1.72× 109

for a cubic mine with 5 lateral blocks (5× 5× 5 cuboids).
Nevertheless, usual mines can reach more than 106 blocks, and the dynamic programming

approach will not be usable in practice, without further state reduction.

3 Index strategies

The dynamic programming equation V(t, x) = maxc∈B(x)

(
ρ(t)V(c, xc) + V

(
t + 1, F (x, c)

))
naturally leads to solutions as policies or strategies, where an optimal decision c at time t
depends no only on t, but also on the state x(t) (De Lara and Doyen, 2008).
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In this section, we shall present a class of strategies called index strategies. Among them,
the so-called Gittins index strategy plays a special role, in that it easily provides an upper
bound to the value of the mine.

3.1 Index based policy heuristics

We introduce a technique to obtain suboptimal results, based on so-called index strategies.
The essence of this method is to model the problem by a set of jobs, each job being charac-
terized by its state of progress, and combined with an index, whose value will indicate the
priority of the job. At each time period, we choose the job of higher index to work at, which
has the effect of modifying its state of progress, and update its index.

In the open-pit mine scheduling problem, the jobs in question will be be the vertical
columns located by their surface coordinates, and the state of progress will be the depths of
the columns as defined previously. We define an index which, at each column, will map a
value generally linked with the worth of the blocks around and below the top block of the
column, and that includes or not the slopes constraints.

Various indices can be defined, each one giving a different strategy, and therefore different
results and running times. Index algorithms with slope admissibility constraints work as
follows. For each column c in the block model, and for each local state xc (attached to the
column), a certain idxc(xc) ∈ R is calculated. Then, for each column, we check whether
or not its top block is extractable (in terms of the slope constraints). Among the columns
whose top blocks are extractable, we pick the column with highest index and remove its top
block, recalculating the index for that column. We iterate in this way until all blocks have
been extracted, therefore generating a sequence of blocks.

The index of a column can be any function of the block model. We consider the following
ones (see Figure 1 for a few examples). They correspond to existing heuristics that we
interpret in terms of index.

• The greedy index idxg, that is, the one that uses as index the economic value of the
top-most block in the column (that has not been extracted yet).

• The Gittins index idxG, that calculates the maximum discounted value of blocks in
the column, relative to other columns. Block values are discounted block by block.

• The best-cone index idxC
∗
. This index is similar to the previous one, but calculates

all values for the different cones truncated at different depths, selecting the one with
highest value.

• Toposort idxτ . This is the index attached to the algorithm proposed by (Chicoisne,
Espinoza, Goycoolea, Moreno, and Rubio, 2011). To calculate this index, we first solve
the linear relaxation of the problem and then set the following value for each block

Ti = T + 1 −
T∑
t=1

t∆yit + (T + 1)

[
1−

T∑
t=1

yit

]
.
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2
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4

1

2

3

4

Mine 1 Mine 2

(a) idxCc3(1) (b) idxGc2(1)

(c) idxgc4(2)

Figure 1: Example of index strategies in two small 2-D mines: (a) Cone, (b) Gittins and (c)
Greedy.

Here, ∆yit is the binary variable associated to the decision of extracting a block i at
time period t and yit =

∑
s≤t ∆yis (see Appendix A for a detailed formulation). The

index then corresponds to the value Ti of the top-most block in the column (that has
not been extracted yet).

Famous techniques in mining can be interpreted as index strategies. For example, the
Greedy index corresponds to a greedy strategy of always picking for extraction the block in
the surface that: (a) is extractable (in terms of slope constraints) and (b) has the highest
economic value. Furthermore, the Cone index described before is close to the Gershon
Algorithm (Gershon, 1987) which also considers the successors’ cone, but intersected with
the ultimate pit.

3.2 An upper bound given by the Gittins index strategy

We shall now provide upper and lower bounds to the value (8) of the mine by means of index
strategies.

To each profile x =
(
xc
)
c∈C ∈ X and column c ∈ C, associate the local state xc ∈

{1, . . . , D+ 1}, which is the vertical position of the top block with horizontal position c. For
ρ] ∈]0, 1[, define the Gittins index by

idxGc (xc) := sup
τ=t0,...,+∞

τ∑
s=t0

ρs]V(c, xc + s)

τ∑
s=t0

ρs]

, (9)
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where V(c, d) := 0 when d > D (this corresponds to fictituous blocks with zero values below
the mine). With the notations of §2.1, the Gittins index strategy is defined by

cG(t) ∈ arg max{idxGc
(
xGc (t)

)
, c ∈ C} , (10a)

xG(t+ 1) = F
(
xG(t), cG(t)

)
. (10b)

Proposition 1 Suppose that T = +∞, and that the discounting factor function ρ(t) in (7)
satisfies

0 ≤ ρ(t) ≤ ρt] < 1 . (11)

The value (8) of the mine is bounded above as follows

J? ≤
+∞∑
t=t0

ρt]V
(
xcG(t)(t), c

G(t)
)
, (12)

where the sequence cG(·) is given by the Gittins index strategy (10) above. A lower bound is
given by

J
(
ci(·)

)
≤ J? (13)

where the sequence ci(·) is given by any index strategy respecting slope admissibility con-
straints

ci(t) ∈ arg max{idxic
(
xic(t)

)
, c ∈ B(xi)} , (14a)

xi(t+ 1) = F
(
xi(t), ci(t)

)
. (14b)

Proof. Recall that J? is the maximal value of (7) among all sequences
(
c(·), x(·)

)
which satisfy

the slope constraints (5). Therefore, J? is larger than any J
(
c(·)
)
, in particular for a sequence ci(·)

given by an index strategy respecting slope admissibility constraints. This is why (13) holds true.
On the other hand, by (11), we have that

J? ≤ max{
T∑
t=t0

ρt]V
(
xc(t)(t), c(t)

)
,
(
c(·), x(·)

)
, c(t) ∈ B

(
x(t)

)
} .

Now, if we relax the slope admissibility constraints c(t) ∈ B
(
x(t)

)
, we deduce that

J? ≤ max{
T∑
t=t0

ρt]V
(
xc(t)(t), c(t)

)
,
(
c(·), x(·)

)
} .

Gittins theorem (Gittins, 1979) asserts that the optimum for the right hand side is achieved for

the Gittins index strategy (10). Indeed, the problem is a deterministic multi-armed bandit, with

independent arms since the slope admissibility constraints are relaxed, enabling thus to select any

column. This is why (12) holds true. 2

Let NPVopt be respectively the optimal NPV, NPVind the NPV given by any index strategy
respecting the slopes constraints, and NPVub the NPV given by the Gittins index without slopes
constraints, but with a discounting factor function ρ(t) which satisfies (11). Then we have
the following inequality:

NPVind ≤ NPVopt ≤ NPVub . (15)
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4 Numerical examples

In this section, we present and discuss numerical results obtained using index heuristics over
a set of synthetic data and the Marvin block model.

4.1 The Marvin dataset

The mine considered for this study is a well known mine named Marvin, which is available
for use within the mine planning optimization Whittle from GenCom software. The overall
number of blocks in Marvin is about 53,000. The block model contains the following data:
block coordinates (x, y and z), copper and gold grades (cooperi and goldi respectively) and
density. From these attributes we calculate: a block tonnage wi (the product of the density
by the volume of the block) and the copper content (the tonnage of the block by its copper
grade). We aim to maximize overall copper production under a transportation capacity of
30,000 tons per day. Finally, we consider annual time-periods with a yearly discount rate
equivalent to a 10% opportunity cost, hence a yearly discount factor ρ = 1

1+0.1
.

4.2 Using block sequences to obtain blocks schedulings

First, we present how to transform the output of an indexing strategy into a block scheduling
and, therefore, a solution of OPBSP. We regard the output of an indexing algorithm as a
sequence of blocks: a block sequence is a tuple of blocks S = (i1, i2, . . . , iN) that is compatible
with the precedence constraints.

A sequence S can be converted into a solution of the open-pit block sequencing problem
with capacity constraints, by creating nested pits that extract the blocks in the order given
by the sequence. More precisely, let us say that P ⊂ B is capacity-feasible at time period t if
for each resource r, we have that

∑
i∈P a(i, r) ≤ C+

r,t. We can then follow the next procedure
to construct a block scheduling:

1. Set k = 1, t = 1, P0 = P1 = ∅.

2. While t ≤ T :

(a) While k < N and (Pt ∪ {ik}) \ Pt−1 is capacity-feasible at time period t: Pt ←
Pt ∪ {ik}, k ← k + 1.

(b) t← t+ 1.

Notice, however, that there may exist some room for improvement on the obtained block
scheduling, as it could happen that the blocks assigned to the very last time-period have a
negative overall value. If this is the case, we reset these blocks as unextracted.

An alternative way to convert a block sequence into a block scheduling is the following.
Given the sequence S = (i1, i2, . . . , iK), we set B = {ik : k = 1, 2, . . . , K} andA = {(ik, ik+1) :
k = 1, 2, . . . , K−1} and then directly solve the instance OPBSP(B,A, V, A, T, ρ, C+, C−). This
is equivalent to the procedure described above with the last “cleaning” phase.
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4.3 Results and discussion

We now present the different results obtained for the heuristics and data sets, and we com-
ment the findings of the numerical experiences.

Mine - Best Index TopoSort LP Index UB

PM1
Time 0.43s 307s 307s 0.08s
Value 358.42 432.14 439.30 521.53

PM2
Time 0.27s 375s 375s 0.07s
Value 319.74 438.60 439.84 674.24

PM3
Time 0.27s 362s 362s 0.07s
Value 139.50 149.06 198.84 318.72

Marvin
Time 1,036.00s ∞ ∞ 15.1s
Value 392.9 - - 488.5

Table 1: Numerical results by heuristic and instance. Values in million of copper tons.
Running time in seconds. LP is linear programming. Index UB is index upper bound.

Numerical experiences were run with an Intel Pentium Dual Core, 2.8 Ghz processor
running Linux 2.6.30-1. LP’s were solved using the GNU Linear Programming Toolkit
(GLPK) using the primal simplex method.

Results in running time and economic value (NPV) are presented in Table 1. We observe
that, while TopoSort obtains better results (closer to the LP upper bounds), this approach
does not “scale” well, as it does not produce feasible solutions for the Marvin instances.
Indeed, the main difficulty in this case is to solve the Linear Relaxation (LP), which did not
end within reasonable time (12 hours). Conversely, the index strategies provide mixed results
for the bounds, but the execution time is quite small, making them good candidate for fast
schedulers and therefore useable with uncertainty scenarios, for example, on the grades.

We observe that there is a lot of room to improve the speed of the heuristics by optimizing
the code or, for example, parallelizing some of the computations.

5 A mathematical framework for mine scheduling un-

der uncertainty

We present here a general probabilistic framework for the OPBSP, that allows a dynamical use
of information (learning), permitting to develop adaptive strategies, and which includes the
planning solutions as a particular case. The approach is mostly mathematical and formal.
However, in the last part, we suggest possible heuristics for future research.
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5.1 Block attributes

Denote discrete time by t = t0, . . . , T , where the horizon T is supposed to be finite for
simplicity. Denote by B the set of all blocks. Each block b ∈ B, when extracted in period t,
is characterized by a l-vector of attributes ωb(t) ∈W = Rl. These attributes can for instance
be the rock and ore volumes, price, cost, etc. In the deterministic model, these values will
be simple real numbers perfectly known, but in our case it will be an uncertain vector.

This uncertain vector ωb(t) will summarize various sources of uncertainty, and will be the
basis of the construction of the worth wb(t) of block b at time t. It can for instance be of the
following form, if the mine contains d different ores,

ωb(t) = (Price(t), Ore(b), Cost(b, t), . . .) (16)

wb(t) = Price(t) ·Ore(b)− Cost(b, t) , (17)

where Price(t) ∈ Rd is an uncertain vector representing the selling prices per unit of the
d different ores at time t, Ore(b) ∈ Rd is an uncertain vector representing the amount of
each ore in the block b, and Cost(b, t) is a uncertain variable representing the extraction
cost of the block b at time t, each of them being coordinates of the attributes vector ωb(t).
This formulation presents the advantage to split the price ditribution modeling and the
distribution of the different ores in the mine; it is of course a simple instance that can be
replaced by more sophisticated models including processing costs or other geotechnical data.

5.2 Scenarios

In the sequel, we will use the following notations

ω(t) := (ωb(t))b∈B

for the collection of the attributes of the mine blocks at a time period t. while A sequence

ω(·) := (ω(t0), . . . , ω(T ))

is called a scenario and belongs to the product set

Ω :=
T∏
t=t0

∏
b∈B

W = RN ·(T−t0+1)·l ,

which is the set of all possible scenarios. The situation where Ω is a singleton (a unique
scenario) corresponds to the deterministic case.

5.3 A priori information data on the scenarios

Additional a priori information on the scenarios is generally given either by probabilistic or
by set membership settings.
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Stochastic assumptions

Notice that the vectors ωb(t) are a priori not independent, neither with respect to b (spa-
tially), nor with respect to t (temporally). Indeed, the price of raw materials is highly
correlated in time, and a strong spatial correlation exists in the repartition of the ore. Many
models of the orebody are based on the notion of variogram, which is a geostatistical tool
giving an index of the spatial correlation of a certain type of ore. It gives a represention
of the typology of the ore in a site, some metals as gold tending to aggregate into nuggets
(with a strong short-distance correlation but a lower long-distance one), whereas other like
copper will have a more long-distance dependence. It opens the way to orebody modeling
such as kriging, a widespread interpolation method in geostatistics.

In the probabilistic formalism, the set Ω of all scenarios is equipped with the Borel σ-field
F = Bo

RN·(T−t0+1)·l . The ωb(t) becomes random vectors, and the orebody is represented by a
joint distribution law

L(ωb(t), b ∈ B, t ∈ [t0, ..., T ]) , (18)

which is a probability on (Ω,F). For instance, in the case of a unique type of ore, we
can model (Ore(b))b∈B by a Gaussian vector of size N , characterized by its mean vector
µ = (E[Ore(b)])b∈B and its covariance matrix Σ = (Cov(Ore(b), Ore(b′)))b,b′∈B, with constant
price Price(t) = Price and cost Cost(b, t) = Cost. The set of the worths wb(t), b ∈ B, t ∈
[t0, ..., T ], is then a Gaussian vector of size N · (T − t0 +1) whose mean vector and covariance
matrix can be calculated by means of µ and Σ.

Set membership

For a given block b and a given time period t, ωb(t) can take its value in a certain set
S(b, t) ⊂ Rl, which depends on the model. In the most general case, if we know nothing
about the mine, S(b, t) will be Rl, but it can for instance be reduced to intervals or even to
a finite number of values, or to a singleton in a deterministic model.

5.4 Decisions and constraints

Each period of time (year, for instance), we can extract a certain number of blocks, and
therefore we model our decision by a variable u(t) ∈ U = 2B, corresponding to the blocks
removed at time t ∈ [t0, ..., T ], which form a subset of B. Here, 2B denotes the set of subsets
of B (the power set of B). Since U is a finite set, we equip it with the complete σ-field
U = 2U. We introduce the notations:

ut :=
(
u(t0), . . . , u(t)

)
and u(·) :=

(
u(t0), . . . , u(T )

)
.

The set H := Ω×UT−t0+1 is called the history space. Elements of the set Ht := Ω×Ut−t0+1

represent history up to time t.
To capture slope and uncertain capacity constraints, we can restrict decisions as belonging

to a subset U
(
t, ω(·), ut−1

)
of U as follows:

u(t) ∈ U
(
t, ω(·), ut−1

)
. (19)

13



5.5 On-line information

After having seen a priori information data on the scenarios, we now turn to on-line informa-
tion available for the planner at time t. In essence, it is built upon the attributes (ωb(t))b,t
we have discovered, and thus it a priori also depends on the past extractions ut−1 (i.e. the
choices done on [t0, ..., t− 1]). Mathematically, we shall represent information at time t as a
σ-algebra It on the history space Ω× UT−t0+1.

• The blind information pattern is

It = {Ω,∅} ⊗ {UT−t0+1,∅} ,

where the decision-maker cannot distinguish elements in the history space (he cannot
even recall his past decisions).

• The anticipative point of view corresponds to a stationary and constant

It = F ⊗ {U,∅} . (20)

The decision-maker knows the attributes of each block at each time, and knows them
in advance: he is a visionary decision-maker. A visionary decision-maker having recall
of his past decisions would be modeled as It = F ⊗

⊗t−1
s=t0

U.

• A causal information pattern is one in which the decision-maker cannot base his deci-
sion at time t upon his future decisions, and it is represented by the condition

It ⊂ F ⊗
t−1⊗
s=t0

U . (21)

• In the cumulative information pattern, let us denote by

X(t, ut−1) := ∪ts=t0u(t) ⊂ B

the set of the blocks which have been removed at time t following the sequence ut−1 of
decisions in the periods [t0, ..., t− 1]. If we assume that, each time we extract a block b
at period t, we learn the exact value of the uncertainty ωb(t), we define the information
as

It = σ{(ωb(s), us−1) , b ∈ X(us−1, s), s ∈ [t0, ..., t− 1]} , (22)

where we have abusively identified (ωb(s), u
s−1) with the coordinate random variable

on the history space Ω× UT−t0+1.

This formulation is adapted to a dynamical strategy, in which we learn step-by-step
the information depending on our past choices.
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5.6 Adaptive strategies

We now have the tools to define strategies adapted to on-line information. We assume that
the information pattern is causal, that is, satisfies (21). A (causal) strategy is a sequence
P =

(
Pt
)
t=t0,...,T

of policies

Pt : Ω× Ut−t0 → U

such that, for all t = t0, . . . , T , Pt is measurable with respect to It.
Once a strategy P and a scenario ω(·) are given, decisions are inductively deduced by

u(t) = Pt(ω(·), ut−1) . (23)

Now, strategies will be our optimization variables.
If the family of sets U

(
t, ω(·), ut−1

)
in (19) is measurable with respect to It, we may

restrict ourselves to strategies in the admissible set Pad of the policies compatible with
the constraints (capacity constraints, slopes constraints, etc.). For instance, a capacity
constraints of k blocks per time unit will imply that, for P ∈ Pad, the u(t) generated by P

will not be more than k, or for a certain type of slopes constraints and precedence extraction
relations, that the decisions u(t) generated by P will be compatible with the constraints
induced by the blocks X(t, ut−1) already removed.

A strategy P ∈ Pad is said to be an open-loop strategy if Pt is a constant mapping for all
t. In other words, an open-loop strategy plans the entire extraction sequence before starting
it, and does not modify the sequence even if one gets information over time. In the more
general case in which P depends on the information, the strategy is said to be a closed-loop
strategy. It corresponds to the adaptive case.

5.7 Decision criteria under uncertainty

For a given scenario ω(·) and a given control sequence u(·), the sum of discounted profits
(NPV) is given by

J
(
ω(·), u(·)

)
=

T∑
t=t0

ρ(t)
∑
b∈u(t)

wb(t) . (24)

For a given scenario ω(·) and a given strategy P (adapted to the information pattern It,
t = t0, . . . , T ), let us put

JP
(
ω(·)

)
:= J

(
ω(·), u(·)

)
where u(t) = Pt(ω(·), ut−1) . (25)

Now, contrarily to deterministic optimization, we do not know in advance the scenario ω(·).
How the decision-maker aggregates (25) with respect to the uncertainties, before optimizing,
reflects his sensitivity to risk. The most common aggregates are the robust (or worst-case)
and the expected criteria, but we also present other examples.
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• The expected criterion

The expected optimization problem is

max
P∈Pad

EP[JP
(
ω(·)

)
] , (26)

where EP denotes the mathematical expectation with respect to a probability P =
L(ωb(t), b ∈ B, t ∈ [t0, ..., T ]) on the space Ω of scenarios. This formulation aims to
maximize the mean NPV, that is the average value of all possibilities, weighted by their
probability to happen. It is the best formulation you can choose in terms of average
gain, but it does not penalize the possible realizations of the worst cases.

• The robust criterion

The robust optimization problem is

max
P∈Pad

min
ω(·)∈Ω

JP
(
ω(·)

)
. (27)

The strategy given by this formulation ensures to maximize the NPV if the worst case
happens.

• The multi-prior approach

Suppose that the space Ω of scenarios is equipped with different probabilities P in a set
P, reflecting ambiguity with respect to the stochastic model. The multiprior approach
is a combination of the robust and the expected criteria by taking the worst belief in
term of expected NPV:

max
P∈Pad

min
P∈P

EP[JP
(
ω(·)

)
] . (28)

• An expected criteria under probability constraint

This last formulation is similar to the maximization of the expected NPV, but with an
additional constraint to handle the risk. Given two parameters α ∈ R and p ∈ [0, 1],
the expected optimization problem under probability constraint is

max
P∈Pad

EP[JP
(
ω(·)

)
] (29)

under the restriction that
P[JP

(
ω(·)

)
≤ α] ≤ p . (30)

The meaning of this formulation is to maximize the expected profit, with the condition
that the chosen strategy will give, with high probability 1−p, at least a certain gain α.

Risk measures (Value-at-Risk, Conditional Value-at-Risk, etc.) could also be taken for
aggregation (Föllmer and Schied, 2002).
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5.8 From planning towards adaptive solutions

As we have seen, since the nineties, a certain number of “scenario-based strategies” have
been proposed in the literature. The common denominator of these approaches is the use
of conditional simulation (or any other simulation method), using the distribution law of
the orebody, to generate a set of representative scenarios of the mine. Then, the solution is
generally searched as a planning, that is an open-loop strategy.

A schematic way to represent the elaboration of a scenario-based strategy is the following

L sample−−−−→ (ωj(·))j∈J
compute−−−−→ u(·) , (31)

that is, we sample the distribution law to obtain a set J of scenarios. Then, with one or
another method, we use these scenarios to elaborate an open-loop decision sequence u(·).

We suggest that this approach may be extended in the spirit of the open-loop with feedback
control (OLFC) (Bertsekas, 2000). We do not detail the mathematics, but simply sketch the
method. In the probabilistic setting, we assume that the arrival of an observation at time
t allows us to update the conditional distribution Lt on the space Ω of scenarios, knowing
past observations. Then, the sketch is

L0 sample−−−−→ (ωj(·))j∈J 1
compute−−−−→ (u1(1), . . . , u1(T ))

select−−−→ u1(1)

↪→ L1 sample−−−−→ (ωj(·))j∈J 2
compute−−−−→ (u1(1), u2(2), . . . , u2(T ))

select−−−→ u2(2)

· · ·

↪→ LT−1 sample−−−−→ (ωj(·))j∈J T
compute−−−−→ (u1(1), . . . , uT (T ))

select−−−→ uT (T )

returning a closed-loop strategy u(·).
To end this section, let us stress the fact that index methods are well adapted to the

uncertain case, where the index may be a function of the conditional distribution Lt.

6 Conclusions

We have presented the dynamic optimization approach to the open-pit block scheduling
problem, a relevant problem in the mining industry that remains ellusive to be solved due
to its size. We have proposed heuristics based on so-called index strategies, together with
upper and lower bounds for the NPV. Some of the results are promising, and index strategies
are very fast and scale well for large instances of mines. This encourages their use when one
generates a large number of scenarios, for which case a fast planning simulation and NPV
calculation is crucial. In the future, we expect to do more experimentation on larger case
studies and other (more realistic) data sets, and to compare the results with others found in
the literature.

We have also introduced a general framework to deal with uncertainty and dynamical
learning. We expect to implement this framework and to test it against real data.

17



Acknowledgments. The authors thank the STIC-AmSud OVIMINE project for the fi-
nancial support. This paper was exposed at several OVIMINE meetings — 2011, March
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A Integer linear programming formulation of the open-

pit block scheduling problem

In this section we introduce the relevant notation and formulation for the deterministic case
of the open-pit block scheduling problem using binary linear programming.

A.1 Modeling and notation

We consider B the set of all blocks and N = |B|. We denote the elements of B (the blocks)
with indices i, j, unless otherwise stated. Similarly, we consider T ∈ N time-periods and
denote individual time-periods with s, t = 1, 2, . . . , T . T is called the time horizon. We also
use the notation T = {1, 2, . . . , T} for the set of time-periods.

Slope constraints are modeled as precedence constraints and encoded as a set of arcs
A ⊂ B ×B, so (i, j) ∈ A means that Block j has to be extracted before Block i. We say, in
this case, that Block j is a predecessor of Block i, which in turn is a successor of j. Notice
that arc (i, j) goes from the successor to the predecessor.

In this work we address a simplified version of the problem in which the decision of the
destination of the block is done beforehand. This allows us to

1. consider that the net profit (which can be negative) of processing Block i is already
known and noted as vi ∈ R, and

2. define a set of resources R, and for Block i ∈ B and Resource r ∈ R the quantity
a(i, r) of resource r that is used when i is processed.

For each time period t, upper and lower bounds on the consumption of resource r are
given by the quantities C−rt ∈ {−∞} ∪ R and C+

rt ∈ {+∞} ∪ R, respectively.
We also assume that the block is processed in the same time period in which it is extracted

from the mine (that is, we do not allow to stock material for future processing). We also
assume, as is usual in these models, that all block extraction, handling and processing is
done within a time-period length.

While the modeling can be easily extended to the general case, the heuristics presented
in this article do not always work to the case in which blending constraints apply, therefore,
we assume there are not such constraints.

Finally, Table 2 summarizes the notation introduced in this Appendix.
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Symbol Meaning
B The set of blocks
i, j Blocks (elements of B)
s, t Time-periods
T Time horizon (number of periods)
T Set of time-periods
A Set of precedence arcs
R Set of resources
vi Economic value (net profit) of Block i

a(i, r) Consumption of Resource r by Block i
C−rt, C

+
rt Lower and upper bounds on resource r

Table 2: Main notations in the Appendix

A block scheduling is a function τ : B → {1, 2, . . . , T,∞} where τ(i) is the time-period in
which block i is extracted, hence, a block scheduling must satisfy the precedence constraints,
that is if (i, j) ∈ A then τ(i) ≥ τ(j).

If τ is a block scheduling then the preimage sets P1 = τ−1(1) and Pt = Pt−1 ∪ τ−1(1) for
t > 1 are called pits. We observe that Pt ⊂ Pt+1 hence we say that the pits are nested.

A block sequence is a tuple s = (s1, s2, . . . , sK) ∈ BK such that k 6= ` ⇒ sk 6= s` (all
blocks in the tuple are different) and that is compatible with the precedence constraints,
that is if (sk, s`) = (i, j) ∈ A then ` > k (predecessors appear before in the sequence).

A.2 The binary programming formulation

The open-pit block scheduling problem is defined on the following variables. For each i ∈
B, t = 1, 2, . . . , T :

yit =

{
1 block i is extracted by time-period t,
0 otherwise.

Notice that the interpretation of variable yit is by time-period, that is yit = 1 if and only if
block i has been extracted (and processed) at some period s with 1 ≤ s ≤ t. For this reason,
it is also useful to introduce the following auxiliary variables for any i ∈ B: ∆yi1 = yi1, and
∆yit = yit − yi,t−1 for t = 2, 3, . . . , T . We have that yit =

∑t
s=1 ∆yis and ∆yit = 1 if and

only if block i is extracted exactly at time period t.
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The optimization program is the following:

(OPBSP) max
T∑
t=1

ρt
N∑
i=1

vi∆yit (33)

yit ≤ yjt (∀(i, j) ∈ A)(∀t ∈ T) (34)

yi,t−1 ≤ yit (∀i ∈ B)(∀t = 2, . . . , T ) (35)∑
i

a(i, r)∆yit ≤ C+
rt (∀r ∈ R)(∀t ∈ T) (36)∑

i

a(i, r)∆yit ≥ C−rt (∀r ∈ R)(∀t ∈ T) (37)

yit ∈ {0, 1} (∀i ∈ B)(∀t ∈ T) .

Equation (33) presents the goal function, which is the discounted value of extracted blocks
over the time horizon T . Equation (34) corresponds to the precedence constraints given
by the slope angle. Equation (35) states that blocks can be extracted only once. Finally,
Equations (36) and (37) fix the resource consumption limits.

For a block model B, precedence arcs A, block values V = (vi)i∈B and attribute matrix
A = (a(i, r))i∈B,r∈R we will use the notation OPBSP(B,A, v, A, T, ρ, C+, C−) to denote an
instance of the open-pit block scheduling problem for a certain time horizon T , discount rate
ρ, and resource limit matrices C− = (C−r,t)r,t and C+ = (C+

r,t)r,t. We will omit some of the
parameters if the context allows it.
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