N
N

N

HAL

open science

A new filtering algorithm for the graph isomorphism
problem

Sébastien Sorlin, Christine Solnon

» To cite this version:

Sébastien Sorlin, Christine Solnon. A new filtering algorithm for the graph isomorphism problem.
Frédéric Benhamou, Narendra Jussien and Barry O’Sullivan. Trends in Constraint Programming,

ISTE Publisher, p. 103-107,, 2007. hal-01542512

HAL Id: hal-01542512
https://hal.science/hal-01542512
Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01542512
https://hal.archives-ouvertes.fr

A new filtering algorithm for the graph
isomorphism problem

Sébastien Sorlin, Christine Solnon

LIRIS, CNRS UMR 5205, bat. Nautibus, University of Lyon I
43 Bd du 11 novembre, 69622 Villeurbanne cedex, France

{sebastien.sorlin,christine.solnon}@liris.cnrs.fr

Abstract. The graph isomorphism problem consists in deciding if two
given graphs have an identical structure. This problem may be modeled
as a constraint satisfaction problem in a very straightforward way, so
that one can use constraint programming to solve it. However, constraint
programming is a generic tool that may be less efficient than dedicated
algorithms which take advantage of the global semantic of the original
problem to reduce the search space.

Hence, we have introduced in [1] a global constraint dedicated to graph
isomorphism problems, and we have defined a partial consistency —the
label-consistency— that exploits all edges of the graphs in a global way to
narrow variable domains. This filtering algorithm is very powerful in the
sense that, for many instances, achieving it allows one to either detect
an inconsistency, or reduce variable domains to singletons so that the
global consistency can be easily checked. However, achieving the label-
consistency implies the computation of the shortest path between every
pair of vertices of the graphs, which is rather time consuming.

‘We propose in this article a new partial consistency for the graph isomor-
phism problem and an associated filtering algorithm. We experimentally
show that this algorithm narrow the variable domains as strongly as
our previous label-consistency, but is an order faster, so that it makes
constraint programming competitive with Nauty, the fastest known al-
gorithm for graph isomorphism problem.

1 Introduction

Graphs provide a rich mean for modeling structured objects and they are widely
used in real-life applications to represent, e.g., molecules, images, or networks.
In many of these applications, one has to compare graphs to decide if their struc-
tures are identical. This problem is known as the Graph Isomorphism Problem
(GIP).

More formally, a graph is defined by a pair (V, E) such that V is a finite
set of vertices and E C V x V is a set of edges. In this paper, we consider
graphs without self-loops, i.e., V(u,v) € E, u # v. Two graphs G = (V, E) and
G' = (V' E') are isomorphic if there exists a bijective function f : V — V’
such that (u,v) € E if and only if (f(u), f(v)) € E’. We shall say that f is

an isomorphism function. The GIP consists in deciding if two given graphs are
isomorphic.

There exists many dedicated algorithms for solving GIPs such as, e.g., [2-4].
These algorithms are often very efficient (eventhough their worst case complex-
ities are exponential). However, such dedicated algorithms can hardly be used
to solve more specific problems, such as isomorphism problems with additional
constraints, or larger problems that include GIPs.

An attractive alternative to these dedicated algorithms is to use Constraint
Programming (CP), which provides a generic framework for solving any kind of
Constraint Satisfaction Problems (CSPs). Indeed, GIPs can be transformed into
CSPs in a very straightforward way [5], so that one can use generic constraint
solvers to solve them. However, when transforming a GIP into a CSP, the global
semantic of the problem is lost and replaced by a set of binary constraints. As a
consequence, using CP to solve GIPs may be less efficient than using dedicated
algorithms which have a global view of the problem.

In order to allow constraint solvers to handle GIPs in a global way so that
they can solve them efficiently without loosing CP’s flexibility, we have in-
troduced in [1] a global constraint dedicated to graph isomorphism problems
(the gip constraint), and we have defined a partial consistency —the label-
consistency— and an associated filtering algorithm that exploits all edges of
the graphs in a global way to narrow variable domains. This filtering algorithm
is very powerful in the sense that, for many instances, achieving it allows one
to either detect an inconsistency, or reduce variable domains to singletons so
that the global consistency can be easily checked. However, achieving the label-
consistency implies the computation of the shortest path between every pair of
vertices of the graphs, which is time expensive.

Motivation and outline of the paper. The goal of this paper is to define
another partial consistency for the global constraint gip: the iterated local label
consistency (ILL-consistency). This one is based on an iterated relabelling of
the graph vertices and does not need to compute the distance matrix of the
graphs. As a consequence, achieving this consistency is less time expensive than
achieving the label-consistency.

Section 2 recalls some complexity results for GIPs and an overview of exist-
ing approaches for solving these problems. We also recall the definition of the
global constraint gip and the label-consistency proposed in [1]. In section 3, we
introduce the iterated local label consistency (ILL-consistency), a partial consis-
tency for the gip constraint based on a relabelling technic of the graph vertices
from the direct neighborhood of the vertices. Section 4 experimentally compares
label-consistency, ILL-consistency and Nauty, the fastest known algorithm for
graph isomorphism problem.

2 Approaches for solving graph isomorphism problems

Complexity. The theoretical complexity of the GIP is not exactly stated: the
problem is in N P but it is not known to be in P nor to be N P-complete [6] and its
own complexity class, isomorphism-complete, has been defined. However, some
topological restrictions on graphs (e.g., planar graphs [7], trees [8] or bounded
valence graphs [9]) make this problem solvable in a polynomial time.

Dedicated algorithms. To solve a GIP, one has to find a one to one mapping
between the vertices of the two graphs. The search space composed of all possible
mappings can be explored in a “Branch and Cut” way: at each node of the search
tree, some graph properties (such as edges distribution, vertices neighbourhood)
can be used to prune the search space [4,2]. This kind of approach is rather
efficient and can be used to solve GIPs up to a thousand or so vertices very
quickly (in less than one second).

[3] proposes another rather dual approach, which has been originally used to
detect graph automorphisms (i.e., non trivial isomorphisms between a graph and
itself). The idea is to compute for each vertex v; a unique label that characterizes
the relationships between v; and the other vertices of the graph, so that two
vertices are assigned with a same label if and only if they can be mapped by
an isomorphism function. This approach is implemented in the system Nauty
which is, to our knowledge, the most efficient solver for the graph isomorphism
problem. Nauty compute a canonical representation of a graph: two graphs have
the same representation with Nauty if and only if they are isomorphic. The time
needed to solve a GIP with Nauty is comparable to “Branch and Cut” methods
but Nauty is often the quickest for large graphs [10].

Hence dedicated algorithms are very efficient to solve GIPs in practice, even-
though their worst case complexities are exponential. However, they are not
suited for solving more specific problems, such as GIPs with additional con-
straints. In particular, vertices and edges of graphs may be associated with labels
that characterize them, and one may be interested in looking for isomorphisms
that satisfy additional constraints on these labels. This is the case, e.g., in [11]
where graphs are used to represent molecules, or in computer aided design (CAD)
applications where graphs are used to represent design objects [12].

Constraint Programming. CP is a generic tool for solving constraint satis-
faction problems (CSPs), and it can be used to solve GIPs. A CSP [13] is defined
by a triple (X, D, C) such that :

— X is a finite set of variables,

— D is a function that maps every variable z; € X to its domain D(z;), i.e.,
the finite set of values that can be assigned to z;,

— ('is a set of constraints, i.e., relations between some variables which restrict
the set of values that can be assigned simultaneously to these variables.

Binary CSPs only have binary constraints, i.e., each constraint involves two
variables exactly. We shall note C'(z;, z;) the binary constraint holding between
the two variables x; and z;, and we shall define this constraint by the set of
couples (v;,v;) € D(x;) x D(z;) that satisfy the constraint.

Solving a CSP (X, D, C) involves finding a complete assignment, which as-
signs a value v; € D(z;) to every variable z; € X, such that all the constraints
in C' are satisfied.

CSPs can be solved in a generic way by using constraint programming lan-
guages (such as CHOCO [14], Ilog solver [15], or CHIP [16]), i.e., programming
languages that integrate algorithms for solving CSPs. These algorithms (called
constraint solvers) are often based on a systematic exploration of the search
space, until either a solution is found, or the problem is proven to have no so-
lution. In order to reduce the search space, this kind of complete approach is
combined with filtering technics that narrow variables domains with respect to
some partial consistencies such as Arc-Consistency [13,17,18].

Using CP to solve GIPs. Graph isomorphism problems can be formulated as
CSPs in a very straightforward way, so that one can use CP languages to solve
them [19,11]. Given two graphs G = (V, E) and G’ = (V', E’), we define the
CSP (X, D, C) such that :

— a variable z,, is associated with each vertex uw € V, i.e., X = {z, /u € V},
— the domain of each variable z,, is the set of vertices of G’ that have the same
number of adjacent vertices than u, i.e.,

D(zy) = {u" € V") {(u,v) € B} = {(v/,v') € E'}}

— there is a binary constraint between every pair of different variables (x.,, x,) €
X2, denoted by Cegge(Zy, T,). This constraint expresses the fact that the ver-
tices of G’ that are assigned to x, and x, must be connected by an edge in
G’ if and only if the two vertices u and v are connected by an edge in G,
i.e.,

if (u,v) € E, Cedge(Tu,) = E’
otherwise Clgge(Tu, xy) = {(v/,v') € V? |4/ # v and (v/,v') & E'}

Once a GIP has been formulated as a CSP, one can use constraint programming
to solve it in a generic way, and additional constraints, such as constraints on
vertex and edge labels, may be added very easily.

Global constraint and label-consistency. When formulating a GIP into a
CSP, the global semantic of the problem is decomposed into a set of binary “edge”
constraints, each of them expressing locally the necessity either to maintain or
to forbid one edge. As a consequence, using CP to solve GIPs will often be less
efficient than using a dedicated algorithm.

To improve the solution process of CSPs associated with GIPs, one can add
an allDiff global constraint, in order to constrain all variables to be assigned to

different vertices [11]. This constraint is redundant as each binary edge constraint
only contains couples of different vertices, so that it will not be possible to assign
a same vertex to two different variables. This global constraint allows a constraint
solver to prune the search space more efficiently, and therefore to solve GIPs
quicker.

However, even with allDiff global constraint, CP does not appear to be com-
petitive with dedicated algorithms because most of the global semantic of the
problem is still lost. Hence, we have introduced in [1] the global constraint gip to
define a graph isomorphism problem. We have also defined a partial consistency
—the label consistency— that strongly reduces the search space. This partial
consistency is based on a labelling of the graph vertices based on the number
of vertices at a given distance. We have shown that this partial consistency is
very powerful and achieving it generally allows to either detect an inconsistency,
or reduce variable domains to singletons so that the global consistency can be
easily checked. However, achieving the label-consistency implies the computa-
tion of the shortest path between every pair of vertices of the graphs and as a
consequence it is time expensive.

3 ILL-consistency

We introduce in this section another filtering algorithm for the graph isomor-
phism problem global constraint. The main idea of this filtering is to label every
vertex with respect to its relationships with the other vertices of the graph. This
labelling is “isomorphic-consistent” —in the sense that two vertices that may be
associated by an isomorphism function necessary have a same label— so that
it can be used to narrow the domains of the variables. These labels are built
iteratively: starting from an empty label, each label is extended by considering
the labels of its adjacent vertices. This labelling extension is iterated until a fixed
point is reached. This fixed point corresponds to a new partial consistency for
the graph isomorphism problem.

3.1 Isomorphic-consistent labelling functions

Definition. A labelling function is a function denoted by « that, given a graph
G = (V, E) and a vertex v € V, returns a label ag(v). This label does not depend
on the names of the vertices but only on the relation defined by F between v
and the other vertices of the graph. We shall note image(aq) the set of labels
returned by « for the vertices of a given graph G.

Definition. A labelling function « is isomorphic-consistent if for every pair of
isomorphic graphs G = (V, E) and G’ = (V', E’), and for every isomorphism
function f between G and G’, the vertices that are matched by f have the same
labels, i.e., Vv € V,ag(v) = ag (f(v)).

Ezample. Let us define the labelling function that labels each vertex by its
degree, i.e.,
Vo € V,aw,py(v) = {u €V, (u,v) € B}|

This labelling function is isomorphic-consistent as isomorphism functions only
match vertices that have a same number of adjacent vertices.

An isomorphic-consistent labelling function can be used to narrow the do-
mains of the variables of a CSP associated with a GIP: the domain of every
variable z, associated with a vertex u can be narrowed to the set of vertices
that have the same label than uw. We shall say that a labelling function « is
stronger than another labelling function o' if it allows a stronger narrowing (or
an equivalent narrowing), i.e., if

Y(u,v) € V2 ag(u) # ag(v) = ag(u) # ag(v)

3.2 Isomorphic-consistent local relabelling function

We propose to iteratively strengthen an isomorphic-consistent labelling function:
at each step, the label of every vertex v is extended with a set of couples (k,1)
such that k is the number of vertices that are adjacent to v and that are labelled
with 1.

Definition. Given a graph G = (V, F') and a labelling function al, for this graph,
we define the new labelling function o' : V — image(a,) x p(N* x image (o))

as follows:

Yo € Vol (v) = ay(v) - {(k,1) , k € N, 1 € image(al;),
k=|{uecV,(v,u) € EAa(u)=1Ak>0}}

Fig.1. A graph G = (V, E)

Ezample. For the graph G = (V, E) displayed in figure 1, and the labelling
function o, that associates the same empty label () to every vertex of G, we
have af;(A) = 0-{(4,0)} because vertex A is labelled by () and has four adjacent
vertices that are all labelled with () whereas a,(B) = 0-{(3,0)} because vertex
B is labelled by @ and has three adjacent vertices that are all labelled with ().

Theorem 1. Given an isomorphic-consistent labelling function at, the labelling
function o't is also an isomorphic-consistent labelling function.

Proof. If o' is an isomorphic-consistent labelling function then, given the def-
inition of an isomorphic-consistent labelling function, for any pair of isomor-
phic graphs G = (V,E) and G’ = (V’,E’) and for any isomorphism func-
tion f between G and G/, Vu € V,ak(u) = ab,(f(uv)). Furthermore, as f
is an isomorphism function, V(u,v) € V? (u,v) € E & (f(u),f(v)) € E'.
As a consequence, Yu € V.Vl € image(al,), |{v/(u,v) € E A ak(v) = 1} =
Hv'/(f(u),v") € E' A ab,(v') = 1} (because f is a bijective function) and
Vu € V, ol (u) = &' (f(u)). The property holds.

A direct consequence of the theorem 1 is that the function a*! can be used
to extend the labels of the vertices of two graphs G and G’ without changing
the isomorphism properties between G and G’.

Theorem 2. Given a graph G = (V, E) and a labelling function o', the function
o't is stronger than o, i.e.,

V(u,v) € V2 ag(u) # ag(v) = ag ' (u) # ag ' (v)

Proof. Straightforward from the fact that each label o/ (u) is a prefix of the label
a1 (u).

A direct consequence of theorem 2 is that, when relabelling the vertices of
two graphs G and G’ with the function o’*!, the domain of each variable x,, of
the CSP corresponding to a GIP between G and G’ always has a size inferior or
equal than the domain of x, when the vertices are only labelled by . In other
words, the function o’*! can filter the variable domains.

3.3 Iterative local labelling

Relabelling the graph vertices with the function o/*! can introduce more dif-
ferent labels and as a consequence can reduce the variable domains. One can
propagate these domain reductions by iterating this relabelling step until a fixed
point is reached, i.e., until the number of different labels is not any longer in-
creased.

Starting from an initial isomorphic-consistent labelling o, we define a se-
quence a', a?, a3, ... of labelling functions such that each step k of this sequence
corresponds to a relabelling of the vertices from the labels given at the step
k —1. Theorem 1 states that each labelling function o* is isomorphic-consistent,
whereas theorem 2 states that each labelling function a**! is stronger than the
previous one o. Finally, theorem 3 shows that this sequence reaches a fixed
point.

Theorem 3. Given a graph G = (V, E), if 3k € N* such that V(u,v) € V2, ok (u) =
ag(v) = ag(w) = ag (v) then, Vi > k,¥(u,v) € VZ ag(u) = af(v) =

ag(u) = ag(v).

Proof. Given its definition, we can see that the function o*! does not use the
labels given by o' themselves but only an operator of equality between these
labels. As a consequence, when a relabelling of the vertices does not change
the equality properties between the vertex labels, any further relabelling cannot
change these equality properties any more.

Roughly speaking, the theorem 3 shows that, when a step of the sequence o

does not increase the number of different vertex labels, a fixed point is reached
and the relabelling process can be stopped.

Finally, we can trivially show that this fixed point is reached in at most |V|
steps.

3.4 ILL-counsistency and associated filtering algorithm

We propose to use the sequence of isomorphic-consistent labelling functions de-
fined previously to narrow the domains of the variables of a CSP associated with
a GIP. We define the initial labelling function o as the function that associates
the same label) to each vertex. Starting from this initial labelling function,
we can then compute a sequence of stronger labelling functions until a fixed
point is reached. The last labelling function can be used to define a new partial
consistency for a global constraint for the graph isomorphism problem.

Let us recall the syntax proposed in [1] for this global constraint: it is defined
by the relation gip(V, E, V', E’' L) where

— V and V' are 2 sets of values such that |V| = |V’|,

— E CV xV is a set of pairs of values from V,

— E' C V' x V'is a set of pairs of values from V|

— L is a set of couples which associates one different variable of the CSP to
each different value of V, i.e., L is a set of |V| couples of the form (x,,u)
where x,, is a variable of the CSP and u is a value of V', and such that for
any pair of different couples (z,,u) and (z,,v) of L, both z, and z, are
different variables and u # v.

Semantically, the global constraint gip(V, E, V' E’, L) is consistent if and only
if there exists an isomorphism function f : V' — V' such that for each couple
(@y,u) € L there exists a value v’ € D(x,,) so that v’ = f(u).

Definition. The global constraint gip(V, E, V', E’, L) corresponding to a graph
isomorphism problem between G = (V, E) and G’ = (V', E') is iterated-local-
label consistent (ILL-consistent) if and only if:

Y(zy,u) € L, Yu' € D(x,),Yk € N, afy(u) = ol (u))

where oV is the labelling function that associates the same label () to each vertex.

To make the gip constraint ILL-consistent, we just have to compute the
sequence o', o2, ... of labelling functions for each graph G and G’ until a fixed
point is reached and to remove from the domain of each variable x, associated

to a vertex u € V the values v’ € D(z,,) such that o (u) # af, (v).

Note that this process may be stopped before reaching the fixed point. We
can use every new labelling function o to narrow the domains and, when all the
variable domains are reduced to a singleton or when a variable domain becomes
empty, the global consistency of the constraint gip can be easily checked.

At each step of the sequence, the vertex labels become larger and compar-
ing such labels can be costly in time and in memory. However, one can easily
show that these labels can be renamed after each relabelling step, provided that
the same name is associated with identical labels in the two graphs. As a con-
sequence, at the end of each relabelling step, labels are renamed with unique
integers in order to keep the cost in memory and in time constant at each step
of the sequence.

When using appropriate data structures, and provided that labels can be
compared in constant time, each relabelling step for a graph G = (V, F) has a
time complexity of O(]E]|): for each vertex, one has to look at the labels of the
vertices that are adjacent to it. Renaming the labels at each step can be done in a
time proportional to the size of the longest label of image(«) (i.e., in the worst
case |E|). As a consequence, as achieving the ILL-consistency needs at most
|V| relabelling steps (in the worst case), the maximum time complexity of our
filtering algorithm is O(|V'| x | E|), the same than for the filtering based on labels
[1]. However, we show in section 4 that the average complexity of establishing
label-consistency is much more expensive than establishing ILL-consistency.

3.5 Complete example

We propose here a complete example of our relabelling procedure on the graph G
of the figure 1. At each step of the sequence, the vertices are renammed by labels
l;. For reason of space, we shall note af(S) when V(u,v) € S?, ok (u) = ok (v).

At step O:

a%({A,B,C,D,E,F,G,H,1,J}) =0

The next three relabelling steps successively define a', o and o? as follows.

oL({A,D,F,H}Y) = 04(4,0)} = lia
oL({B,C,E,G,I,J}) = 0A{B.0)} =l
aZ({A,D,F,HY}) = i d(2,l01),(2,02)} = 12
aZ({B,C}) = hod(Ll2),(2,01)} = l22
a2 ({E,G,1,J}) = Lo d(Lha), (2,h2)) =123
ag,(A) = la1-{(2,l21), (2,122)} = I3
g ({B,C}) = l22{(2,021), (1, 123)} = I32
ag({D, F}) =lba1{(1,lk2),(1123),(2,l21)} = l33
ot ({E,JY}) =la3.{(L,l21),(1,l22),(1,123)} = l34
ag({G,1}) = la3{(1,12,1), (2,12,3)} = I35
ag,(H) = l2,1{(2,121),(2,123)} = I3

We note that, at step 3, two vertices (A and H) have unique labels. As a
consequence, we do not need to relabel these vertices during the next steps. The
vertex A (resp. H) keeps the label I3 1 (resp. l3¢).

ab({B,C}) = ls2{(1,131), (1,133),(1,134)} = la1
O/é;(D) = l3)3.{(1, 13 1) (1 l3 2), (1, l375), (1>Z3,6)} = 14)2
al(E) = I34.{(1,132),(1,135), (1,136)} = la;3
ag(F) =1l33.{(1,131), (1, 132), (1, 13,4), (1, 136) } = laa
ag(G) = I35{(1,133), (1,134),(1,135)} = las
a4G(I) = l3 5. {(1 l3 4)7 (1,13’5), (1713,6)} = 14,6
ak(J) = I3,4{(L,132), (1, 133), (1,135)} = lag7

At step 4, only two vertices (B and C) share the same label.

ay(B) =ly1{(1,131), (1, 144), (1, 1a7)} = 151
g (C) =ly1{(1,131), (1, 142), (1, 1a3)} =I5

From the step 5, all the vertices have different labels. As a consequence, any
graph isomorphism problem involving the graph G of the figure 1 will be solved
by our filtering technic.

3.6 Propagation during a search tree process

ILL-filtering does not always reduce every domain to a singleton so that it may
be necessary to explore the search space. For example, if all the vertices of the
graph have the same degree (i.e., the same number of neighbours), our filtering
algorithm is totaly inefficient. Some GIP may have more than one solution (when
the graphs are automorph) and as a consequence, some variable domains are not
singletons.

When ILL-filtering does not reduce the domain of each variable to a singleton,
one has to explore the search space composed of all possible assignments by
constructing a search tree. At each node of this search tree, the domain of one
variable is splitted into smaller parts, and then filtering technics are applied to

narrow variable domains with respect to some local consistencies. These filtering
technics iteratively use constraints to propagate the domain reduction of one
variable to other variable domains until either a domain becomes empty (the
node can be cut), or a fixed-point is reached (a solution is found or the node
must be splitted).

To propagate the domain reductions implied by a search tree assignment,
a first possibility is to use the set of Ce44e constraints as defined in section 2.
However, we can still use our filtering method to propagate more strongly the
domain reductions. Indeed, assigning a value to a variable corresponds to giving
the same unique label to the two corresponding vertices. As a consequence, we
can use this new label to restart the relabelling process until it reaches another
fixed point.

4 Comparative experimental results

In this section, we compare the efficiency of the label-consistency introduced in
[1] and our new ILL-consistency on randomly generated graphs. We also compare
these results with the results of Nauty, the best known algorithm dedicated to
the graph isomorphism problem.

Nauty is a complete algorithm: it always solves a graph isomorphism problem.
On the contrary, label-consistency and ILL-consistency are only partial consis-
tencies. However, when labeling vertices by using these consistencies, if there is
as many vertex labels than vertices, each variable domain of a GIP involving G
becomes a singleton and the global consistency of the CSP is trivially checked.

As a consequence, we choose the following experimental protocol: for each
considered graph G = (V,E), we compute the vertex labels with the label-
consistency of [1] and the vertex labels with the sequence o until reaching its
fixed point. We then count the number of different vertex labels: if there is |V
different labels, any GIP involving G will be perfectly filtered and the problem
will be trivially solved.

Note that we only consider non automorphic graphs, i.e., the only existing
isomorphism function between G and itself is the identity function. As a conse-
quence, for each considered graph G = (V, E), our algorithm perfectly filters the
GIP involving G if and only if the number of different vertex labels is equal to
[V].

We consider randomly generated graphs from the Foggia et al.’s benchmark
[20]. However, as the number of vertices of the graphs of this benchmark is limited
to 1000, we have also generated bigger graphs with a Nauty tool (genrang). As
a consequence, we consider graphs having between 200 and 10000 vertices and
three different edge density: 1%, 5% and 10% (the three densities proposed by
[20]). For each size of graphs and each density, the given results are the average
results on 100 graphs.

In order to compare the influence of the edge density, we also generate a set
of graphs having 1000 vertices and an edge density varying from 1% to 50% (1%
by 1%, 100 graphs for each density). We do not test with graphs that have higher

densities because, for the three considered algorithms, it is then more interesting
to consider the complementary graph.

4.1 Number of labels

Nauty is a complete algorithm. As a consequence, it always found a perfect
filtering (i.e., a different label for each vertex).

On the contrary, label-consistency and ILL-consistency are only partial con-
sistencies and do not find systematicaly a unique label for each vertex. However,
except for little graphs with a low density (less than 400 vertices with an edge
density of 1%), these two partial consistencies have actually found a perfect la-
belling of the vertices. As a consequence, label-consistency and ILL-consistency
always solve the GIP involving the graphs having more than 400 vertices. Fur-
thermore, the ILL-consistency is obtained at step 2 for all graphs having more
than 800 vertices.

|V| |La| Ta k ‘Llabel‘ ﬂabel
200{199,64| 0 (3,40(191,92| 0,01
400(400,00{ 0 |2,88/399,87| 0,07
600(600,00{ 0 (2,14/600,00| 0,19
800[800,00[0,01[2,01[800,00] 0,36

Table 1. Results for the little graphs having a density of 1%. Each line successively dis-
plays: the number of vertices |V| of the graphs, the average number of labels | Lo | (resp.
|Liabet|) obtained by the ILL-consistency (resp. label-consistency), the time needed Ty
(resp. Tiaper) in seconds to establish this consistency and k, the average number of steps
needed to reach the fix point of the sequence a.

Results for the little graphs having a density of 1% are given into table 1.
For some of these graphs, the labeling process does not give an unique label to
each vertex. However, the average number of different labels shows an extremly
strong reduction of the variable domains. These results also show that ILL-
consistency filter the variable domains more strongly than label-consistency and
is less expensive to compute.

4.2 Execution time

We compare here the time needed to compute our filtering and to execute Nauty.
All tests have be done on a PC at 1,7Ghz and 512MB of RAM running Linux
(kernel 2.6).

The first graph of the figure 2 shows that, for the three algorithms, the
execution time increases when the density of the graphs increases. The general
behavior of the three algorithms is the same whatever the edge density is.

Time (s)

Time wrt edge density (1000 vertices) Edge density of 1%
1 1 1 1 1 1 1 10 1 1 1 1 1 1 1
IlL — ILL —
Label ------
Yy Nauty -------
i/ ;
[} !
£
F !
01F /
0001 1 1 1 1 1 1 1 1 1 001 "’ 1 ';‘I 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 01000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Edge density (%) Number of vertices of the graphs
Edge density of 5% Edge density of 10%
100 T 1 1 1 1 1 1 100 1 1 1 1 1 1 1 1 1
IlL — ILL —
Label ------ Label -----
Nauty ------- 1 g Nauty -------

Time (s)

1 1 |- 1
01000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of vertices of the graphs

0.1

1 ."VVV'I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of vertices of the graphs
Fig. 2. Execution time w.r.t. edge density for graphs having 1000 vertices and w.r.t.

graph size for graph having a density of 1%, 5% or 10%.

The label-consistency is clearly more expensive than the two others filtering
technics: we had to interrupt the tests of label-consistency for graphs having
up more than 3000 vertices. To establish the label-consistency and the ILL-
consistency both have the same worst case complexity. However, as the fix point

of the ILL-consistency is reached in only k steps with & << |V'|, ILL-consistency
is generally one order less expensive than label-consistency.

If we compare the ILL-consistency to Nauty, we can show that these two algo-
rithms have a very similar behavior. However, Nauty is generally 3 times as fast
as ILL-consistency and is still the best algorithm for graph isomorphism prob-
lems. Finally, with 512MB of RAM, our algorithm based on the ILL-consistency

begins to swap with graphs having up to 9800 vertices.

5 Conclusion
We have introduced in this paper a new partial-consistency (the ILL-consistency)

for the global constraint gip defining graph isomorphism problems. This ILL-
consistency is based on the computation, for each vertex u, of a sequence of

labels which characterizes the relationship between u and its neighbours that
can be viewed as a vertex invariant.

We compare ILL-consistency and label-consistency based on distances be-
tween each couple of vertices of the graphs proposed in [1]. These two consisten-
cies are very efficient in the sense where, on randomly generated graphs having
up to 400 vertices, achieving them will allow a constraint solver to either detect
an inconsistency, or reduce variable domains to singletons so that the global
consistency can be easily checked.

These two consistencies have both a theoritical worst case complexity of
O(|V| x| E|) operations for graphs having |V| vertices and | E| edges. However our
experimental results show that ILL-consistency is faster and tigher than label-
consistency. Comparing to Nauty, ILL-consistency appear to be competitive.
However, Nauty is still 3 times faster than it and is still the fastest algorithm
known for graph isomorphism problems.

Our experimentations show that ILL-consistency is strong enough to solve
GIP with non automorph randomly generated graphs. Further work will concern
the integration of our filtering algorithm into a constraint solver (such as CHOCO
[14]), in order to experimentally validate and evaluate it on different kinds of
graphs.

References

1. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In:
the 6th International Conference on Integration of AT and OR Techniques in Con-
straint Programming for Combinatorial Optimisation Problems (CP-AI-OR 2004),
Springer-Verlag (2004) 287-301

2. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association
of Computing Machinery 23(1) (1976) 31-42

3. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30 (1981)
45-87

4. Cordella, L., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for match-
ing large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations
in Pattern Recognition, Cuen (2001) 149-159

5. McGregor, J.: Relational consistency algorithms and their applications in finding
subgraph and graph isomorphisms. Information Science 19 (1979) 229-250

6. Fortin, S.: The graph isomorphism problem. Technical report, Dept of Computing
Science, Univ. Alberta, Edmonton, Alberta, Canada (1996)

7. Hopcroft, J., Wong, J.: Linear time algorithm for isomorphism of planar graphs.
6!" Annu. ACM Symp. theory of Comput. (1974) 172-184

8. Aho, A., Hopcroft, J., Ullman, J.: The design and analysis of computer algorithms.
Addison Wesley (1974)

9. Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer System Science (1982) 42-65

10. Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms
for graph isomorphism. In: 3rd TAPR-TC15 Workshop on Graph-based Represen-
tations in Pattern Recognition, Cuen (2001) 188-199

11. Régin, J.: Développement d’Outils Algorithmiques pour I'Intelligence Artificielle.
Application & la Chimie Organique. PhD thesis, Univ. Montpellier II (1995)

12.

13.
14.

15.
16.

17.

18.

19.

20.

Champin, P.A.; Solnon, C.: Measuring the similarity of labeled graphs. In: 5th
International Conference on Case-Based Reasoning (ICCBR 2003). Volume Lecture
Notes in Artificial Intelligence Nu. 2689 - Springer-Verlag. (2003) 80-95

Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
Laburthe, F., the OCRE project team: CHOCO: implementing a CP kernel. In:
Proc. of the CP’2000 workshop on techniques for implementing constraint pro-
gramming systems, Singapore. (2000)

ILOG,S.A.: ILOG Solver 5.0 User’s Manual and Reference Manual. (2000)
Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex and schedul-
ing and placement problems. In: Actes des Journées Francophones de Program-
mation et Logique, Lille, France. (1992)

Mohr, R., Henderson, T.: Arc and path consistency revisited. Artificial Intelligence
28 (1986) 65-74

Bessiére, C., Régin, J.: Refining the basic constraint propagation algorithm. In
Nebel, B., ed.: Proceedings of the seventeenth International Conference on Artificial
Intelligence (IJCAI-01), San Francisco, CA, Morgan Kaufmann Publishers, Inc.
(2001) 309-315

Garey, M., Johnson, D.: Computers and Intractability : A Guide to The Theory
of NP-Completness. W.H. Freeman, San Francisco (1979)

Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and sub-
graph isomorphism benchmarking. 3rd IAPR-TC15 Workshop on Graph-based
Representations in Pattern Recognition (2001) 176 —187

