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Hyperbolicity as an obstruction to smoothability for
one-dimensional actions

Christian Bonatti∗† Yash Lodha‡ Michele Triestino†

Abstract

Ghys and Sergiescu proved in the 80s that Thompson’s groups F and T admit actions by
C∞ diffeomorphisms of the interval. They proved that the standard actions of these groups are
topologically conjugate to a group of C∞ diffeomorphisms. Monod defined a family of groups of
piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of
piecewise projective homeomorphisms. These groups are of particular interest because they are
nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove
that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of C1

diffeomorphisms.
Furthermore, we show that the group of Lodha-Moore has no nonabelian C1 action on the

interval. We also show that Monod’s groups H(A), in the case where PSL(2, A) contains a rational
homothety x 7→ p

qx, do not admit a C1 action on the interval. The obstruction comes from the
existence of hyperbolic fixed points for C1 actions. With slightly different techniques, we also
show that some groups of piecewise affine homeomorphisms of the interval are not smoothable. 1
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1 Introduction

A few examples are known of groups that admit no sufficiently smooth action on a one-dimensional
manifold. Following the direction of Zimmer program, typical examples come from lattices in higher
rank Lie groups [9, 15, 32], or more generally from groups with Kazhdan’s property (T ) [24, 25].
Other interesting examples appear in [1, 10,11,26,28].

In this work we address the problem of the existence of smooth actions of groups of piecewise
projective homeomorphisms of the real line. Our principal interest comes from the existence of groups
of this kind which are negative solutions to the so-called Day-von Neumann problem, as shown by
Monod and Lodha-Moore [20, 23]. On the other hand, partially motivated by his work on Kazhdan
groups acting on the circle, Navas raised the problem to find obstructions for a group of piecewise
linear homeomorphisms of the interval to admit smooth actions (cf. [6, 26]). With this work, we
illustrate relatively elementary tools which apply to a large variety of examples of such groups. Our
techniques rely on some classical facts on one-dimensional dynamics and the recent work by Bonatti,
Navas, Rivas and Monteverde on actions of abelian-by-cyclic groups [6].

A classical obstruction to have C1 actions on the interval is Thurston’s Stability Theorem [31]:
a group of C1 diffeomorphisms of the interval is locally indicable, namely every finitely generated
subgroup has a nontrivial morphism to Z. This obstruction does not apply in our setting: the group
of piecewise projective homeomorphisms of the real line is locally indicable. Therefore our results
exhibit new examples of locally indicable groups that have no C1 action on the interval.

As an appetizer, even before defining the notions and definitions which are necessary for presenting
our main results, we start by presenting two results whose statement are very easy to understand,
and which illustrate the spirit of the paper. Fix λ > 1 and consider:

• the linear map fλ : R→ R defined as x 7→ λx,

• the map hλ : R→ R defined as hλ(x) =
{
x if x ≤ 0,
λx if x > 0,

• the translation g : x 7→ x+ 1.

Let Gλ be the subgroup 〈fλ, g, hλ〉 ⊂ Homeo+(R).

Theorem 1.1. For any λ > 1 which is rational (in formula: λ ∈ Q ∩ (1,+∞)) and any morphism
ρ : Gλ → Diff1

+([0, 1]) one has :

the commutator [g, hλgh−1
λ ] belongs to the kernel of ρ.
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In particular ρ cannot be injective.
The same holds for any morphism ϕ : Gλ → Diff1

+(S1), where S1 is the circle.

As a corollary, looking at the relations in Gλ, one obtains the stronger conclusion that for any
representation ρ : Gλ → Diff1

+([0, 1]), the image ρ(Gλ) is a metabelian group (that is, a solvable
group with abelian derived subgroup).

We do not know if the same occurs for λ /∈ Q. Nevertheless, consider the natural realization
ρ0 : Gλ → Homeo+(S1) defined as follows:

• one considers S1 as being the projective space RP1,

• ρ0(fλ) acts on S1 as the projective action of the matrix
(
λ 0
0 1

)
,

• ρ0(g) acts on S1 as the projective action of the matrix
(

1 1
0 1

)
,

• ρ0(hλ) coincides with ρ0(fλ) on the half circle [0,+∞] and with the identity map on the half
circle [−∞, 0].

Theorem 1.2. With the notation as above, it does not exist any homeomorphism φ : S1 → S1 so
that φρ0(fλ)φ−1, φρ0(hλ)φ−1 and φρ0(g)φ−1 belong to Diff1

+(S1).

In other words, the natural action of Gλ on S1 is not smoothable, and furthermore, if λ ∈ Q, then
every C1 action of Gλ on the circle or the interval are (non-faithful) metabelian actions.

For more precise statements, see Theorems 6.7 and 6.9.
The paper is organized as follows. In Section 2 we introduce the basic objects and fix some

notation. In Section 3 we roughly explain the different strategies that we develop in this work,
showing which are the main applications. In Section 4 we illustrate the main motivation of our
work, which is the recent construction by Monod of nonamenable groups without free subgroups. In
Section 5 we study the C1 actions of Monod’s groups and the finitely presentable group defined by
Lodha-Moore. Section 6 contains the main part of this work, namely the study of C1 actions of
the groups Gλ introduced above. Finally, in Section 7 we use different techniques that work in C2

regularity.

2 Some definitions and notation

Definition 2.1. LetM be a manifold and Homeo(M) the group of homeomorphisms ofM . A group
G ⊂ Homeo(M) is Cr-smoothable (r ≥ 1) if it is conjugate in Homeo(M) to a group in Diffr(M),
the group of Cr diffeomorphisms of M .

Remark 2.2. Even if a certain group G ⊂ Homeo(M) is not Cr-smoothable, it is still possible that
the group G, as abstract group, admits Cr actions on the manifold M .

Throughout this work we shall only be concerned by one-dimensional manifolds. We restrict
our discussion to orientation-preserving homeomorphisms, which form a subgroup Homeo+(M) of
index two in Homeo(M). We will not make much distinction between the groups Homeo+(R) and
Homeo+([0, 1]). Notice however that the groups Diffr+(R) and Diffr+([0, 1]) are different and for this
reason we sometimes identify the interval [0, 1] to the compactified real line [−∞,+∞]. Choosing the
affine chart t 7→ [t : 1], we consider R as the affine line in the projective space RP1 ∼= R∪{∞}, which
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is topologically the circle S1. The group Homeo+(R) can be identified to a subgroup of Homeo+(S1),
for instance as the stabiliser of the point ∞ of S1 ∼= RP1.

The projective special linear group PSL(2,R) = SL(2,R)/{±id} naturally acts on the projective
real line RP1 by Möbius transformations: from now on, we shall always suppose that PSL(2,R) acts
on the circle in this way.

Definition 2.3. A circle homeomorphism h ∈ Homeo+(RP1) is piecewise projective if there exists
a finite partition RP1 = I1 ∪ . . . ∪ I` of the circle into intervals, such that every restriction h|Ik ,
k = 1, . . . , `, coincides with the restriction of a Möbius transformation.

A breakpoint of h is a point b ∈ RP1 such that the restriction of h to any neighbourhood of b
does not coincide with the restriction of a Möbius transformation.

The group of all orientation-preserving piecewise projective homeomorphisms of the circle is
denoted by PP+(RP1). Similarly, we define the group of piecewise projective homeomorphisms of
the real line PP+(R), identifying it to the stabiliser of ∞ inside PP+(RP1).

We recall that a fixed point p ∈ R for a diffeomorphism f ∈ Diff1
+(R) is a hyperbolic fixed point

if f has derivative at p which is not 1. We shall say that a group G ⊂ Diff1
+(R) has hyperbolic fixed

points if there exists an element f ∈ G with hyperbolic fixed points. This notion is related to the
notion of hyperbolic elements in PSL(2,R). A nontrivial projective transformation in PSL(2,R) has
at most two fixed points. If it has exactly two fixed points, it is called hyperbolic, and if it has only
one fixed point it is called parabolic. A matrix M in SL(2,R) is hyperbolic if |Tr(M)| > 2, parabolic
if |Tr(M)| = 2 and elliptic if |Tr(M)| < 2. Then the corresponding projective transformation is
respectively hyperbolic, parabolic and elliptic.

Given a subgroup Γ ⊂ PSL(2,R), we say that a real r ∈ R is a hyperbolic fixed point for Γ if
there is a γ ∈ Γ such that γ is hyperbolic and γ(r) = r. Similarly, we define the notion of a parabolic
fixed point for Γ. We consider the sets HΓ and PΓ of hyperbolic fixed points and parabolic fixed
points of elements of Γ, respectively. When Γ = PSL(2, A) = SL(2, A)/{±Id}, for some subring
A ⊂ R, we simply write HA and PA. Here SL(2, A) is the group of invertible (2× 2)-matrices with
determinant 1 and coefficients in A.

3 The mechanisms

The aim of this work is to present three different techniques which provide a variety of examples
of non-smoothable groups in PP+(R). The three techniques rely on the rigid hyperbolicity of the
actions: there are groups G ⊂ Diff1

+(R) such that, no matter how one (topologically) conjugates
them inside Diff1

+(R), will always have hyperbolic fixed points.
More precisely, suppose that in G ⊂ Diff1

+(R) there is an element f having a hyperbolic fixed
point p ∈ R. Consider another group G̃ ⊂ Diff1

+(R) to which G is topologically conjugate by some
homeomorphism φ: φGφ−1 = G̃. The point φ(p) is a fixed point for φfφ−1, but since φ is just a
homeomorphism, we cannot ensure that it is a hyperbolic fixed point. However, there are some
topological mechanisms that guarantee hyperbolicity.

The first one is when there are linked pairs of fixed points in G. We now define this notion.
Denote by Fix(g) the set of fixed points of a homeomorphism g. A pair of successive fixed points of
G is a pair a, b ∈ R, a < b such that there is an element g ∈ G and (a, b) is a connected component
of R \ Fix(g). A linked pair of fixed points consists of pairs a, b and c, d such that:

1. There are elements f, g ∈ G such that a, b is a pair of successive fixed points of f and c, d is a
pair of successive fixed points of g.
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2. Either {a, b} ∩ (c, d) or (a, b) ∩ {c, d} is a point.

In this case hyperbolicity is obtained by a probabilistic argument. Some element h in the
semigroup generated by f and g will have a hyperbolic fixed point somewhere. This is the so-called
Sacksteder’s Theorem, in its version for C1-pseudogroups [14, 27]. This method applies to large
groups of piecewise projective homeomorphisms, as the Monod’s groups:

Theorem 3.1. The following holds for Monod’s groups H(A) and G(A).

(1) For any subring A ⊂ R, Monod’s groups H(A) and G(A) are not C1-smoothable.

(2) If A is such that the group PSL(2, A) contains the homothety

fλ : x 7→ λx,

for some rational λ > 1, then there exists no injective morphism ρ : H(A)→ Diff1
+([0, 1]).

The second one is when there is an exponential growth of orbits. In this case we can ensure that
a specific point is always a hyperbolic fixed point. This applies for example to the dyadic affine
group 〈t 7→ t+ 1, t 7→ 2t〉, which is isomorphic to the Baumslag-Solitar group BS(1, 2), as described
in [6]. From this, it is easy to build examples of finitely generated groups in PP+(R) which are not
C1-smoothable. This method applies to the finitely presentable Lodha-Moore group, for which we do
not only prove that its action is not C1-smoothable, but also that it has no nontrivial C1 action on
the interval:

Theorem 3.2. Every morphism from the Lodha-Moore group G0 to Diff1
+([0, 1]) has abelian image.

The third one relies on the nature of stabilisers, and here we require that the regularity of the
group G is C2. If there exists a point x ∈ R such that the (right, for instance) germs of elements
g ∈ G fixing x define a group which is dense in R, then we can use the Szekeres vector field to
have a well-defined local differentiable structure, by means of which we ensure that the hyperbolic
nature of a fixed point cannot change after topological conjugacy to another C2 action. This method
applies to examples of groups in PP+(R) that are naturally in Diff1

+(R), e.g. the group generated
by Thompson’s group F (which is C1 in PP+(R)) together with t 7→ t+ 1

2 . It also applies to the
Thompson-Stein groups F (n1, . . . , nk), extending a previous work by Liousse [19]:

Theorem 3.3. The Thompson-Stein groups F (n1, . . . , nk) are not C2-smoothable.

4 Historical motivation

4.1 Thompson’s groups F and T

In the 50s, Richard J. Thompson introduced three groups F , T and V , which have many
nice properties (cf. [12]). These groups are finitely presented and [F, F ], T , V are simple. They
have been among the first known examples sharing these properties. Since only F and T act by
homeomorphisms on the circle, we restrict our attention to them.

Definition 4.1. Thompson’s group T is the group of all piecewise linear homeomorphisms of the
circle S1 ∼= R/Z such that all derivatives are powers of 2 and the breakpoints are dyadic rationals,
i.e. points of the form p/2q, p, q ∈ N. Thompson’s group F is the stabiliser of the point 0 in T .
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It has been proved by Ghys and Sergiescu in [16] that the piecewise linear action of T (and hence
of F ) on S1 is C∞-smoothable. On the other side, it is not difficult to find C∞ faithful actions (a
priori not topologically conjugate to the standard one) of Thompson’s group.

We recall Thurston’s interpretation of T as a group of piecewise projective homeomorphisms of
RP1 (cf. [12]).

Definition 4.2. T is the group of piecewise PSL(2,Z) homeomorphisms of RP1 with breakpoints
in PZ (which is the set of rational numbers together with the point at infinity). T is generated by
PSL(2,Z) and an additional element c defined as

c(t) =


t if t ∈ [∞, 0],
t

1−t if 0 ≤ t ≤ 1
2 ,

3− 1
t if 1

2 ≤ t ≤ 1,
t+ 1 if t ∈ [1,∞].

It is particularly striking that the element c has continuous first derivative. As the action of
PSL(2,Z) is even real-analytic, Thurston’s interpretation gives a natural C1-smoothing of T . In this
model, F is the group of piecewise PSL(2,Z) homeomorphisms of RP1 with breakpoints in PZ, that
also fix infinity. So F is the stabiliser of ∞ in T . F is generated by t 7→ t+ 1 together with c from
above. Recall that the group PSL(2,Z) is isomorphic to the free product Z2 ∗ Z3, freely generated
by the order two element a : t 7→ −1

t and the order three element b : t 7→ 1
1−t .

Now we sketch a proof that F admits a C∞ action inspired by [18] (see also [4]). Note that this is
weaker than proving it is C∞-smoothable, which is a consequence of the theorem of Ghys-Sergiescu.

Given any homeomorphism h : [0, 1]→ [0, 2], if we define the element

c̃(t) =


t if t ∈ [∞, 0],
h(t) if t ∈ [0, 1],
t+ 1 if t ∈ [1,∞]

then the group generated by t→ t+ 1 and c̃ is isomorphic to T . If we choose h to be C∞, infinitely
tangent to the identity at 0 and to t 7→ t+ 1 at 1, then the modified element c̃ is C∞. The algebraic
properties of F guarantee that the group generated by t→ t+ 1 and c̃ is isomorphic to F . (To see
this, first check that the relations of F are satisfied and conclude using the property F satisfies that
every proper quotient is abelian.) However, it is not guaranteed that one can choose h and hence c̃
such that the action of the group 〈t→ t+ 1, c̃〉 is actually conjugate to the standard action of F .

A very important remark is that this strategy is morally possible because 0 and 1 are not
hyperbolic fixed points (they are parabolic). This allows to slow-down the dynamics near these points
and make c infinitely tangent to the identity. This feature already appeared in the work of Ghys and
Sergiescu. Hyperbolicity is a typical obstruction for such modifications in differentiable dynamics.

4.2 One open problem: The Day-von Neumann problem for Diff2
+(R)

One of the main motivations for our work is understanding amenable groups of diffeomorphisms
of the circle. There are several equivalent definitions of amenability and an extensive literature on
the topic (see [13] for an elementary introduction). We provide one definition:

Definition 4.3. A discrete group G is amenable if it admits a finitely additive, left translation
invariant probability measure.

6



Here is an equivalent definition, à la Krylov-Bogolyubov, which is more natural from the viewpoint
of dynamical systems:

Definition 4.4. A discrete group G is amenable if every continuous action on a compact space has
an invariant probability measure.

The class of amenable groups includes finite, abelian and solvable groups. Amenability is closed
under extensions, products, direct unions and quotients. Subgroups of amenable groups are amenable.
On the other hand, groups containing nonabelian free subgroups are nonamenable. The so-called
Day-von Neumann problem (popularized by Day in the 50s) is about the converse statement: does
every nonamenable group contain a nonabelian free subgroup? If one restricts the question to linear
groups, then the well-known Tits alternative gives a positive answer: any non virtually solvable
linear group contains nonabelian free subgroups.

The problem has been solved with negative answers and currently various negative solutions
are known. These include Tarski monsters, Burnside groups, and Golod-Shafarevich groups. In
this article we are interested in a particular class of such groups, discovered by Monod [23] and
Lodha-Moore [20], which are subgroups of PP+(R). Among them, there are examples that are
in Diff1

+(R). For instance, the group generated by t → t + 1
2 together with the element c from

Definition 4.2 above provides such an example.
Interestingly, no negative solution to the Day-von Neumann problem is known among groups of

Diff2
+(R). One consequence of this work is that the natural actions of these groups do not provide a

negative solution. However, we have to stress that a priori there could be smooth actions of such
nonamenable groups that are not topologically conjugate to the standard actions (cf. Remark 2.2).

The moral consequence of our results is that the Day-von Neumann problem in Diff2
+(R) is

strictly harder than in Diff1
+(R). This is not so surprising, since there are important differences

between C2 and C1 diffeomorphisms in one-dimensional dynamics. We end this section by recalling
a couple of tantalising longstanding open questions in this direction.
Question 4.5. Is F amenable?
Question 4.6. Does the Tits alternative hold for the group of real-analytic diffeomorphisms of the
real line?

4.3 A second open problem: Higher rank behaviour

Definition 4.7. Let 1 < n1 < · · · < nk be natural numbers such that the group Λ = 〈ni〉 ⊂ R∗+ is
an abelian group of rank k. Denote by A the ring Z[ 1

m ], where m is the least common multiple of
the ni’s.

Thompson-Stein’s group T (n1, . . . , nk) is the group of all piecewise linear homeomoprhisms of the
circle S1 ∼= R/Z such that all derivatives are in Λ and the breakpoints are in A. Thompson-Stein’s
group F (n1, . . . , nk) is the stabiliser of the point 0 in T (n1, . . . , nk).

With the above definition, the group T (2) is the classical Thompson’s group T . It has been
proved by Stein [29] that these groups share many group-theoretical properties with the classical
Thompson’s groups, such as being finitely presentable (cf. [3]).

However there are important differences from the dynamical viewpoint. In [21,22], Minakawa
discovers that PL+(S1) contains “exotic circles”, namely topological conjugates of SO(2) that are
not one-parameter groups inside PL+(S1), in the sense that they are not PL conjugates of SO(2). In
particular, Minakawa shows that T (2, 3) contains an abelian group of rank 2 that is contained in a
topological conjugate of SO(2), but not in a PL conjugate of SO(2). Whence Navas suggested the
following:

7



Question 4.8. Does T (2, 3) have Kazhdan’s property (T )?2

On the other hand Navas proved in [24] that the only groups of Cr diffeomorphisms, r > 3/2,
that have property (T ) are finite. In [19], Liousse proves, among other things, that every action of
T (2, 3) on S1 by C9 diffeomorphisms is trivial. It would be very interesting to prove that T (2, 3) has
no C1 action on the circle, as this would confirm that this group is a good candidate for finding an
infinite Kazhdan group of circle homeomorphisms.

Naturally, there could be also good candidates among groups of piecewise projective homeomor-
phisms.

5 Nonamenable groups of piecewise projective homeomorphisms

5.1 Monod’s groups

Generalizing a well-known result by Brin and Squier [7], Monod showed in [23] that PP+(R)
does not contain nonabelian free subgroups. One key feature is that given any r ∈ R, the group of
germs of elements in PP+(R) fixing the point r is isomorphic to the affine group.

Definition 5.1 (Monod’s groups). Let A be a subring of R. G(A) is defined as the group of all
piecewise PSL(2, A) homeomorphisms of the circle with breakpoints in HA. The group H(A) is the
stabiliser of ∞ inside G(A).

Observe that the groups G(R) and H(R) coincide with PP+(RP1) and PP+(R) respectively.
Relying on the fact that for any A 6= Z, the group PSL(2, A) contains dense free subgroups, Monod
proved in [23] that for any A 6= Z, the group H(A) is nonamenable. Therefore these groups give
negative answer to the Day-von Neumann problem.
Remark 5.2. The previous definition can be generalized, considering any subgroup Γ ⊂ PSL(2,R).
Elements in G(Γ) are piecewise Γ and the breakpoints are in HΓ. For any non-discrete Γ ⊂ PSL(2,R),
the group H(Γ) does not contain free subgroups and is nonamenable. Theorem 3.1 can be extended
to these groups as well.

We shall now demonstrate Theorem 3.1, namely that Monod’s examples are not C1-smoothable.
For part (1), it is enough to prove the following:

Theorem 5.3. Monod’s group H(Z) is not C1-smoothable.

On the other hand, part (2) relies on Theorem 1.1.

Proof of Theorem 3.1. Let us first prove (1). Any subring A ⊂ R contains Z, therefore PSL(2,Z) is
a subgroup of any PSL(2, A). Therefore we have inclusions H(Z) ⊂ H(A) ⊂ G(A). As H(Z) is not
C1-smoothable (Theorem 5.3), neither are H(A) and G(A).

Next, we demonstrate part (2). Let λ > 1 be a rational number such that

fλ : x 7→ λx

belongs to PSL(2, A). As Z ⊂ A, the translation g : x 7→ x+1 belongs to PSL(2, A) as well. Moreover,
fλ being a hyperbolic element in PSL(2, A), we have that HA contains its fixed point 0. Therefore
Monod’s group H(A) contains the piecewise defined element

hλ : x 7→
{
x if x ≤ 0,
λx if x > 0.

2We do not define property (T ) here, we refer the reader to [2].
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We have just shown that Gλ = 〈fλ, g, hλ〉 is a subgroup of H(A).
Let ρ : H(A)→ Diff1

+([0, 1]) be a representation. Theorem 1.1 implies that [g, hλgh−1
λ ] is in the

kernel of ρ. Therefore ρ cannot be injective, as desired.

The dynamical ingredient we need for Theorem 5.3 is the following Sacksteder-like result, originally
due to Deroin, Kleptsyn, Navas [14] (see [27, Prop. 3.2.10] and also [5, § 4.5] for a simplified proof).

Proposition 5.4. Let G = 〈f, g〉 be a group acting by C1 diffeomorphisms on a compact one-
dimensional manifold. If {a, b} and {c, d} are linked pairs of successive fixed points for f, g, then G
contains an element with a hyperbolic fixed point in (a, b) ∩ (c, d).

Proof of Theorem 5.3. Let us assume by way of contradiction that there is a homeomorphism
φ : R→ R such that G := φH(Z)φ−1 is a group of C1 diffeomorphisms of R. First we observe that
there are elements f, g ∈ H(Z) that have linked pairs of fixed points. For example, consider the
hyperbolic element γ defined as the projective transformation

γ =
[

2 −1
−1 1

]
,

whose fixed points a, b satisfy that a < −3
2 <

1
2 < b. Now define

f(t) =
{
t if t /∈ [a, b],
γ(t) if t ∈ [a, b],

g(t) = f(t− 1) + 1.

Note that pairs a, b and a+ 1, b+ 1 are linked.3

Now the elements
f1 = φfφ−1, g1 = φgφ−1

in G have fixed points φ(a), φ(b) and φ(c), φ(d) respectively. This forms a linked pair. By Proposi-
tion 5.4, there is an element g ∈ G with a fixed point such that the derivative of g at x is not equal
to 1. Now let g1 = φ−1gφ be the corresponding element in H(Z). Note that g1 fixes y = φ−1(x).

We claim that y is a fixed point of a hyperbolic matrix in PSL(2,Z). If y is a breakpoint of g1,
then this is true because the set of breakpoints of elements in H(Z) is exatly HZ. We consider the
case when y is not a breakpoint of g1, so there exists an element γ1 ∈ PSL(2,Z) whose restriction to
a neighbourhood U of y coincides with the restriction g1|U .

Observe that since x is a hyperbolic fixed point for g, the corresponding point y must be a
topological attractor or repellor for γ1 ∈ PSL(2,Z) that acts locally like g1 around y, and hence g1
must be hyperbolic and y is hence a hyperbolic fixed point for PSL(2,Z).

Now consider an element g2 ∈ H(Z) which is the identity on (−∞, y) and agrees with g1 on
[y,∞). Then g3 = φg2φ

−1 ∈ G has right derivative λ 6= 1 at x and a left derivative that equals 1
at x. This contradicts the assumption that g3 is C1. Hence our original assumption that H(Z) is
C1-smoothable must be false.

3We remark that in general a linked pair may not look like it does in this situation, for instance such maps may
have components of support lying outside (a, b) and (a + 1, b + 1) respectively.
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5.2 The Lodha-Moore example

Lodha and Moore constructed a finitely presented subgroup G0 of Monod’s group. This example
provides the first torsion free finitely presentable example solving the Day-von Neumann problem.
The group G0 is generated by t 7→ t+ 1 together with the following two homeomorphisms of R:

c(t) =


t if t ≤ 0,
t

1−t if 0 ≤ t ≤ 1
2 ,

3− 1
t if 1

2 ≤ t ≤ 1,
t+ 1 if 1 ≤ t,

d(t) =
{ 2t

1+t if 0 ≤ t ≤ 1,
t if t /∈ [0, 1].

The following was proved in [20]:

Theorem 5.5. The group G0 is nonamenable and does not contain nonabelian free subgroups.
Moreover, it is finitely presentable with 3 generators and 9 relations.

In [20] a combinatorial model for G0 is constructed by means of a faithful action of G0 by
homeomorphisms of the Cantor set {0, 1}N. This model was used to prove that G0 is finitely
presentable. Here {0, 1}N is the Cantor set of infinite binary sequences, viewed as the boundary of
the infinite rooted binary tree. We denote by {0, 1}<N as the set of all finite binary sequences, which
are addresses of nodes in the infinite rooted binary tree.

Consider the map Φ : {0, 1}N → R ∪ {∞} given by:

11a00a11a2 ... 7→ a0 + 1
a1 + 1

a2+ 1
a3+...

, 00a01a10a2 ... 7→ −

a0 + 1
a1 + 1

a2+ 1
a3+...

 .
This function is one-to-one except on sequences ξ which are eventually constant. On sequences which
are eventually constant, the map is two-to-one: Φ(s01∞) = Φ(s10∞) and Φ(0∞) = Φ(1∞) =∞.

It was shown in [20] that upon conjugating a, b, c by Φ one obtains the following combinatorial
model. We start with the following map x : {0, 1}N → {0, 1}N as:

x(00ξ) = 0ξ,

x(01ξ) = 10ξ,

x(1ξ) = 11ξ

and also, recursively, the pair of mutually inverse maps y, y−1 : {0, 1}N → {0, 1}N as:

y(00ξ) = 0y(ξ), y−1(0ξ) = 00y−1(ξ),
y(01ξ) = 10y−1(ξ), y−1(10ξ) = 01y(ξ),
y(1ξ) = 11y(ξ), y−1(11ξ) = 1y−1(ξ).

From these functions, we define the functions xs, ys : {0, 1}N → {0, 1}N for s ∈ {0, 1}<N which
act as x and y localised to binary sequences which extend s:

xs(ξ) =
{
sx(η) if ξ = sη,

ξ otherwise,
ys(ξ) =

{
sy(η) if ξ = sη,

ξ otherwise.
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If s is the empty-string, it will be omitted as a subscript. The group G0 is generated by functions in
the set

S =
{
xt, ys | s, t ∈ {0, 1}<N, s 6= 0k, s 6= 1k, s 6= ∅

}
In fact, G0 is generated by x, x1, y10 which correspond respectively to conjugates of the functions
a, b, c defined above by Φ. (See [20] for details.)

It is important to note that G0 acts on the boundary of the infinite rooted binary tree, but not
on the tree itself.

Recall from the introduction that we are denoting by G2 the group generated by f2, g, h2, where
f2 is the scalar multiplication by 2, g is the translation by 1, and h2 is the element which agrees
with f2 to the right of zero and is the identity elsewhere. We obtain the following obstruction to
smoothability of G0.

Lemma 5.6. The three elements y−1
100y101, y101 and x10 generate an isomorphic copy of G2 in the

Lodha-Moore group G0.

Proof. It was demonstrated in [20] that the elements x and y−1
0 y1 are conjugate respectively to

t 7→ t + 1 and t 7→ 2t by Φ. Hence they generate an isomorphic copy of BS(1, 2). In particular,
y−1

0 y1, y1, x10 generate an isomorphic copy of G2.
It is easy to see that the groups

〈
y−1

100y101, y101, x10

〉
and

〈
y−1

0 y1, y1, x
〉
are isomorphic, since

their respective actions on boundaries of the binary trees, T1 rooted at the empty sequence and T2
rooted at the sequence 10, are the same.

More explicitly, one can verify that the elements y−1
100y101, y101, x10 correspond via Φ to the

following piecewise projective transformations:

x10 ∼



[
1 0
−1 1

]
on

[
0, 1

3

]
,

[
4 −1
5 −1

]
on

[
1
3 ,

1
2

]
,

[
0 1
−1 2

]
on

[
1
2 , 1
]
,

id on R \ [0, 1],

y101 ∼



[
3 −1
2 0

]
on

[
1
2 , 1
]
,

id on R \
[

1
2 , 1
]
,

y−1
100y101 ∼



[
1 0
−2 2

]
on

[
0, 1

2

]
,

[
3 −1
2 0

]
on

[
1
2 , 1
]
,

id on R \ [0, 1].

Proof of Theorem 3.2. As a consequence of Lemma 5.6, the group G0 contains a subgroup H
isomorphic to G2. Let ρ : G0 → Diff1

+([0, 1]) be a morphism. By a direct application of Theorem 1.1,
we obtain that the kernel of ρ contains some nontrivial element of H. Thus ρ is not injective.

Now, it has been proven in [8] that every proper quotient of G0 is abelian, whence we get our
result: as we have just shown that the kernel is not trivial, then the image must be abelian, as we
wanted to prove.
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Figure 1: The generators y−1
100y101 (yellow), y−1

101 (blue), x10 (green) in a neighbourhood of [0, 1].

5.3 Further examples

An interesting family of nonamenable groups is obtained adding translations in top of F (defined
as in Definition 4.2). Mimicking Monod’s argument, it is not difficult to prove the following:

Proposition 5.7. For any α ∈ (0, 1), the group of piecewise projective homeomoprhisms generated
by F and the translation t 7→ t+ α is nonamenable.

Observe that the groups 〈F, t 7→ t + α〉 appearing in the above statement are naturally of
C1 diffeomorphisms.

Theorem 5.8. For any irrational α ∈ (0, 1), the action of the group of piecewise projective homeo-
morphisms 〈F, t 7→ t+ α〉 on the compactified real line [−∞,+∞] is not C2-smoothable.

Proof. We denote by Tα the translation by α. If α is irrational, Theorem 7.2 implies directly that
the action of 〈F, Tα〉 on [−∞,+∞] is not C2-smoothable, by simply considering T1 and Tα.

For rational translations Tα, we can extend the previous argument and prove that even the
action on the non-compactified real line (−∞,+∞) is not C2-smoothable.

Theorem 5.9. For any rational α ∈ (0, 1), the action of the group of piecewise projective homeo-
morphisms 〈F, t 7→ t+ α〉 on R is not C2-smoothable.

Proof. We consider the conjugate of c by Tα:

TαcT
−1
α (t) =


t if t ≤ α,
t−α

1−(t−α) + α if α ≤ t ≤ 1
2 + α,

3− 1
t−α + α if 1

2 + α ≤ t ≤ 1 + α,

t+ 1 if 1 + α ≤ t.

In restriction to the interval
[
α, 1

2 + α
]
, the element TαcT−1

α coincides with the projective transfor-
mation [

1− α α2

−1 1 + α

]
,

which is a parabolic element in PSL(2,Z[α]) fixing α. It is not in PSL(2,Z).
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Inside Thompson’s F we can find an element f which fixes α and verifies f(t) 6= t for any t in
a small right neighbourhood of α. Indeed, since α is rational, there exists a parabolic element in
PSL(2,Z) with α as fixed point.

It is straightforward to verify that f and TαcT−1
α satisfy the requirements of Theorem 7.2. Thus

the theorem is proved.

6 C1 actions of affine and piecewise affine groups

6.1 C1 actions of the Baumslag-Solitar groups

Let n > 1 be an integer. The classical Baumslag-Solitar groups BS(1, n) are defined by the
presentations

BS(1, n) =
〈
a, b | aba−1 = bn

〉
.

They are naturally realized as subgroups of the affine group Aff+(R) ⊂ PSL(2,R), generated by the
homothety a(x) = nx, and the translation b(x) = x+ 1.

Similarly, for any rational λ = p/q there is a morphism from the Bausmlag-Solitar group

BS(q, p) =
〈
a, b | abqa−1 = bp

〉
to the subgroup of Aff+(R) generated by a(x) = λx and b(x) = x+ 1. However, when p/q is not an
integer, this morphism is not an isomorphism. We refer to this morphism as to the standard affine
action of BS(q, p).

For general λ > 1, we define Aλ to be the subgroup of Aff+(R) generated by a(x) = λx and
b(x) = x+ 1. For irrational λ’s, one easily sees that the group Aλ is abstractly isomorphic to the
wreath product Z o Z.

In [6], the authors study the C1 actions on the interval of the groups Aλ. The following result
appears in [6, § 4.3]:

Proposition 6.1. Fix λ > 1 and let φ : R → R be a homeomorphism such that φAλφ−1 is in
Diff1

+([0, 1]). Then φaφ−1 has derivative equal to λ at its interior fixed point φ(0).

For rational values of λ’s, the authors prove a much stronger statement (see [6, Thm. 1.7]):

Theorem 6.2. Let λ = p/q > 1 be rational and consider a C1 action of the Baumslag-Solitar group
BS(q, p) on the closed interval, without global fixed points in its interior. Then either the action is
topologically conjugate to the standard affine action of BS(q, p), or the action is abelian.

6.2 The groups Gλ

Inspired by the definition of Monod’s groups, we consider an analogous construction starting
from these affine groups. Here we repeat the definition already given in the introduction:

Definition 6.3. For any λ > 1, we define Gλ to be the subgroup of PP+(R) generated by the
elements

a(x) = λx, a+(x) =
{
x if x ≤ 0
λx if x > 0

, b(x) = x+ 1.

We also set a− = aa−1
+ , which agrees with a to the left of 0 and is the identity elsewhere.
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Remark 6.4. In the introduction, we were denoting a, b, a+ by fλ, g, hλ respectively.
Remark 6.5. The algebraic structure of Gλ is highly complicated. For instance, in the case λ = 2,
inside the group G2, the elements b and [a+, b] are the generators of Thompson’s F , in its natural
piecewise linear action on R.
Example 6.6. There are two canonical standard affine actions of the group Gλ on the real line that
factor through the affine group Aλ. First, as every element in Gλ fixes ±∞, we can consider the
germs of elements of Gλ at this two points. This gives two surjective homomorphisms

ρ± : Gλ → Aλ.

It is clear from the definition of Gλ that we have

ρ±(a∓) = id, ρ±(a±) = ρ(a)

for these two morphisms. More generally, every element of Gλ that is the identity outside a compact
interval belongs to the kernels of both morphisms ρ±. This is the case for the commutator [b, a+ba

−1
+ ]

that appears in the statement of Theorem 1.1.
On the other hand, as Z2 is the abelianization of Gλ (generated by the images of a±), there are

plenty of abelian actions of Gλ on the real line. In this case the translation b is always in the kernel,
so the commutator [b, a+ba

−1
+ ] always acts trivially.

6.3 C1 actions of Gλ

The following result is essentially the one contained in Theorem 1.2:

Theorem 6.7. For any λ > 1, the natural action of Gλ on the compactified real line [−∞,+∞] is
not C1-smoothable.

Proof. We argue by contradiction. After Proposition 6.1, if there existed a homeomorphism φ : R→ R
such that φAλφ−1 was in Diff1

+([−∞,+∞]), then φaφ−1 would have derivative equal to λ at p = φ(0)
and φa+φ

−1 would not be C1 at p. Hence the group is not C1-smoothable.

Remark 6.8. In the previous statement, it is fundamental to consider the action of Gλ on the
compactified line. Indeed, the statement is no longer true if one simply considers the action on R
(see [6, Remark 4.14]).

Our second result, more precise than the statement in Theorem 1.1, says that every C1 action of
Gλ on the interval, for rational λ > 1, is always described by combining the examples above.

Theorem 6.9. Let λ = p/q > 1 be rational. Let ρ : Gλ → Diff1
+([0, 1]) be a nontrivial homorphism.

Then there exists finitely many pairwise disjoint subinterval I1, . . . , In ⊂ [0, 1] such that

(1) for any i = 1, . . . , n, the image ρ(Gλ) preserves the interval Ii,

(2) for any i = 1, . . . , n, the restriction of ρ(Gλ) to I is topologically conjugate to one of the two
canonical actions on R given by ρ± : Gλ → Aλ,

(3) the restriction of ρ(Gλ) to the complement [0, 1] \
⋃n
i=1 Ii is abelian.

In particular the group Gλ admits no faithful C1 action on the closed interval.
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Remark 6.10. Relying on the work by Guelman and Liousse [17] (cf. also [6]), we could provide a
similar statement for C1 actions of Gλ on the circle S1. Indeed, every nonabelian action of Aλ has a
global fixed point, so every nonabelian action of Gλ reduces to an action on the interval.
Remark 6.11. The proof of Theorem 6.9 would be much simpler for representations ρ : Gλ →
Diff1+α

+ ([0, 1]) of the group Gλ into the group of C1 diffeomorphisms with α-Hölder continuous
derivative. Indeed, it is classical that any C1 element commuting with a C1+α hyperbolic contraction
of an interval lies in a one parameter flow (cf. Theorem 7.1: when the fixed point of the contraction
is hyperbolic, Szekeres theorem requires only C1+α regularity).

Let us sketch the proof under the assumption of C1+α regularity. Assume that the image ρ(Gλ)
is nonabelian. Then the image ρ(Aλ) is also nonabelian (cf. Lemma 6.21). From Theorem 6.2 and
Proposition 6.1 we deduce that the element ρ(a) behaves as the corresponding scalar multiplication
in restriction to some interval I ⊂ [0, 1] and has a hyperbolic fixed point s ∈ I. As the elements
ρ(a±) commute with ρ(a), we deduce from Szekeres theorem that in restriction to the interval I,
also these elements behave like scalar multiplications (as the one parameter flow containing a scalar
multiplication is exactly the one parameter flow of all scalar multiplications). This implies that the
group ρ(Gλ) acts like an affine group in restriction to the interval I.

The proof of Theorem 6.9 will occupy the rest of the section.

6.4 Elementary ingredients

When working with C1 actions on the interval, hyperbolic fixed points do not often give rigidity
(one usually needs C1+α regularity, cf. Remark 6.11). Indeed there are only a few dynamical tools
that work in C1 regularity. For this reason our proof relies mainly on very elementary arguments. A
first tool is the following:
Lemma 6.12. Let α ∈ Diff1

+([0, 1]) be a diffeomorphism. For any δ > 1, there are only finitely
many points s ∈ [0, 1] that are fixed by α and such that α′(s) > δ.

Proof. Suppose α has infinitely many fixed points {sn | n ∈ N} in [0, 1], such that α′(sn) > δ for
any n ∈ N. Let s∗ ∈ [0, 1] be an accumulation point of the sequence {sn}. By continuity of the
derivative, we must have α′(s∗) ≥ δ. On the other hand, let {snk} be a subsequence converging to
s∗; by the very definition of the derivative we must have α′(s∗) = 1. This is a contradiction.

Then we state and prove a second crucial elementary fact.
Lemma 6.13. Let α, β ∈ Diff1

+([0, 1]) be two commuting C1 diffeomorphisms. Let s ∈ [0, 1] be a
hyperbolic fixed point of α. Then β fixes s.

Proof. Let us assume by way of contradiction that β does not fix s. For each n ∈ Z we have

α(βn(s)) = βn(α(s)) = βn(s)

This means that α fixes each point in the set S = {βn(s) | n ∈ Z}.

Claim. Each t ∈ S is a hyperbolic fixed point of α and α′(t) = α′(s) for all t ∈ S.

Proof of Claim. Let λn be the formal word βnαβ−n. Using the chain rule, we find

λ′n(s) = α′(βn(s)).

However, since α and β commute, indeed λn = α and hence λ′n(s) = α′(s). It follows that
α′(s) = α′(βn(s)) for each n ∈ N.

Since the set S is infinite, the claim is in contradiction with Lemma 6.12.
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6.5 A particular case: no global fixed points for Aλ

Before dealing with a general statement as in Theorem 6.9, we study actions on the interval
without global fixed points. For the statement, recall that we denote by Aλ ⊂ Gλ the subgroup
generated by a and b.

Proposition 6.14. Let λ = p/q > 1 be rational. ρ : Gλ → Diff1
+([0, 1]) be a morphism satisfying

the following:

(1) the image ρ(Aλ) is nonabelian,

(2) the action of ρ(Aλ) has no global fixed point in (0, 1).

Then ρ(Gλ) is topological conjugate to one of the two canonical representations ρ± : Gλ → Aλ.

In the following, we restrict to the case λ = 2, the general case being similar. We let s0 denote
the hyperbolic fixed point of ρ(a) in (0, 1), ensured by Theorem 6.2 and Proposition 6.1 above. For
simplicity of notation, we also write

ρ(a) = f, ρ(b) = g, ρ(a−) = h, ρ(a+) = k.

Lemma 6.15. With the notation as above, the elements h and k fix the point s0 and we have

h′(s0) · k′(s0) = 2.

Proof. By Lemma 6.13, the two elements h, k fix the point s0, as they commute with f . Remarking
that hk = f , applying the chain rule we deduce that

2 = f ′(s0)
= h′(k(s0)) · k′(s0)
= h′(s0) · k′(s0),

as wanted.

The previous lemma implies that s0 is a hyperbolic fixed point for at least one among h and k.
Without loss of generality, we assume h′(s0) > 1. The following lemma says that h behaves like a
hyperbolic element on the whole interval [0, 1]:

Lemma 6.16. With the notation as above, suppose h′(s0) > 1. Then s0 is the only point of (0, 1)
which is fixed by h.

Proof. If h had a fixed point s different from s0, since h and f commute, the images f−n(s) would
form a sequence of fixed points for h that converge to s0. This would imply that the derivative of h
at s0 should be equal to 1. Contradiction.

Given a dyadic rational r = p/2q, we denote by gr the element ρ(a−qbpaq), namely the image
of the element which is the translation by p/2q when thinking of A2 as the dyadic affine group.
We have g−r = g−1

r . By Theorem 6.2 these elements are actually topologically conjugate to the
corresponding translations.

Lemma 6.17. Let r = p/2q be a dyadic rational, r > 0. The conjugate grkg−1
r commutes with h.
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Proof. This is actually a statement about relations of the group G2: we prove the relation looking
at the standard action of G2 on the real line. The support of a+ is [0,+∞), therefore the support of
the conjugate of a+ by the translation by r is [r,+∞), which is disjoint from (−∞, 0], which is the
support of a−.

Lemma 6.18. With the notation as above, the restriction of k to [0, s0] is the identity.

Proof. The element kr = grkg
−1
r commutes with h by Lemma 6.17. We claim that kr fixes s0 for

each r > 0. Since
kr(h(s0)) = kr(s0) = h(kr(s0))

this means that h fixes kr(s0). Now kr(s0) ∈ (0, 1), and since the only fixed point of h in this set
is s0, we conclude that kr(s0) = s0. In particular, it follows that k fixes g−r(s0) for every dyadic
rational r > 0. By density of positive dyadic rationals in (0,+∞), we obtain the statement.

The end of the proof is inspired by [5]: in a centraliser of a hyperbolic element, like h, there
cannot be elements with hyperbolic fixed points, and therefore by Proposition 5.4, there cannot be
linked pairs of successive fixed points.

Lemma 6.19. Suppose that k is not the identity and let s, t ∈ [s0, 1] be a pair of successive fixed
points of k. There exists a dyadic rational r > 0 such that the pair gr(s), gr(t) together with s, t
defines a linked pair of fixed points for grkg−1

r and k.

Proof. For any dyadic rational r, the points gr(s), gr(t) define a pair of successive fixed points for
the conjugate grkg−1

r . An element gr, r > 0, moves every point in (s0, 1) to the right, and using the
fact that gr is topologically conjugate to the translation by r, we can choose r > 0 sufficiently small
such that

s < gr(s) < t ≤ gr(t)

(with equality t = gr(t) if and only if t = 1).

Suppose that k is not the identity. Then, from Lemma 6.19 and Proposition 5.4, we realize that
the subgroup 〈grkg−1

r , k〉 contains an element γ with a hyperbolic fixed point p in (s0, 1). Since
grkg

−1
r , k commute with h, it follows that γ commutes with h. So by Lemma 6.13 h must fix the

point p. This contradicts the conclusion of Lemma 6.16.
Therefore we must have that k = ρ(a+) is the identity, and so ρ(a−) = ρ(a). Thus the

representation ρ : G2 → Diff1
+([0, 1]) is topologically conjugate to the canonical representation

ρ− : G2 → A2. This finishes the proof of Proposition 6.14.

6.6 Equivalent properties

Now we consider almost the same statement as in Proposition 6.14, but we only make assumptions
on the global dynamics of Gλ, rather than on the one of Aλ.

Proposition 6.20. Let λ = p/q > 1 be rational and ρ : Gλ → Diff1
+([0, 1]) be a morphism satisfying

the following:

(1) the image ρ(Gλ) is nonabelian,

(2) the action of ρ(Gλ) has no global fixed point in (0, 1).

Then ρ(Gλ) is topological conjugate to one of the two canonical representations ρ± : Gλ → Aλ.
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The proof follows directly from the following two lemmas.

Lemma 6.21. Let λ > 1 and ρ : Gλ → Diff1
+([0, 1]) be a morphism. Then the following properties

are equivalent:

(1) the image ρ(Gλ) is nonabelian,

(2) the image ρ(Aλ) is nonabelian.

Proof. Clearly (2) implies (1). On the other hand, if the image ρ(Aλ) is abelian, the translation b
belongs to the kernel of ρ and hence ρ(Gλ) itself is abelian.

Lemma 6.22. Let λ = p/q > 1 be rational and ρ : Gλ → Diff1
+([0, 1]) be a morphism with nonabelian

image. Then the following properties are equivalent:

(1) the action of ρ(Gλ) has no global fixed point in (0, 1),

(2) the action of ρ(Aλ) has no global fixed point in (0, 1).

Proof. Again, (2) easily implies (1). Assume (1). Since the image ρ(Gλ) is nonabelian, by Lemma 6.21
also the image ρ(Aλ) is nonabelian. Using Theorem 6.2, we find at least one interval I = [x, y] ⊂ [0, 1]
such that

(1) I is preserved by ρ(Aλ),

(2) ρ(Aλ) has no global fixed point in the interior of I,

(3) the restriction ρ(Aλ)|I is nonabelian and therefore it is topologically conjugate to the standard
affine action on R.

Moreover, by Proposition 6.1, there exists a unique point s0 ∈ (x, y) in the interior of I which is a
hyperbolic fixed point for ρ(a), with derivative ρ(a)′(s0) = λ.

Proceeding as in Lemma 6.15, the elements ρ(a±) must fix the point s0 and we can suppose that
s0 is a hyperbolic fixed point for ρ(a−), with derivative ρ(a−)′(s0) > 1. Let s− be the first fixed
point of ρ(a−) which lies to the left of s0.

If s− ∈ (x, s0), then {ρ(a)−n(s0) | n ∈ N} is a sequence of fixed points for ρ(a−) that converges
to s0 as n→∞. But this is not possible because the derivative of ρ(a−) at s0 is not 1 (cf. Lemma
6.13).

Similarly, if s− ∈ [0, x), then {ρ(a−)−n(x) | n ∈ N} is a sequence of fixed points for ρ(a) that
converges to s0 as n→∞. Again, this is not possible.

Thus s− = x and so x is a global fixed point for ρ(Gλ). As we are assuming (1), this implies
x = 0. Similarly, denoting by s+ the first fixed point of ρ(a−) which lies to the right of s0, we obtain
that s+ = y and so y = 1. This is what we wanted to prove.

Proof of Proposition 6.20. The statement follows directly from Lemmas 6.21 and 6.22.
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6.7 General case

We proceed now to the proof of Theorem 6.9.

Proof of Theorem 6.9. Let ρ : Gλ → Diff1
+([0, 1]) be a homomorphism. If the image ρ(Gλ) is abelian,

there is nothing to prove. Hence we can assume that ρ(Gλ) is nonabelian and by Lemma 6.21 this is
equivalent to saying that ρ(Aλ) is nonabelian, where Aλ is denoting the subgroup generated by a
and b.

If ρ(Aλ) is nonabelian, then after Theorem 6.2, there exists at least an interval I ⊂ [0, 1] which
is preserved by ρ(Aλ) and such that ρ(Aλ) is topologically conjugate to the standard affine action.

Claim. There are only finitely many pairwise disjoint intervals I1, . . . , In that are preserved by
ρ(Aλ) and such that for any i = 1, . . . , n the restrictions ρ(Aλ)|Ii is nonabelian.

Proof of Claim. Let I be an interval preserved by ρ(Aλ) and such that ρ(Aλ)|I is nonabelian. By
Theorem 6.2, the action is topologically conjugate to the standard action of Aλ and by Proposition 6.1
there exists a point s ∈ I which is fixed by ρ(a) and such that ρ(a)′(sn) = λ > 1. Then Lemma 6.12
implies that there can only be finitely many such intervals, whence the first statement.

Claim. Let I1, . . . , In be the intervals provided by the previous claim. Then ρ(Gλ) preserves Ii for
any i = 1, . . . , n.

Proof of Claim. Let I be an interval as above. Let J ⊂ I be a interval which is preserved by ρ(Gλ)
and such that ρ(Gλ) has no global fixed point in its interior. By Proposition 6.22, we must have the
equality I = J .

After Proposition 6.20, we deduce that the restriction of the action of Gλ to any of the intervals
I1, . . . , In is topologically conjugate to one of the two canonical affine actions ρ± : Gλ → Aλ. This is
what we wanted to prove.

7 C2 actions with locally non-discrete stabilisers

The method that we present in this section is inspired by [6, Prop. 4.17] and relies on the
following important result in one-dimensional dynamics, due to Szekeres [30]. Here we state it as in
[27, § 4.1.3]:

Theorem 7.1 (Szekeres). Let f be a C2 diffeomorphism of the half-open interval [0, 1) with no fixed
point in (0, 1). Then there exists a unique C1 vector field X on [0, 1) with no singularities on (0, 1)
such that

1. f is the time-one map of the flow {φsX } generated by X ,

2. the flow {φsX } coincides with the C1 centraliser of f in Diff1
+([0, 1)).

The main result presented in this section is the following:

Theorem 7.2. Let I = (a, b) ⊂ RP1 be an interval and let f and g be two homeomorphisms in
PP+(RP1) with the following properties:

1) For each x ∈ (a, b), f(x) 6= x, g(x) 6= x and f(a) = g(a) = a.

2) the right germs at a of f and g generate an abelian group of rank 2,
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3) there exists an element h ∈ PP+(RP1) with a breakpoint in I.

Then the group 〈f, g, h〉 ⊂ PP+(RP1) is not C2-smoothable.

Remark 7.3. If the restriction of the commutator [f, g] to I is not trivial, then the additional element
h is automatically in the group generated by 〈f, g〉.

Proof. The first two assumptions imply that f and g are either both hyperbolic or both parabolic
on a right neighbourhood of a. In either case the proofs are similar, therefore we can suppose that
we are in the first case. Also, up to conjugacy, we can suppose a = 0. Hence there exist λ, µ > 0
such that log λ

logµ is irrational and a point x > 0 such that

f |[0,x](t) = λt, g|[0,x](t) = µt for any t ∈ [0, x].

Passing to inverses if needed, we can suppose that λ, µ < 1. Then for every positive n ∈ N, we also
have

fn|[0,x](t) = λnt, gn|[0,x](t) = µnt for any t ∈ [0, x].

Observe that this is not the case if n is negative: the first breakpoint p of fn which is at the right of
0 is λ−np, which approaches to 0 as n→ −∞. We first show the following statement.

Claim. Denote by A the rank 2 abelian subgroup of R generated by log λ and logµ. For every
α ∈ A,α < 0 there exists an element hα ∈ 〈f, g〉 such that

hα|[0,x](t) = eαt for any t ∈ [0, x].

Moreover, f and hα commute on [0, x]: [f, hα]|[0,x] = [hα, f ]|[0,x] = id|[0,x].

Proof of Claim. Let k, ` ∈ Z be such that α = k log λ + ` logµ. There exists y > 0 such that the
element fkg` is equal to t 7→ eαt on the right neighbourhood [0, y]. If y ≥ x, then we set hα = fkg`

and we are done.
Otherwise, we have y < x. As f is a contraction on [0, x], there exists a positive integer N ∈ N

such that fN ([0, x]) = [0, λNx] ⊂ [0, y]. Define hα = f−Nfkg`fN . Then for any t ∈ [0, x] we have

hα|[0,x](t) = f−Nfkg`fN |[0,x](t)
= f−Nfkg`|[0,λNx](λN t)
= f−N |[0,eαλNx](eαλN t).

The element f−N equals t 7→ λ−N t on the interval [0, λNx]. Here eα < 1 hence [0, eαλNx] ⊂ [0, λNx].
We conclude that for any t ∈ [0, x] we have

hα|[0,x](t) = λ−NeαλN t = eαt,

as desired.

The claim implies that the group generated by f and g contains a one-parameter flow in its local
C0-closure. Suppose that ϕ is a homeomorphism such that ϕ〈f, g, h〉ϕ−1 is in Diff2

+(S1). Without
loss of generality we suppose ϕ(0) = 0 ∈ S1.

The element ϕfϕ−1 is a C2-contraction on a right neighbourhood [0, ϕ(x)] of 0, thus Szekeres’
theorem applies. Let X denote the Szekeres vector field of f and let {φsX } be the associated
one-parameter flow defined on [0, ϕ(x)]. The elements ϕhαϕ−1’s commute with ϕfϕ−1 on [0, ϕ(x)],
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hence by Szekeres’ theorem we must have that their restrictions to [0, ϕ(x)] are contained in the flow
{φsX }s≥0. Moreover they are densely contained because A is dense in R. This means that ϕ takes
the vector field ∂

∂t , generator of t 7→ est, defined on [0, x], to X . This implies that ϕ is C2 on (0, x].
It remains to prove that 〈f, g, h〉 contains an element with a breakpoint in (0, x]. This together

with the observation above that ϕ is C2 would contradict the fact that ϕ〈f, g, h〉ϕ−1 is in Diff2
+(S1).

Without loss of generality, we suppose that I is contained in the union of supports of f and g. By
our hypothesis, h contains a breakpoint in I, and in particular is not C2 at the breakpoint. Any
sufficiently large power fN takes this point into [0, x], so the element fN [f, g]f−N as a breakpoint
in (0, x). Since ϕ is C1 on this interval, it cannot conjugate this element to an element of Diff2

+(S1).
This is a contradiction.

We finally apply the previous result to prove that the Thompson-Stein groups are not C2-
smoothable.

Proof of Theorem 3.3. In the group F (n1, . . . , nk) it is possible to find to elements f, g fixing 0
such that f ′(0) = n1, g′(0) = n2 and which do not commute. Thus we apply Theorem 7.2 and
conclude that the group generated by f, g is not C2-smoothable. In particular F (n1, . . . , nk) is not
C2-smoothable.
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