
HAL Id: hal-01542516
https://hal.science/hal-01542516v1

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CP with ACO
Madjid Khichane, Patrick Albert, Christine Solnon

To cite this version:
Madjid Khichane, Patrick Albert, Christine Solnon. CP with ACO. 5th International Conference on
Integration of AI and OR Techniques in CP for Combinatorial Optimization Problems (CPAIOR 2008,
short paper), May 2008, Paris, France. pp.328-332, �10.1007/978-3-540-68155-7_32�. �hal-01542516�

https://hal.science/hal-01542516v1
https://hal.archives-ouvertes.fr

CP with ACO

Madjid Khichane12, Patrick Albert1, and Christine Solnon2

1 ILOG SA, 9 rue de Verdun, 94253 Gentilly cedex, France
{mkhichane,palbert}@ilog.fr

2 LIRIS CNRS UMR 5205, University of Lyon I, France
christine.solnon@liris.cnrs.fr

The Ant Colony Optimization (ACO) meta-heuristic [1] has proven its effi-
ciency to solve hard combinatorial optimization problems. However most works
have focused on designing efficient ACO algorithms for solving specific problems,
but not on integrating ACO within declarative languages so that solving a new
problem with ACO usually implies a lot of procedural programming. Our ap-
proach is thus to explore the tight integration of Constraint Programming (CP)
with ACO. Our research is based upon ILOG Solver, and we use its modeling
language and its propagation engine, but the search is guided by ACO. This
approach has the benefit of reusing all the work done at the modeling level as
well as the code dedicated to constraint propagation and verification.

1 Description of Ant-CP

Some ACO algorithms have been previously proposed for solving Constraint Sat-
isfaction Problems (CSPs), e.g., [2, 3]. In these algorithms, ants iteratively build
complete assignments (that assign a value to every variable) that may violate
constraints, and their goal is to minimize the number of constraint violations; a
solution is found when the number of constraint violations is null. In this paper,
we investigate a new ACO framework for solving CSPs: ants iteratively build
partial assignments (such that some variables may not be assigned to a value)
that do not violate constraints, and their goal is to maximize the number of
assigned variables; a solution is found when all variables are assigned. This new
ACO framework may be combined with the propagation engine of ILOG Solver
in a very straightforward way. It can be viewed as a generalization of [4] to CSPs.

More precisely, our approach is sketched in Algorithm 1. First, pheromone
trails are initialized to some given value τmax. Then, at each cycle (lines 2-12),
each ant k constructs a consistent assignment Ak (lines 4-10): starting from an
empty assignment, the ant iteratively chooses a variable which is not yet assigned
and a value to assign to this variable; this variable assignment is added to Ak,
and constraints are propagated; this process is iterated until either all variables
have been assigned or the propagation step detects a failure. Once every ant has
constructed an assignment, pheromone trails are updated. The algorithm stops
iterating either when an ant has found a solution, or when a maximum number
of cycles has been performed.

Pheromone structure. The pheromone structure, denoted by Φ, is a param-
eter which defines the set of pheromone trails that are used to guide ants

Algorithm 1: Ant-CP procedure

Input: A CSP (X, D, C), a pheromone structure Φ, and a heuristic factor η

Output: A (partial) consistent assignment for (X, D, C)
Initialize all pheromone trails of Φ to τmax1

repeat2

foreach k in 1..nbAnts do3

Ak ← ∅4

repeat5

Select a variable Xj ∈ X so that Xj 6∈ var(Ak)6

Choose a value v∈D(Xj)7

Add 〈Xj , v〉 to Ak8

Propagate constraints9

until var(Ak) = X or Failure ;10

Update pheromone trails of Φ using {A1, . . . ,AnbAnts}11

until var(Ai) = X for some i ∈ {1..nbAnts} or max cycles reached ;12

return the largest constructed assignment13

during assignment constructions. The default pheromone structure associates a
pheromone trail with every variable-value couple, i.e., Φdefault = {τ〈Xi,vi〉/Xi ∈
X, vi ∈ D(Xi)}. Each pheromone trail τ〈Xi,vi〉 represents the learnt desirability
of assigning value vi to variable Xi. For specific problems, one may design other
pheromone structures and we shall propose and compare two other pheromone
structures for the car sequencing problem in the next section.

Selection of a variable. When constructing an assignment, the order in which
the variables are assigned is rather important and variable ordering heuristics
have been studied widely in the context of backtrach search. These heuristics
can be used as well in our context of greedy construction of assignments.

Choice of a value. Once a variable Xj has been selected, the value v to be
assigned to this variable is randomly chosen within D(Xj) with respect to a
probability p(Xj, v) which depends on a pheromone factor τA(Xj , v) —which
reflects the past experience of the colony regarding the addition of 〈Xj , v〉 to
the partial assignment A— and a heuristic factor ηA(Xj , v) —which is problem-
dependent, i.e.,

p(Xj , v) =
[τA(Xj , v)]α[ηA(Xj , v)]β

∑
w∈D(Xj)

[τA(Xj , w)]α[ηA(Xj , w)]β
(1)

where α and β are two parameters that determine the relative weights of phero-
mone and heuristic information. The definition of the pheromone factor depends
on the pheromone structure. For the default structure Φdefault, this pheromone
factor is defined by τA(Xj , v) = τ〈Xj ,v〉.

Constraint propagation. Each time a variable is assigned to a value, a propa-
gation algorithm is called. This algorithm narrows the domains of the variables

that are not yet assigned. If the domain of a variable becomes a singleton, then
the partial assignment Ak is completed by the assignment of this variable and
the propagation process is continued. At the end of the propagation process, if
the domain of a variable becomes empty or if some inconsistency is detected,
then Failure is detected.

Pheromone updating step. Once every ant has constructed an assignment, each
pheromone trail of the pheromone structure Φ is decreased and then the best
ants of the cycle deposit pheromone, i.e., ∀τi ∈ Φ,

τi ← (1− ρ) · τi +
∑

Ak∈BestOfCycle ∆τ(Ak, τi)

if τi < τmin (resp.τi > τmax) then τi ← τmin (resp. τi ← τmax)

where

– ρ is the evaporation parameter, such that 0 ≤ ρ ≤ 1,
– τmin and τmax are two parameters for bounding pheromone trails,
– BestOfCycle is the set of the best assignments constructed during the cycle,
– ∆τ(Ak, τi) is the quantity of pheromone deposited on the pheromone trail

τi by the ant that has built assignment Ak. This quantity depends on the
chosen pheromone structure. For the default structure Φdefault, this quantity
is equal to zero if Xi is not assigned to v in Ak; otherwise, it is proportionally
inverse to the gap of sizes between Ak and the largest assignment Abest built
since the beginning of the search (including the current cycle).

2 Using Ant-CP to solve the Car Sequencing Problem

The car sequencing problem involves scheduling cars along an assembly line in
order to install options on them. Each car requires a set of options; all cars
requiring a same subset of options are grouped in a same car class. For each
option i, a capacity constraint pi/qi imposes that there are at most pi cars
requiring option i every qi consecutive cars. We refer the reader to [5] for more
details on this problem.

CP model and variable ordering heuristic. The CP model for the car sequencing
problem has been defined with the CP modeling language of ILOG Solver and
corresponds to the first model proposed in the user’s manual of ILOG Solver. In
our experiments, we have used a classical sequential variable ordering heuristic,
which consists in assigning variables associated with positions in the sequence
of cars in the order defined by the sequence.

Pheromone structures for the car sequencing problem. As pheromone is at the
core of the efficiency of any ACO implementation, we explore the impact of
its structure: besides the default pheromone structure Φdefault, we propose and
compare two structures called Φclasses and Φcars. To run Ant-CP with a new
pheromone structure, one basically has to define the set Φ of pheromone compo-
nents, define the pheromone factor τA(Xj , v) with respect to these pheromone

components, and define which pheromone components must be rewarded dur-
ing the pheromone updating step. Due to lack of space, we do not describe
into details the two pheromone structures Φclasses and Φcars, but just give the
intuition:

– Φclasses is used in [6] and associates a pheromone trail τ(v,w) with every cou-
ple of car classes (v, w); this pheromone trail represents the learnt desirability
of sequencing a car of class w just after a car of class v;

– Φcars is used in [3] and associates a pheromone trail τ(v,i,w,j) with every
couple of classes (v, w) and every i ∈ [1; #v] and every j ∈ [1; #w] where
#v and #w respectively are the number of cars in classes v and w. This
pheromone trail represents the learnt desirability of sequencing the jth car
of class w just after the ith car of class v.

Heuristic factors for the car sequencing problem. In the transition probabil-
ity defined by eq. (1), the pheromone factor is combined with a heuristic factor
ηA(Xj , v) which is problem-dependent. We have considered here the DSU heuris-
tic of [7], which is based on the sum of the dynamic utilization rates of options:
ηA(Xj , v) =

∑
i∈ options(v)

ni·qi

N ·pi
, where ni is the number of cars that are not

yet sequenced and that require option i and N is the number of cars that are
not yet sequenced.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(a

ve
ra

ge
 o

n
15

 r
un

s
x

82
 in

st
an

ce
s)

Number of cycles

Ant-CP(0)
Ant-CP(default)

Ant-CP(classes)
Ant-CP(cars)

Fig. 1. Comparison of pheromone strategies.

Experimental results. We now experimentally compare Ant-CP(Φdefault), Ant-
CP(Φcars), and Ant-CP(Φclasses), which respectively use the pheromone struc-
tures Φdefault, Φcars and Φclasses, with Ant-CP(∅) which ignores pheromone (i.e.,
Φ = ∅ and the pheromone factor τA(Xj , v) is set to 1). All experiments have been
performed with the following parameter setting: τmin = 0.01, τmax = 4, α = 1,
β = 6, ρ = 2%, nbAnts = 30, and nbMaxCycles = 3000.

Let us first note that the 70 instances of the test suite provided by Lee
and available in CSPLib [8] are all very quickly solved by all instanciations of
Ant-CP in a very few assignment constructions. It is worth mentionning here
that some of these instances are still considered as difficult ones for complete
branch-and-propagate based solvers [9, 10].

Fig. 1 displays the evolution of the percentage of successful runs with respect
to the number of cycles on a more difficult benchmark provided by Perron and
Shaw. This benchmark contains 82 instances that have between 100 and 500
cars to sequence. Fig. 1 shows that guiding the search with pheromone increases
the success rate, after 3000 cycles, from 64.82% for Ant-CP(∅) to 79.62% for
Ant-CP(Φcars), 71.86% for Ant-CP(Φdefault), and 67.77% for Ant-CP(Φclasses).

These first results show that pheromone significantly improves the solution
process, even when considering the default structure. Further works will mainly
concern the validation of our approach on other CSPs and the integration of a
reactive scheme in order to automatically adapt parameters during the search
process.

References

1. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press (2004)
2. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions

on Evolutionary Computation 6(4) (2002) 347–357
3. Solnon, C.: Combining two pheromone structures for solving the car sequencing

problem with Ant Colony Optimization. EJOR (to appear) (2008)
4. Meyer, B., Ernst, A.: Integrating aco and constraint propagation. In: ANTS’04.

Number 3172 in LNCS, Springer (2004) 166–177
5. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing prob-

lem: overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. EJOR (to appear) (2008)

6. Gravel, M., Gagné, C., Price, W.: Review and comparison of three methods for
the solution of the car-sequencing problem. JORS (2004)

7. Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and aco
approaches for car sequencing problems. In: EvoCOP. LNCS 2611, Springer (2003)

8. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Technical report
(1999) available from http://csplib.cs.strath.ac.uk/.

9. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the se-
quence constraint. In: CP 2006. LNCS 4204, Springer (2006) 620–634

10. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P.J., Walsh, T.: Encodings of
the sequence constraint. In: CP. Volume 4741 of LNCS., Springer (2007) 210–224

