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Spin-orbit optomechanics of optically levitated chiral Bragg microspheres

Georgiy Tkachenko, Mushegh Rafayelyan, and Etienne Brasselet*

Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence, France
and CNRS, LOMA, UMR 5798, F-33400 Talence, France

We explore the spin-orbit nature of the optical torque exerted on chiral liquid-crystal microspheres exhibiting
circular Bragg reflection. Experimental investigation relies on the direct optomechanical observation of spinning
liquid-crystal droplets immersed in water and held in a circularly polarized laser levitator. More generally, we
anticipate that the total angular momentum transfer per photon may depart from the commonly assumed spin-only
±2h̄ contribution, when the topological features of the illuminated microsphere are taken into account.

I. INTRODUCTION

A mechanical consequence of angular momentum transfer
from light to matter is the appearance of an optical torque
that may actuate the rotational degrees of freedom of an
illuminated object. This is widely used to manipulate light-
actuated microparticles and micromachines. In practice, the
spin and/or orbital contributions to the total optical angular
momentum—which respectively refer to polarization and
spatial degree of freedom of light—have been exploited via
dissipative and nondissipative angular momentum transfer
processes [1,2]. Although the mechanical equivalence of spin
and orbital angular momentum of light has been experimen-
tally demonstrated [3,4], these two kinds of momenta have
distinct features. In particular, the magnitude of spin angular
momentum per photon is bounded to ±h̄, whereas the orbital
angular momentum per photon is formally unbounded [5].
Accordingly, the angular momentum transfer associated with
the spin torque is bounded to ±2h̄ per photon, in contrast
with its orbital counterpart that is associated with arbitrary
amount of h̄ angular momentum transfer per photon. Since the
optical torque is usually rather weak (indeed, a transfer of h̄

angular momentum per photon to matter produces a modest
optical torque of the order of 1 fN m W−1), its optomechanical
implementation is generally associated with efforts to optimize
angular momentum transfer processes.

Regarding the spin torque, this is usually achieved exper-
imentally using transmission through homogeneous uniaxial
anisotropic media providing phase retardation of π , as Beth
did 80 years ago to detect and measure the spin angular
momentum of light by using a half-wave plate [6]. On the
other hand, the realization of tailor-made structured matter is
required in the orbital case; see, for instance, Ref. [7] that
reports on orbital angular momentum transfer to turbinelike
microrotors up to �35h̄ per photon. Noteworthy, it is also
possible to combine optimization of both spin and orbital
contributions within a single optical process, namely the
spin-orbit interaction of light [8]. This particular case refers,
for instance, to structured half-wave retarders with in-plane
orientation of the optical axis of the form ψ = qφ, where q

is a half-integer number and φ is the polar angle. Indeed, if
exposed to a circularly polarized beam with helicity � = ±1,
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which carries �h̄ of spin angular momentum per photon along
the propagation direction, such an optical element acquires
the net angular momentum 2�(1 − q)h̄ per photon [9]. To
date, there is no direct experimental evidence supporting this
general prediction, except for several studies dealing with the
particular case q = 0 after the pioneering experiment by Beth.
Still, the indirect signature of the q dependence has been
obtained via the rotational Doppler shift experiments [10,11].
Here we explore the direct optomechanical observation of such
a spin-orbit torque by using laser-levitated chiral liquid-crystal
droplets that exhibit the circular Bragg reflection phenomenon
[12]. More generally, we point out that the total angular
momentum transfer per photon may depart from the spin-only
±2h̄ contribution assumed so far [13,14]. In the context of
applied chiral optomechanics [15–18], this may have impli-
cations towards the elaboration of optical enantioseparation
techniques, which so far have been exploiting only spin-driven
discriminatory optical forces [19–23].

A chiral nematic liquid crystal (or cholesteric) is charac-
terized by a helical supramolecular ordering with handedness
χ = ±1 (the sign refers to right- and left-handed helices) and
pitch p being the distance over which the molecular orientation
rotates by 2π . Cholesterics are well known for the circular
Bragg reflection phenomenon, which corresponds to the
helicity-preserving resonant reflection of light satisfying the
condition �χ = −1 for a finite spectral range that depends on
the angle of incidence with respect to the cholesteric axis [12].
In turn, the circular Bragg reflection is thus characterized by the
reversal of the projection of the spin angular momentum along
the propagation direction of the incident field. This results in
−2χh̄ spin angular momentum transfer per photon, in stark
contrast to reflection off a conventional mirror that is associated
with no net transfer of angular momentum. So far it is the
above spin-only angular momentum balance that has been
used to describe the rotational consequences of the circular
Bragg reflection on cholesteric droplets [13,14,18]. However,
liquid crystals may exhibit a rich variety of textures and
topological defects [24]. This is especially true for cholesteric
droplets, as documented in several experimental studies a
few decades ago [25,26] and also in recent ones [27–29]
following the resurgence of interest to such structures ex-
hibiting a complex interplay between spatial confinement and
chirality. Therefore, revisiting the fundamentals of light-matter
interaction for chiral liquid-crystal droplets in the presence of
optical angular momentum transfer should contribute to the
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FIG. 1. Director field lines on the sphere or radius r following
the parametrization given in the text for 2πr/p + �0 = 0 for a
few possible cholesteric droplets with tangential surface molecular
boundary conditions. North and south poles indicate +z and −z

directions and are associated with defect strength snorth = S and
ssouth = 2 − S. (a) S = 2. (b) S = 3/2. (c) S = 1. Adapted from
Ref. [30].

design of novel chiral architectures and optical manipulation
techniques.

II. CHIRAL LIQUID-CRYSTAL DROPLETS

In our experiments, we use cholesteric droplets with
parallel surface molecular anchoring conditions. Droplets with
radius R ∼ 10 μm are prepared in pure water by mechanical
stirring of the right-handed (χ = +1) chiral liquid-crystal
mixture MDA-02-3211 (from Merck) that is characterized
by pitch p = 347 nm at room temperature. Such droplets
may exhibit different kinds of orientational structure, as
explored in various experimental [25,26] and theoretical
[30,31] studies. The three-dimensional (3D) distribution of the
director n (that is a unit vector representing the local average
molecular orientation) for these structures can be described
analytically in a few cases, at least to a first approximation.
Some of these models are illustrated in Fig. 1 that depicts
droplets in the spherical coordinate system (er ,eθ ,eϕ) by
the ansatz [30] n = cos �(ϕ,r)eθ + sin �(ϕ,r)eϕ , where � =
(S − 1)ϕ + 2πr/p + �0, with �0 being a constant, S = 2
[Fig. 1(a)], S = 3/2 [Fig. 1(b)], and S = 1 [Fig. 1(c)]. Since
n is everywhere tangential to any spherical surface with radius
r � R, topological constraints imply the appearance of point
defects with the sum of topological charges always equal to
2 [32]. In the cases shown in Fig. 1, there are either one or
two point defects located at the north or south poles of the
sphere, with topological charges snorth = S and ssouth = 2 − S.
We note that for S = 2 there is no defect at the south pole;
still ssouth = 0 is introduced in order to emphasize a locally
uniform director pattern.

Our approach relies on the circular Bragg reflection exhib-
ited by a droplet with S = 2 (which is the most stable structure
when R � p [31]) manipulated by a laser beam at wavelength
λ = 532 nm which satisfies the circular Bragg reflection
condition, namely n⊥p < λ < n‖p where n⊥ and n‖ are the
refractive indices perpendicular and parallel to the director.
Structural identification of such a droplet is performed by
means of polarized optical microscopy. Indeed, the dark cross
observed in crossed linear polarizer imaging, see Fig. 2(a),
confirms the radial distribution of supramolecular helices. The
occurrence of circular Bragg reflection is assessed from full

FIG. 2. Optical characterization of aS = 2 chiral nematic droplet
made of MDA-02-3211 dispersed in glycerol. (a) Natural light
imaging between crossed linear polarizers whose orientation is given
by the white cross. (b),(c) Full transmission image of the droplet
under circularly polarized incoherent illumination at λ = 532 nm
with �χ = 1 [no circular Bragg reflection, panel (b)] and �χ = −1
[circular Bragg reflection, panel (c)]. The central dark disk of radius
RB in panel (c) outlines the area exhibiting circular Bragg reflection.

transmission imaging under circularly polarized illumination
as presented in Figs. 2(b) and 2(c) for �χ = ±1. Due to the
blueshift of the photonic band gap associated with circular
Bragg reflection at oblique incidence [12], the optical signature
of the Bragg reflection off the droplet appears as a dark disk
of radius RB [21]; see Fig. 2(c).

III. OPTICAL VORTEX LEVITATOR

In practice we seek an experimental configuration where a
S = 2 droplet: (i) stays at a fixed location, (ii) is free to spin,
(iii) is located far from any solid boundaries, and (iv) preserves
the spatial orientation of its radial defect [which lies along the
+z axis in Fig. 1(a)].

This configuration is achieved by building a circularly
polarized optical vortex levitator sketched in Fig. 3(a). Its
operation relies on the use of a moderately focused laser beam
carrying an optical vortex with topological charge � = ±1,
which refers to an azimuthal dependence of the amplitude
proportional to exp(i�φ), φ being the polar angle in the

FIG. 3. (a) Sketch of the optical vortex levitation arrangement.
Cholesteric droplets are prepared in pure water within a sealed square
(1 mm2) glass capillary oriented along the x axis. The beam waist
radius of the incident vortex laser beam with topological charge
� = ±1 (assuming a Laguerre-Gauss profile) is w0 � 1.5 μm, the
divergence angle is θ0 � 6.3◦, and wavelength is λ = 532 nm. Side
and top view images of a steadily levitated droplet in water are shown
in panels (b) and (c). (d) Normalized droplet elevation vs reduced
incident beam power P/P0 for a droplet with R ≈ 20 μm. Curves
refer to calculations (see text for details). Inset: calculated minimum
power P0 required to lift a droplet of radius R.
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transverse plane. The vortex beam is directed upwards and
satisfies the circular Bragg condition for a droplet immersed
in pure water and located around the beam axis z, where the
incident light intensity is zero. The scattering optical force
exerted on the droplet, Fopt, counteracts the gravitational force,
Fg. For an incident optical power P exceeding a minimum
value P0, the two forces are mutually compensated at a distance
h above the vortex beam focal plane; see Fig. 3(a). Indeed,
the optical force magnitude Fopt decreases with the droplet
elevation while Fg is constant. Side view (captured through a
red filter) and top view images of a steadily levitated droplet
are shown in Figs. 3(b) and 3(c), respectively (see media files
1 and 2).

Normalized droplet elevation h/R vs reduced incident
beam power P/P0 for a droplet with R ≈ 20 μm is measured
in the power range 4 mW < P < 19.5 mW for � = ±1.
Experimental results are shown in Fig. 3(d). The observed
elevation and stability of the levitated droplet are numerically
analyzed using the ray-optics model presented in Ref. [23] (see
Appendix A 1). Simulations have been made using the char-
acteristic internal Bragg angle θB = 21◦ that is related to the
Bragg radius RB via the relationship RB/R = (n/nwater) sin θB

[21], where nwater = 1.33 is the refractive index of water
and n = 1.6 is the average value for the liquid crystal. The
chosen θB value corresponds to the satisfactory quantitative
description of three independent optomechanical experimental
studies with the same cholesteric material [21–23]. The model
predictions quantitatively agree with experimental data, the
only adjustable parameter being a constant elevation offset
appearing due to the limited field of view of the side camera.
The solid curve in Fig. 3(d) refers to 3D-stable levitation,
whereas the dotted curve corresponds to 1D-stable levitation
(along z axis only); see Appendix A 2 for stability analysis. In
addition, the inset in Fig. 3(d) shows the calculated minimum
optical power P0 required for lifting a droplet of radius R (see
Appendix A 3).

The above conditions (i)–(iii) are thus fulfilled. Regarding
the condition (iv), we note the axial symmetry of the beam
intensity profile; hence we expect the radial defect of a steadily
levitated droplet to point upwards (along the beam axis)
as a result of scattering of light on it. Indeed, we confirm
this statement by side view observations of the levitating
droplet. In other words, the z axes in Figs. 1 and 3(a) match
and the levitated droplet is illuminated from the south pole.
We note that, in practice, the radial defect remains rather
hard to visualize when dealing with helix pitch of a few
hundreds of nanometers, as is the case here. However, its
experimental identification is nevertheless possible; see, for
instance, Fig. 2(d) of Ref. [22].

IV. ROTATIONAL DYNAMICS

Spinning of a levitated droplet is analyzed via the Bragg-
reflected light, which is registered by a video camera placed
after being (ideally) separated from the background light of
opposite helicity by means of a polarizing beam splitter and
a quarter-wave plate (see Appendix B). Typical intensity
patterns for � = ±1 are shown in Figs. 4(a) and 4(c), which
correspond to the virtual focal plane of the droplet acting as
a convex spherical mirror imaged by the levitator microscope

FIG. 4. Experimental (a),(c) and calculated (b),(d) intensity
profiles of the virtual focal plane of the Bragg reflecting droplet
for � = +1 (a),(b) and � = −1 (c),(d). Calculated patterns refer to
the formula given in the text with (α,β,γ ) = (1,0.1, − 0.03).

objective. Remarkably, the observed doughnutlike intensity
profiles demonstrate broken rotational symmetry. On the one
hand, the �-dependent annular features are reminiscent of the
spin-orbit interaction arising from the droplet topology, as
recently suggested in Ref. [33] which demonstrated that Bragg
reflection off the south pole of a S = 2 droplet results in light
fields appearing as if structured by an effective half-wave
retarder with qeff = −1. This imparts to the amplitude of
the incident vortex of charge � an extra term of the form
exp(2i�qeffφ), with �qeff = 1 in our case. On the other
hand, here we point out that the broken axisymmetry can be
explained from the interference between the expected signal
and unavoidable background contribution from the setup. The
two latter statements are qualitatively supported by Figs. 4(b)
and 4(d) that display interference intensity patterns of the
form |Esignal + Ebackground|2, taking generic fields Esignal =
αLG0,�+2 and Ebackground = βLG0,� + γ , where LG0,�(r,φ) =
(r/w)|�|e−r2/w2

ei�φ refers to Laguerre-Gauss modes of radial
index zero and azimuthal index �, and (α,β,γ ) are con-
stants, while a more rigorous description should account
for nonparaxial diffraction explaining the observed rings
structure, though being beyond the scope of the present
work.

In practice, the rotation of droplets is assessed from
dynamics of the reflected intensity patterns, see media files 3
and 4 for the videos recorded for � = ±1, which corresponds
to Figs. 4(a) and 4(c). The dynamics of the 2D correlation
coefficient for the acquired images is analyzed via the power
spectra. The sample results for � = ±1 are presented in
Fig. 5(a). Noteworthy is that these observations show that the
optical torque does not depend on the sign of the topological
charge of the incident vortex beam. Namely, the measured peak
frequencies F± for � = ±1 satisfy F+/F− � 1. Given a time-
independent background field, the observed dynamics implies
a time-dependent signal. Indeed, the Bragg-reflected light
from the spinning droplet experiences a so-called rotational
Doppler angular frequency shift N�, where N is the amount
of total (spin+orbital) angular momentum transferred by light
to matter per photon in h̄ units [34] and � is the droplet angular
frequency. Therefore F is related to the droplet frequency f via
the relationship F = Nf and the time-dependent interference
pattern is simulated taking α = eiN�t ; see media files 5 and 6
for � = ±1.

Since we observe a change of both the spin and orbital
state for the Bragg-reflected light, our experiments make
a direct demonstration of spin-orbit angular optomechanics.
However, the definition of spin and orbital contributions to N
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FIG. 5. Analysis of the intensity patterns dynamics for � = ±1.
(a) Examples of normalized power Fourier spectra of the auto-
correlation dynamics for R = 18.3 μm levitated at P = 11.4 mW.
(b) Measured (markers) and simulated (curve) autocorrelation fre-
quency F± = Nf±. The simulated curve refers to the best fit that
corresponds to Nh̄ total angular momentum transfer per photon,
N = 1.90 ± 0.07. The gray area indicates the standard deviation
range of the experimental data.

remains a nontrivial task recalling the complexity of the droplet
as a 3D inhomogeneous, anisotropic, nonparaxial and chiral
system. Still, within our simplified model, we can evaluate an
effective value of N . On the one hand, we assume that the
incident light impinging on the droplet at distance r > RB

(from the beam axis z) interacts with the droplet as if it
was an isotropic achiral dielectric sphere. This part of the
incident light does not contribute to the net optical torque
exerted on the droplet. On the other hand, the totally reflected
light that corresponds to r < RB leads to an optical torque
with magnitude �opt = NPreflected/ω, where ω is the angular
frequency of light and Preflected is the optical power intercepted
over the circular area of radius RB (see Appendix A 4). In the
limit of small Reynolds number, as is the case in our study, the
optical torque is balanced by the drag torque �visc = 8πηR3�

[35], where η is the dynamical viscosity of the host fluid,
taken as 1 mPa s for water at the room temperature. One thus
gets F = N2Preflected/(16π2ηωR3) and the measured power
dependence can be fitted taking N as the only adjustable
parameter, which gives N = 1.90 ± 0.07; see solid curve in
Fig. 5(b). The counterintuitive decrease of the light-induced
rotation frequency vs incident power is related to the increase
of the levitation altitude h with P ; see Fig. 3(d).

In addition, the spin-orbit nature of the optical torque
in the case of a droplet with S = 1 can be grasped from
symmetry considerations. Indeed, the invariance per rotation
of the structure of the droplet around the pole axis, see Fig. 1(c),
implies zero net optical torque; hence N = 0. In that case, the
spin and orbital contribution cancel each other, which appears
as the chiral reflective analog of the nonchiral transmissive
case of radial nematic droplets trapped in circularly polarized
optical tweezers [36].

These two cholesteric examples with S = 1 and S = 2
satisfy the relationship N = 2�(1 − spole) and we speculate
its generalization to any kind of Bragg cholesteric droplet,
hence following the general case of transmissive 2D structured
half-wave retarders [10]. Consequently, we expect that droplets
with S = 3/2 give N = −� when illuminated from the
north pole, and N = +� when illuminated from the south

pole. Such an experimental demonstration would make a
strong support to the predicted angular dynamics caused by
spin-orbit interactions between chiral light and chiral Bragg
microspheres.

However, in the particular case of S = 2 droplets dis-
cussed here, we stress that both the proposed interpretation
for the observed intensity patterns from Ref. [33] and the
evaluation of the effective total angular mometum per active
photon from a simplified modeling of a complex spin-
orbit optical element are seemingly contradicting each other.
Namely, topological beam shaping appears dictated by an
effective structured half-wave retarder with qeff = spole − 1,
while the net angular momentum transfer is formally gov-
erned by qeff = spole, which fosters the need for further
work.

V. CONCLUSION

The effect reported in this study is not restricted to
wavelengths inside the circular photonic band gap. Indeed, the
physical process at work relies on helicity-preserving reflec-
tion, which occurs for arbitrary wavelength when the condition
�χ = −1 is satisfied (although the reflectance drops outside
the band gap), while no net torque has been observed so far for
the orthogonal circular polarization state [13]. A signature
of such wavelength-independent topological beam shaping
of helicity-preserved reflected light can be found in a recent
experimental work on space-variant chiral Bragg mirrors [37].
From a technical point of view, the proposed strategy to achieve
rotational manipulation of chiral nematic droplets in an optical
vortex levitator allows exploration of a wide range of droplet
radius and overall Bragg optical reflectance, while preserving
the 3D stability of the droplets location, in contrast to previous
experimental works so far limited to small radius range and
partial reflectance [13,14]. More generally, this technique
could be applied to other kinds of reflective microparticles and
also to absorbing ones via the photophoretic phenomenon.
Our results also contribute to emerging investigations of
spin-orbit optomechanics under paraxial light fields [10,11].
More generally, the orbital analog of the (spin) circular Bragg
reflection is another direction that would be interesting to
explore [38].

APPENDIX A: VORTEX LEVITATOR AT WORK

1. Optical levitation equilibrium

In order to simulate radiation forces exerted by a moderately
focused optical vortex beam on the Bragg-reflecting
cholesteric droplet, we apply the ray optics approach that
has already proven its relevance in previous studies [21–23].
The droplet is considered as a uniform dielectric sphere
which acquires linear momentum from light by reflection,
refraction, and scattering of the incident rays. First, we
introduce the spherical coordinate system (r,θ,φ) as shown
in Fig. 6 and express the elementary optical force exerted
on the surface element dS(θ,φ) = R2 sin θ dθ dφ. As the
divergent vortex beam is symmetrical with respect to the
axis z, it is convenient to express the light field at every
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FIG. 6. Definitions and notations for simulation of radiation
forces acting on a Bragg-reflecting sphere within a divergent optical
vortex beam.

surface element as a function of two characteristic distances,
ξ the distance from the dS to the focal plane and δ the
distance from dS to the z axis (see Fig. 6). More precisely,
ξ = −R cos θ − sgn(cos θ )z, with sgn the sign function, and
δ = [r2 + 2rR sin θ cos(φ − ϕ) + R2 sin2 θ ]

1/2
. Assuming

the incident vortex beam to be described by a Laguerre-Gauss
mode of radial index zero and azimuthal index �, the intensity
profile of the levitator beam is expressed as

I (δ,ξ ) = 2|�|+1P

π |�|! w(ξ )2

(
δ

w(ξ )

)2|�|
exp

(
− 2δ2

w(ξ )2

)
, (A1)

where w(ξ ) = w0

√
1 + (ξ/z0)2 and z0 = πw2

0/λ is the
Rayleigh range. Following Ref. [23], one can show that the
net force equals Fopt = Fr (r,z)ur + Fz(r,z)uz with the radial
and axial components

Fr (r,z) = −nextR
2

2c

∫ 2π

0

∫ π

0
I (δ,ξ ) (A2)

× f⊥(θ ) sin 2θ cos(φ − ϕ)dθ dφ,

Fz(r,z) = −nextR
2

2c

∫ 2π

0

∫ π

0
I (δ,ξ )f‖(θ ) sin 2θ dθ dφ,

(A3)

where next is the refractive index of the host fluid (in our
case, next = nwater), c is the speed of light in vacuum, and
f⊥(θ ) and f‖(θ ) respectively describe the transverse and
longitudinal (relative to the incident ray) changes of the
photon linear momentum as a result of interaction with the
sphere.

For non-Bragg rays (i.e., rays that impinge onto the droplet
at a distance larger than RB from the droplet axis z′),

we get

f⊥(θ ) = R sin 2θ − T 2 sin(2θ − 2θint) + R sin 2θ

1 + 2R cos 2θint + R2
,

(A4)

f‖(θ ) = 1 + R cos 2θ − T 2 cos(2θ − 2θint) + R cos 2θ

1 + 2R cos 2θint + R2
,

(A5)

where R and T = 1 − R are the reflectance and
transmittance of the droplet interface, with θint =
sgn(cos θ ) arcsin[(next/n) sin θ ] the signed angle of refraction.
Accounting for the incident circular polarization state and dis-
carding the polarization projection on the local frame of inci-
dence, we also assume that R(θ ) = [R‖(θ ) + R⊥(θ )]/2, with
R‖(θ ) = [tan(θ − θint)/ tan(θ + θint)]2 and R⊥(θ ) = [sin(θ −
θint)/ sin(θ + θint)]2 being the reflectance coefficients of plane
waves polarized parallel and perpendicular to the incidence
plane. For Bragg rays (i.e., that impinge onto the droplet at a
distance smaller than RB from the droplet axis), we get

f⊥(θ ) = sin 2θ, (A6)

f‖(θ ) = 1 + cos 2θ. (A7)

Given the axial symmetry of the light field, the radial
force Fr (r,z) becomes zero on the beam axis; hence droplet
levitation occurs at (r,z) = (0,h) when the net optical force
Fopt = Fz(r,h)uz balances the gravitational force Fg = mg =
−(4/3 πR3�ρ g)uz, where m is the droplet mass and �ρ �
65 kg m−3 is the difference between the density of the liquid
crystal and that of water. Namely,

Fz(0,h) − 4/3 πR3�ρ g = 0. (A8)

2. Optical levitation stability

However, the equilibrium condition given by Eq. (A8) alone
does not guarantee the stability of the optical levitation. Indeed,
levitation at (0,h) is stable in 3D only if small shifts of the
droplet from this point result in the net restoring force, i.e.,
when the following conditions are fulfilled:

∂Fz(0,h)

∂z
< 0, (A9)

∂Fr (0,h)

∂r
< 0. (A10)

Such an analysis allows us to ascertain the stability of the
equilibrium position, as shown in Fig. 3(d). In fact, the
simulated curve has two branches that are symmetric with
respect to h/R = 1, of which the lower one (not shown)
corresponds to unstable equilibrium.

3. Optical levitation threshold

As shown in the inset in Fig. 4(d), there is a threshold
optical power P0 for lifting a droplet of radius R. For P < P0,
the net optical radiation force is too weak for compensating
the gravity and the droplet cannot be lifted. This parameter is
valuable from the practical point of view as it gives an order
of magnitude of the minimum power required for levitating a
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droplet. Our numerical calculations show that threshold optical
power P0 increases nonlinearly with the droplet radius R, as
shown in the inset of Fig. 4(d).

Interestingly, the parameter P0 can be readily estimated if
one takes into account the fact that the beam spot at the focal
plane is much smaller than the Bragg-reflecting area of the
droplet, i.e., w2

0 
 (R sin θB,ext)2, which is true for the typical
radii R available in the experiment. In this case one can assume
that all the incident optical power P is reflected back by the
droplet, which consequently gains the linear momentum of
2h̄k from every incident photon. By definition, the resulting
net optical force exerted on the droplet, (2Pnext/c)uz, balances
the gravitational force Fg when P = P0. Hence the threshold
optical power expresses as

P0 = 2πcg�ρ

3next
R3. (A11)

4. Bragg-reflected optical power

The optical power Preflected that corresponds to the reflected
power off the Bragg area of radius RB is evaluated accounting
for the intensity distribution of the incident vortex beam at the
droplet surface facing the incident beam. Since δ = 0 when the
droplet is levitated in a stable manner, one gets from Eq. (A1)

Preflected = 2|�|+2P

|�|!
∫ RB

0

r2|�|+1

w(ζ )2|�|+2
e
− 2r2

w2(ζ ) dr, (A12)

where ζ = h − R cos[arcsin(r/R)].

APPENDIX B: EXPERIMENTAL SETUP

The experimental setup used in the present study is
sketched in Fig. 7(a), where (x,y,z) is a right-handed Cartesian
coordinate system. The incident vortex beam is prepared as
follows. A circularly polarized collimated Gaussian beam from
a continuous-wave laser operating at λ = 532 nm propagates
along z axis through a space-variant birefringent optical vortex
generator from Altechna R&D. The transmitted beam is
contracircularly polarized with respect to the incident one and
exhibits a doughnut-shaped transverse intensity profile; see
Fig. 7(b). Although such a vortex beam is not a pure transverse
mode, its intensity distribution can be closely described by
the Laquerre-Gaussian function LG0� [23]. The sign of �

depends on the input circular polarization state defined by
a quarter-wave plate placed before the vortex generator. A
second quarter-wave plate is placed after the vortex generator
and makes the vortex beam p polarized in order to allow
maximum of light passing through the nonpolarizing and
polarizing beam splitters (NPBS and PBS on Fig. 7), after
which another quarter-wave plate (QWP on Fig. 7) sets the
photon helicity � for the optical manipulation experiment.

FIG. 7. Sketch of the experimental setup. (a) Optical set-up, not
to scale. QWP: quarter-wave plates; NPBS and PBS: nonpolarizing
and polarizing beam splitter cubes; Obj1-3: microscope objectives;
Cam1-3: CMOS cameras; WL: white light. Measured transverse
intensity distributions of the generated vortex beam.

The microscope objective Obj1 (magnification ×20; nu-
merical aperture 0.4) with underfilled back aperture is focusing
the beam into “funnel” of light with the divergence angle
θ0. The experimental sample is a glass capillary (1 × 1 mm2

square cross section) filled with pure water containing several
radial droplets of MDA-02-3211 cholesteric mixture. Using
the finding of our previous studies, we consider the cholesteric
liquid crystal reflecting 100% of light with wavelength 532 nm
and helicity � = −1 impinging at the incidence angle between
(π − θB,ext) and π (counted off the axis z, with θB,ext ≈ 25◦
being the external “Bragg cone” angle that is related to
the internal Bragg cone angle θB via nextsinθB,ext = n sin θB

[21–23]. Side-view and top-view images of the droplet are
respectively obtained by the microscope objectives Obj2 and
Obj3 (same as Obj1) and recorded by the cameras Cam1 and
Cam2. Red filter blocks the green laser illumination and allows
side-view imaging of the droplet under red-filtered natural
white light (WL); see Fig. 3(b). The laser light reflected off
the droplet is collected by Obj1 and propagates back through
the retarder QWP and the cube PBS, which transmits only the
Bragg-reflected part (which is helicity preserved). The passed
light is redirected by the cube NPBS to camera Cam1. The
distance from Obj1 to Cam1 is adjusted in order to image the
virtual focal plane of the droplet that acts as a convex spherical
mirror.
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