
HAL Id: hal-01542517
https://hal.science/hal-01542517v1

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of ACO in a Constraint Programming
Language

Madjid Khichane, Patrick Albert, Christine Solnon

To cite this version:
Madjid Khichane, Patrick Albert, Christine Solnon. Integration of ACO in a Constraint Programming
Language. 6th International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS),
Sep 2008, Bruxelles, Belgium. pp.84-95, �10.1007/978-3-540-87527-7_8�. �hal-01542517�

https://hal.science/hal-01542517v1
https://hal.archives-ouvertes.fr

Integration of ACO in a Constraint

Programming Language

Madjid Khichane12, Patrick Albert1, and Christine Solnon2

1 ILOG SA, 9 rue de Verdun, 94253 Gentilly cedex, France
{mkhichane,palbert}@ilog.fr

2 LIRIS CNRS UMR 5205, University of Lyon I
Nautibus, 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France

christine.solnon@liris.cnrs.fr

Abstract. We propose to integrate ACO in a Constraint Programming
(CP) language. Basically, we use the CP language to describe the problem
to solve by means of constraints and we use the CP propagation engine
to reduce the search space and check constraint satisfaction; however, the
classical backtrack search of CP is replaced by an ACO search. We report
first experimental results on the car sequencing problem and compare
different pheromone strategies for this problem.

1 Introduction

Our motivations mainly come from the two following observations:

– Ant Colony Optimization (ACO) has been successfully applied to a wide
range of combinatorial optimization problems [1]; however most works have
focused on designing efficient ACO algorithms for solving specific problems,
but not on integrating these algorithms within declarative languages so that
solving a new problem with this approach usually implies a lot of procedural
programming;

– Constraint Programming (CP) languages provide high level features to declar-
atively model problems by means of constraints; however, most CP solvers
are based on a systematic “Branch and Propagate” exploration of the search
space, and fail to solve some hard problems within a reasonable time limit.

Hence, we investigate the integration of ACO within a CP language. Our research
is based upon ILOG Solver [2], and we use its modeling language to describe
the problem to solve by means of constraints and its propagation engine to
reduce the search space and check constraint satisfaction; however, the search of
solutions is guided by ACO. This approach has the benefit of reusing all the work
done by ILOG at the modeling level as well as the code dedicated to constraint
propagation and verification. We can as well test different variations of our ideas
on a large benchmark library. Note that this work could be easily extended to
other CP languages, such as, e.g., CHOCO or GECODE.

It is worth reporting that an hybridization of ACO and CP has already been
proposed in [3] to solve a timetabling problem which contains hard constraints,

that must be satisfied, and has an objective function to optimize. In this ap-
proach, constraint propagation is used to build feasible solutions that satisfy all
hard constraints while ACO is used to find high quality solutions with respect
to the objective function. Our approach in this paper is rather different as ACO
is used to guide a search procedure aiming at satisfying all the constraints.

The paper is organized as follows. In the next section, we briefly recall some
definitions and terminology about CP. Section 3 describes the basic Ant-CP al-
gorithm for solving constraint satisfaction problems. Section 4 shows how this
algorithm may be used to solve the car sequencing problem and introduces dif-
ferent pheromone strategies and different heuristics for this problem. Section 5
experimentally compares these different variants of Ant-CP.

2 Background

A Constraint Satisfaction Problem (CSP) [4] is defined by a triple (X, D, C)
such that X is a finite set of variables, D is a function that maps every variable
xi ∈ X to its domain D(xi), that is, the finite set of values that can be assigned
to xi, and C is a set of constraints, that is, relations between some variables
which restrict the set of values that can be assigned simultaneously to these
variables.

Solving a CSP involves assigning values to variables so that constraints are
satisfied. More formally, an assignment is a set of variable-value couples, noted
〈xi, v〉 and corresponding to the assignment of a value v ∈ D(xi) to a variable xi.
The variables assigned in an assignment A are denoted by var(A). An assignment
A is partial if some variables are not assigned in A, i.e., var(A) ⊂ X ; it is
complete if all variables are assigned, i.e., var(A) = X . An assignment A is
consistent if it does not violate any constraint. A solution of a CSP (X, D, C) is
a complete and consistent assignment.

CSPs are solved in a generic way by constraint solvers which are embedded
within CP languages. These constraint solvers are usually based on a system-
atic exploration of the search space: starting from an empty assignment, they
incrementally extend a partial consistent assignment by choosing a non assigned
variable and a consistent value for it until either the current assignment is com-
plete (a solution has been found) or the current assignment cannot be extended
without violating constraints (the search must backtrack to a previous choice
point and try another extension). To reduce the search space, this exhaustive
exploration of the search space is combined with constraint propagation tech-
niques: each time a variable is assigned to a value, constraints are propagated
to filter the domains of the variables that are not yet assigned, i.e., to remove
values that are not consistent with respect to the current assignment. If con-
straint propagation detects an inconsistency or if it removes all values from a
domain, the search must backtrack. Different levels of consistency may be consid-
ered (e.g., node consistency or arc consistency); some consistencies are stronger
than others, removing more values from the domains, but have also higher time
complexities.

Algorithm 1: Ant-CP procedure

Input: A CSP (X, D, C), a pheromone strategy Φ, a heuristic factor η

Output: A consistent (partial or complete) assignment for (X, D, C)
Initialize all pheromone trails of Φ to τmax1

repeat2

foreach k in 1..nbAnts do3

/* Construction of a consistent assignment Ak */

Ak ← ∅4

repeat5

Select a variable xi ∈ X so that xi 6∈ var(Ak)6

Choose a value v∈D(xi)7

Add 〈xi, v〉 to Ak8

Propagate constraints to filter domains of D9

until var(Ak) = X or Failure ;10

Update pheromone trails of Φ using {A1, . . . ,AnbAnts}11

until var(Ai) = X for some i ∈ {1..nbAnts} or max cycles reached ;12

return the largest constructed assignment13

3 Description of Ant-CP

Some ACO algorithms have been previously proposed for solving CSPs [5–8]. In
these algorithms, ants iteratively build complete assignments (that assign a value
to every variable) that may violate constraints, and their goal is to minimize
the number of constraint violations; a solution is found when the number of
constraint violations is null.

In this paper, we investigate a new ACO framework for solving CSPs: ants
iteratively build partial assignments (such that some variables may not be as-
signed to a value) that do not violate constraints, and their goal is to maximize
the number of assigned variables; a solution is found when all variables are as-
signed. This new ACO framework may be combined with the propagation engine
of ILOG Solver in a very straightforward way.

More precisely, the proposed algorithm for solving CSPs, called Ant-CP, is
sketched in Algorithm 1. First, pheromone trails are initialized to some given
value τmax. Then, at each cycle (lines 2-12), each ant k constructs a consistent
assignment Ak (lines 4-10): starting from an empty assignment, the ant itera-
tively chooses a variable which is not yet assigned and a value to assign to this
variable; this variable assignment is added to Ak, and constraints are triggered
which might in turn narrow the domains of non assigned variables, trigger new
assignments, or detect a failure; this process is iterated until either all variables
have been assigned (i.e., a solution has been found) or the propagation step
detects a failure. Once every ant has constructed an assignment, pheromone
trails are updated. The algorithm stops iterating either when an ant has found
a solution, or when a maximum number of cycles has been performed.

In the next paragraphs, we define the pheromone strategy Φ used to bias the
search, and we describe the variable selection, value selection, propagation and
pheromone updating steps.

Pheromone strategy. The pheromone strategy, denoted by Φ, is a parameter
of Ant-CP and is defined by a triple Φ = (S, τ, comp) such that:

– S is the set of components on which ants lay pheromone;

– τ is a function which defines how pheromone trails of S are used to bias the
search. More precisely, given a partial assignment A, a variable xi 6∈ var(A),
and a value v ∈ D(xi), the function τ(A, xi, v) returns the value of the
pheromone factor which evaluates the learnt desirability of adding 〈xi, v〉 to
the partial assignment A;

– comp is a function which defines the set of components on which pheromone
is laid when rewarding an assignment A, i.e., the function comp(A) returns
the set of components associated with A.

The goal of the pheromone strategy is to learn from previous constructions
which decisions have allowed ants to build good assignments, and to use this
information to bias further constructions. The default pheromone strategy, de-
noted by Φdefault, is defined as follows:

– ants lay pheromone on variable-value couples, i.e.,

S = {τ〈xi,v〉|xi ∈ X, v ∈ D(xi)}

so that each pheromone trail τ〈xi,v〉 represents the learnt desirability of as-
signing value v to xi;

– the pheromone factor is defined by τ(A, xi, v) = τ〈xi,v〉;

– the set of components associated with an assignment is

comp(A) = {τ〈xi,v〉|〈xi, v〉 ∈ A}

For specific problems, the user may design other pheromone strategies. In this
case, he must define the triple (S, τ, comp). We shall propose and compare two
other pheromone strategies for the car sequencing problem in the next section.

Selection of a variable. When constructing an assignment, the order in which
the variables are assigned is rather important and variable ordering heuristics
have been studied widely in the context of backtrach search [4, 9]. These heuris-
tics can be used as well in our context of greedy construction of assignments. For
example, we can use the different variable ordering heuristics that are predefined
in ILOG solver such as, e.g., the IloChooseMinSizeInt heuristic which selects
the variable that has the smallest domain.

Choice of a value. Once a variable xi has been selected, ants have to choose
a value v in the domain D(xi) of xi. Note that this domain may have been
reduced by constraint propagation and may not contain all values of the initial
domain of xi. The main contribution of ACO for solving CSPs is to provide a
generic heuristic for choosing values. The value v to be assigned to a variable
xi is randomly chosen within D(xi) with respect to a probability p(xi, v) which
depends on a pheromone factor τ(A, xi, v) —which reflects the past experience
of the colony regarding the addition of 〈xi, v〉 to the partial assignment A— and
a heuristic factor η(A, xi, v) —which is problem-dependent, i.e.,

p(xi, v) =
[τ(A, xi, v)]α[η(A, xi, v)]β∑

w∈D(xi)
[τ(A, xi, w)]α[η(A, xi, w)]β

(1)

where α and β are two parameters that determine the relative weights of phe-
romone and heuristic information.

Constraint propagation. Each time a variable is assigned to a value, a propa-
gation algorithm is called. This algorithm filters the domains of the non assigned
variables: it removes the values that are inconsistent with respect to some partial
consistencies such as, e.g., node-consistency, arc-consistency or path-consistency
[4]. If the domain of a variable becomes a singleton, then the partial assignment
Ak is completed by the assignment of this variable and the propagation process
is continued. If the domain of a variable becomes empty, then Failure is returned.

One may consider different propagation algorithms, that ensure different par-
tial consistencies. In our premiminary experiments, we have used the default
propagation algorithm integrated to ILOG solver.

Pheromone updating step. Once every ant has constructed an assignment,
pheromone trails are updated according to ACO: first, they are decreased by
multiplying them by (1−ρ) (where ρ ∈ [0; 1] is the evaporation rate); then, they
are rewarded with respect to their contribution to the construction of good as-
signments. More precisely, let BestOfCycle be the set of all the best assignments
constructed during the cycle, that is,

BestOfCycle = {Ai ∈ {A1, . . . ,AnbAnts} | #var(Ai) is maximal}

For each assignment Ak ∈ BestOfCycle, pheromone trails associated with phe-
romone components of Ak are increased by a quantity δτ which is proportionally
inverse to the gap of sizes between Ak and the largest assignment Abest built
since the beginning of the search (including the current cycle), i.e.,

δτ = 1/(1 + #Abest − #Ak)

The set of pheromone components associated with a given assignment depends
on the considered pheromone strategy and is defined by comp.

Note that Ant-CP follows the MAX-MIN Ant System scheme [10] so that
pheromone trails are bounded between two given bounds τmin and τmax.

4 Using Ant-CP to solve the Car Sequencing Problem

The car sequencing problem involves scheduling cars along an assembly line in
order to install options (e.g., sun-roof or air-conditioning) on them. Each option
is installed by a different station, designed to handle at most a certain percentage
of the cars passing along the assembly line, and the cars requiring this option
must be spaced so that the capacity of the station is never exceeded. More
precisely, a car sequencing problem is defined by a tuple (C, O, p, q, r), where C
is the set of cars to be produced and O is the set of different options. The two
functions p :O→N and q :O→N define the capacity constraint associated with
each option oi∈O, i.e., for any sequence of q(oi) consecutive cars on the line, at
most p(oi) of them may require oi. The function r :C×O→{0, 1} defines option
requirements, i.e., for each car ci∈C and for each option oj ∈O, r(ci, oj) returns
1 if oj must be installed on ci, and 0 otherwise.

Solving a car sequencing problem involves finding an arrangement of the cars
in a sequence, defining the order in which they will pass along the assembly line,
such that the capacity constraints are met. This problem is NP-hard [11]. A
more general problem –which introduces paint batching constraints and priority
levels for capacity constraints– has been proposed by Renault for the ROADEF
challenge in 2005 [12].

4.1 CP model

The car sequencing problem has been first introduced in the CP community in
1988 [13]. Since then, it has been very often used to evaluate CP solvers and it
is the first problem of the CSP library CSPlib [14]. To evaluate Ant-CP, we have
considered a classical CP model for the car sequencing problem which basically
corresponds to the first model described in the user’s manual of ILOG solver. In
order to reduce the search space, this model introduces the concept of car classes:
all cars requiring a same set of options are grouped into a same car class.

There are two different kinds of variables:

– A slot variable xi is associated with each position i in the sequence of cars.
This variable corresponds to the class of the ith car in the sequence and its
domain is the set of all car classes.

– An option variable yj
i is associated with each position i in the sequence and

each option j. This variable is assigned to 1 if option j has to be installed
on the ith car of the sequence, and 0 otherwise, so that its domain is {0, 1}.

There are three different kinds of constraints:

– Link constraints specify the link between slot and option variables, i.e., yj
i =

1 iff option j has to be installed on xi.
– Capacity constraints specify that station capacities must not be exceeded,

i.e., for each option j and each subsequence of qj cars, a linear inequality
specifies that the sum of the corresponding option variables must be smaller
or equal to pj .

– Demand constraints specify, for each car class, the number of cars of this
class that must be sequenced.

4.2 Variable ordering heuristic

In experiments reported in Section 5 we have used a classical sequential variable
ordering heuristic, which consists in assigning slot variables in the order defined
by the sequence of cars, i.e., x1, x2, x3, . . . Note that option variables yj

i are
assigned by propagation when the corresponding slot variable xi is assigned.

4.3 Pheromone strategies

As pheromone is at the core of the efficiency of any ACO implementation, we ex-
plore the impact of its structure: besides the default pheromone strategy Φdefault

(which associates a trail with every couple (xi, j) such that xi is the variable as-
sociated with position i and j is a car class), we consider two other strategies
which will be experimentally compared in the next section.

Pheromone strategy Φclasses. This pheromone strategy has been introduced
in [15]. The set S associates a trail τ(v,w) with every couple of car classes (v, w).
This pheromone trail represents the learnt desirability of sequencing a car of
class w just after a car of class v or, in other words, of assigning the value w to
a variable xi when xi−1 has just been assigned to v.

For this pheromone strategy, the pheromone factor is equal to the pheromone
trail between the last assigned car class and the candidate car class (this factor
is equal to one when assigning the first variable), i.e., if i > 1 and 〈xi−1, w〉 ∈ A,
then τ(A, xi, v) = τ(w,v), otherwise τ(A, xi, v) = 1.

When updating pheromone trails, pheromone is laid on couples of consecu-
tively assigned values, i.e., comp(A) = {τ(v,w)|{〈xi, v〉, 〈xi+1, w〉} ⊆ A}.

Pheromone strategy Φcars. This pheromone strategy has been introduced in
[8]. The set S associates a trail τ(v,j,w,k) with each couple of car classes (v, w) and
each j ∈ [1; #v] and k ∈ [1; #w] where #v and #w are the number of cars within
the classes v and w respectively. This trail represents the learnt desirability of
sequencing the kth car of class w just after the jth car of class v.

In this case, the pheromone factor τ(A, xi, v) is equal to 1 for the first car,
i.e., τ(A, xi, v) = 1 if i = 1. Otherwise τ(A, xi, v) = τ(w,j,v,k+1) where w is the
value assigned to xi−1 in A, j is the number of variables assigned to w in A, and
k is the number of variables assigned to v in A.

When updating pheromone trails, pheromone is laid on couples of consecu-
tively sequenced cars, i.e.,

comp(A) = {τ(v,j,w,k+1)| {〈xl, v〉, 〈xl+1, w〉} ⊆ A and j = #{〈xm, v〉|m ≤ l}
and k = #{〈xm, w〉|m ≤ l}}

4.4 Heuristic factors for the car sequencing problem

In the transition probability defined by eq. (1), the pheromone factor τ(A, xi, v)
—which represents the past experience of the colony— is combined with a heuris-
tic factor η(A, xi, v) —which is problem-dependent. We now introduce two differ-
ent problem-dependent heuristics for the car sequencing problem; these heuristics
will be compared in Section 5.

Dynamic Sum of Utilisation rates (DSU). Smith [9] has introduced value
ordering heuristics based on option utilization rates: the utilization rate of an
option i is the ratio of the number of cars requiring i with respect to the max-
imum number of cars in the sequence which could have i while satisfying its
capacity constraint. Gotlieb et al. [16] have compared different value ordering
heuristics based on option utilization rates, and have shown that one of the best
performing heuristics is the so-called Dynamic Sum of Utilization rates (DSU),
i.e.,

η(A, xi, v) =
∑

oj∈reqOptions(v)

reqSlots(oj , nj)

N

where reqOptions(v) is the set of options that are required by cars of class
v, N is the number of cars that have not yet been sequenced in A, nj is the
number of cars that require option oj and have not yet been sequenced in
A, and reqSlots(oj , nj) is a lower bound of the number of slots needed to se-
quence nj cars that require option oj without violating capacity constraints.
For defining reqSlots(oj , nj), we have considered the formula introduced in [17],
i.e., if nj % pj = 0 then reqSlots(oj , nj) = qj ∗ nj/pj − (qj − pj), otherwise
reqSlots(oj , nj) = qj ∗ (nj − nj % pj)/pj + nj % pj .

Dynamic Sum of Utilisation rates with Propagation (DSU+P) We can
exploit utilization rates to detect inconsistencies and filter variable domains:

– when the utilization rate of an option becomes greater than 1 (i.e., when
reqSlots(oj , nj) becomes greater than N) one can conclude that it is not
possible to complete the sequence without violating constraints so that one
can stop the current assignment construction on a failure;

– when the utilization rates of one or more options become equal to 1, we can
remove from the domain of the next variable every car class which does not
require all options that have an utilization rate equal to 1.

5 Experimental results

Test suite. Satisfiable instances of the library CSPlib [14] with 100 cars (4
instances described in [18]) and 200 cars (70 instances described in [19]) are all
easily solved by Ant-CP. Hence, we consider a harder test suite which is described
in [20]. All instances have 8 options and 20 car classes; capacity constraints are

randomly generated in such a way that ∀oi ∈ O, 1 ≤ p(oi) ≤ 3 and p(oi) <
q(oi) ≤ p(oi)+2. This test suite contains 32 instances with 100 cars, 21 instances
with 300 cars and 29 instances with 500 cars. All these instances are satisfiable.

Considered Ant-CP instanciations. We compare the three pheromone strate-
gies Φdefault, Φclasses, and Φcars. To evaluate the influence of the pheromone on
the solution process, we also consider a strategy without pheromone, denoted by
Φ∅: in this case, the set S is the empty set and the pheromone factor τ(A, xk , v)
is set to 1 so that Ant-CP behaves like a greedy randomized approach which
chooses values with respect to the heuristic factor only.

We also compare the two heuristic factors DSU and DSU+P. We note Ant-

CP(Φ, h) the Ant-CP instanciation obtained with the pheromone strategy Φ ∈
{Φ∅, Φclasses, Φcars, Φdefault} and the heuristic h ∈ {DSU,DSU+P}.

Parameter setting. Parameters have been set as follows: α = 1, β = 6, ρ =
0.02, nbAnts=30, τmin = 0.01, and τmax = 4.

Comparison of Ant-CP instanciations. Fig. 1 compares the four differ-
ent pheromone strategies when using the DSU heuristic (upper curves) and then
when using the DSU+P heuristic (lower curves). One notes that after 3000 cycles,
using pheromone increases the success rate from 66.32% for Ant-CP(Φ∅,DSU) to
79.39% for Ant-CP(Φcars,DSU), 72.56% for Ant-CP(Φdefault,DSU) and 68.29%
for Ant-CP(Φclasses,DSU). Hence, on these instances, the best pheromone strat-
egy is Φcars; the default pheromone strategy is worse than Φcars, but better than
Φclasses.

The DSU+P heuristic usually obtains better results than DSU. However, the
improvement depends on the considered pheromone strategy: it is not significant
when pheromone is ignored (the success rate of Φ∅ is increased from 66.32% to
66.97%); it is rather important for the pheromone strategies Φclasses and Φdefault

(success rates are increased from 68.29% to 74.39% for Φclasses and from 72.56%
to 78.54% for Φdefault); it is not as important for Φcars (the success rate is
increased from 79.39% to 82.32%).

Let us finally note that, given a heuristic, the four variants spend nearly the
same CPU time to perform one cycle, as most of the time is spent by prop-
agation procedures. However, cycles are performed quicker with the DSU+P
heuristic than with the DSU heuristic. Indeed, DSU+P filters variable domains
and detects earlier some inconsistencies. Hence, for the instances with 100 cars,
3000 cycles are performed in 5 minutes with the DSU heuristic whereas they are
performed in 3 minutes with the DSU+P heuristic (on a 2GHz Intel Core Duo).

6 Conclusion

These first experiments on the Car Sequencing problem show that integrating an
ACO search might be designed as a simple extension of a modular CP language

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(f

or
 1

0
ru

ns
 o

n
ea

ch
 o

f t
he

 8
2

in
st

an
ce

s)

Number of cycles

Ant-CP(cars,DSU)
Ant-CP(default,DSU)

Ant-CP(classes,DSU)
Ant-CP(0,DSU)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(f

or
 1

0
ru

ns
 o

n
ea

ch
 o

f t
he

 8
2

in
st

an
ce

s)

Number of cycles

Ant-CP(cars,DSU+P)
Ant-CP(default,DSU+P)

Ant-CP(classes,DSU+P)
Ant-CP(0,DSU+P)

Fig. 1. Comparison of different instanciations of Ant-CP(Φ, h), with Φ ∈
{Φdefault, Φclasses, Φcars, Φ∅} and h ∈ {DSU, DSU + P}: each curve plots the evo-
lution of the percentage of runs that have found a solution with respect to the number
of cycles (for 10 runs for each of the 82 instances).

such as ILOG Solver. It is worth noting that thanks to the modular nature of
ILOG Solver that separates the modeling of the problem from the computation
of its solution, the CP model used to describe the sequencing problem does not
depend on the search technique: one can try or combine other search methods
without changing the problem description.

First experimental results are very promising. Indeed, classical CP solvers
based on exhaustive tree search approaches are still not able to solve within a
reasonable amount of time all instances of CSPLib with 100 and 200 cars, even
when using dedicated filtering algorithms such as, e.g., those proposed in [18, 21,
22]. All these instances are easily solved by Ant-CP (whatever the pheromone
strategy is): the 70 instances with 200 cars (resp. 4 instances with 100 cars)
are solved in less than a second (resp. less than a minute). As a comparison,
filterings introduced in [22] for the “sequence” constraint can solve less than
half of these instances in less than 100 seconds when they are combined with
the default tree search of ILOG Solver on a Pentium 4 sequenced at 3.2 Ghz.
Of course, these experiments should be pursued on other problems to further
validate our approach.

These first results might be further enhanced by adapting the propagation al-
gorithms to the specificities of ACO. Indeed, propagation algorithms integrated
in most CP solvers have been designed to fit a procedure that enables backtrack-
ing on the choice points. Such algorithms have thus to maintain data structures
enabling the restitution at each backtrack of the context of the previous choice
point. The allocation and management of these data structures bring a cost
both in terms of memory and Cpu time which is necessary in the context of a
backtrack-based search procedure but not in the context of our ACO inspired
search method which never backtracks.

A similar remark might be done with respect to a language such as Comet

that does not rely on a backtracking tree search but on local search. Indeed, Van
Hentenryck and Michel have shown in [23] that the Comet language may be used
to implement an ACO algorithm in a very declarative way. However, Comet is
dedicated to local search which explores the search space by iteratively applying
elementary moves to a current configuration. In order to efficiently select the
best move to be applied, Comet maintains a set of data structures that support
the incremental evaluation of invariant properties after each elementary move.
These data structures can be used to support an ACO search (they support the
incremental evaluation of the heuristic factor at each step of the construction)
but again, they maintain more information than necessary because choices made
in ACO during the greedy construction of the solution are never revised.

Still, we did not explore in both cases (tree-search based solver such as ILOG
Solver, or local-search based solver such as Comet) how well the cost of extra
data structures could be compensated by an effective combination of the ACO
search procedure and the default search of the host solver. For example one could
do a limited tree-search based exploration of the remaining search space when a
constraint triggers a failure in ILOG Solver, or perform some local search at the
end of the exploration of each or some of the artificial ants.

References

1. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press (2004)
2. ILOG: Ilog solver user’s manual. Technical report, ILOG (1998)
3. Meyer, B., Ernst, A.: Integrating aco and constraint propagation. In: ANTS’04.

Number 3172 in LNCS, Springer (2004) 166–177
4. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London, UK

(1993)
5. Schoofs, L., Naudts, B.: Solving csps with ant colonies. In: ANTS. (2000)
6. Roli, A., Blum, C., Dorigo, M.: Aco for maximal constraint satisfaction problems.

In: Meta–heuristics International Conference (MIC). (2001)
7. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions

on Evolutionary Computation 6(4) (2002) 347–357
8. Solnon, C.: Combining two pheromone structures for solving the car sequencing

problem with Ant Colony Optimization. EJOR (to appear) (2008)
9. Smith, B.: Succeed-first or fail-first: A case study in variable and value order-

ing heuristics. In: third Conference on the Practical Applications of Constraint
Technology PACT’97. (1996) 321–330

10. Stützle, T., Hoos, H.: MAX-MIN Ant System. Journal of Future Generation
Computer Systems, special issue on Ant Algorithms 16 (2000) 889–914

11. Kis, T.: On the complexity of the car sequencing problem. Operations Research
Letters 32 (2004) 331–335

12. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing prob-
lem: overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. EJOR (to appear) (2008)

13. Dincbas, M., Simonis, H., van Hentenryck, P.: Solving the car-sequencing problem
in constraint logic programming. In Kodratoff, Y., ed.: Proceedings of ECAI-88.
(1988) 290–295

14. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Technical report
(1999) available from http://csplib.cs.strath.ac.uk/.

15. Gravel, M., Gagné, C., Price, W.: Review and comparison of three methods for
the solution of the car-sequencing problem. JORS (2004)

16. Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and aco
approaches for car sequencing problems. In: EvoCOP. LNCS 2611, Springer (2003)

17. Boysen, N., Fliedner, M.: Comments on solving real car sequencing problems with
ant colony optimization . EJOR 182(1) (2007) 466–468

18. Regin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In: CP97. Volume 1330 of LNCS. Springer-Verlag (1997) 32–46

19. Lee, J., Leung, H., Won, H.: Performance of a comprehensive and efficient con-
straint library using local search. In: 11th Australian JCAI. LNAI. Springer-Verlag
(1998)

20. Perron, L., Shaw, P.: Combining forces to solve the car sequencing problem. In:
Proceedings of CP-AI-OR’2004. Volume 3011 of LNCS., Springer (2004) 225–239

21. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the se-
quence constraint. In: CP 2006. LNCS 4204, Springer (2006) 620–634

22. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P.J., Walsh, T.: Encodings of
the sequence constraint. In: CP. Volume 4741 of LNCS., Springer (2007) 210–224

23. Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press (2005)

