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Abstract. Many applications such as e.g., information retrieval and
classification, involve measuring graphs similarity, i.e., matching graphs
to identify and quantify their common features.

Different kinds of graph matchings have been proposed, giving rise to
different graph similarity or distance measures. Exact graph matchings
such as graph or subgraph isomorphism can be used in order to show
graph equivalence or inclusion. However, in many applications, the as-
sumption of the existence of such an "exact" matching is too strong. As a
consequence, error-tolerant graph matchings such as maximum common
subgraph and graph edit distance have been proposed. Such matchings
drop the condition that the matching must preserve all vertices and edges
and look for a "best" matching, i.e., one which preserves a maximum
number of vertices and edges. Most recently, three different approaches
proposed to go one step further by introducing multivalent matchings
where a vertex may be matched with a set of vertices. This kind of
matching handles the fact that, due to different description granularity
levels, one object component may "play the same role" than a set of
components of another object.

A first goal of this paper is to propose a new graph distance measure
based on the search of a best matching between the vertices of two
graphs, i.e., a matching minimizing vertex and edge distance functions.
This distance measure is generic in the sense that it allows both univa-
lent and multivalent matchings and it is parameterized by vertex and
edge distance functions defined by the user depending on the considered
application. A second goal of this paper is to show how to use this generic
measure to model and to solve classical graph matching problems such
as (sub-)graph isomorphism problem, error-tolerant graph matching, and
non bijective graph matching.

1 Introduction

In many applications such as information retrieval or classification, measuring
object similarity is an important issue [8]. Measuring the similarity of two objects
consists in identifying and quantifying their commonalities. A dual problem is
to measure the distance of these two objects, i.e., identify and quantify their
differences.



Graphs are often used to model structured objects, e.g., scene representation
[3,6,17,4], design objects [11], molecules representations [2, 18], web documents
[27]. Vertices represent object components while edges represent binary relations
between these components. Vertices and edges may be labelled by their features.
For example, to represent an image by a graph, one usually associates a vertex
with each region of the segmented image, and an edge to each couple of vertices
corresponding to two adjacent regions. In order to better represent images, each
region (i.e., each vertex) may be labelled by its size and its bounding box and
each edge may be labelled by a value representing how much two regions are
connected (by means of the number of adjacent pixels) [3].

1.1 Graph matchings and distance measures

Computing the distance/similarity of two graphs usually involves finding a "best"
matching of the graph vertices (i.e., the one that most preserves vertex and edge
features) and then quantifying this set of preserved features. Hence, graph dis-
tance measures are closely related to graph matching problems and the capacity
of a measure to identify the commonalities of graphs depends on the kind of
matching considered.

Graph matchings may be wunivalent —when each vertex is associated with
at most one vertex of the other graph— or multivalent —when each vertex is
associated with a set of vertices of the other graph. Also, graph matchings may
be exact when all vertex and edge features must be preserved by the matching
or error-tolerant —when some vertex and edge features may not be preserved by
the matching.

Examples of univalent exact matchings are:

— graph isomorphism, that involves finding a bijection between the graph ver-
tices that preserves all vertex and edge features of the graphs and that is
used to prove graph equivalence

— subgraph isomorphism, that involves finding an injection between the ver-
tices of the first graph to the vertices of a second graph that preserves all
vertex and edge features of the first graph and that is used to prove graph
inclusion.

In many applications, we are looking for similar objects and not "identi-
cal" ones and error-tolerant matchings are needed. Examples of univalent error-
tolerant matchings are:

— maximum common subgraph [7,12] that looks for the largest matching (with
respect to the number of matched vertices) that preserves all the edges of
the matched vertices

— graph edit distance [7, 12] that looks for the minimum cost set of operations
(i.e., vertex and edge insertion, deletion and relabelling) needed to transform
the first graph into a graph that is isomorphic to the second graph.

Many applications involve comparing objects described at different granular-
ity levels and multivalent matchings are needed. Four recent papers proposed



graph distance/similarity measures based on multivalent error-tolerant graph
matchings:

— Champin and Solnon [11] measure the similarity of design objects where one
single component of an object may play the same role than a set of compo-
nents of another object, depending on the granularity of object description.
Therefore, the graph similarity measure is based on multivalent matchings
so that one vertex in a graph may be associated with a set of vertices of the
other graph.

— Boeres and al. [6] use graph matching for model-based pattern recognition
of brain images. In this application, the model has a schematic aspect easy
to segment while the image is noised and usually over-segmented. There-
fore, scene recognition is better expressed as a multivalent matching prob-
lem where a set of vertices of the scene may be matched to a same vertex
of the model. Deruyver and al. [13] use graph matching for image segmenta-
tion: the vertices of a graph that represents an initial over-segmented image
are merged until the resulting graph matchs another graph that semanti-
cally describes the image. As a consequence, as in [6], the graph matching is
multivalent.

— Ambauen and al. [3] propose a new graph edit distance to overcome the
problem of comparing over and under segmented images. This distance is
based on multivalent matchings: two new edit operations —vertex splitting
and merging— are introduced in order to merge or to split over- or under-
segmented regions.

1.2 Motivation and outline of the chapter

A wide number of graph distance and similarity measures have been proposed
in the litterature [20, 10]. These measures are based on different definitions of a
"best" matching between two graphs depending on the considered application.

The graph similarity measure of [6] is specific to the addressed problem: it
is used for matching brain images to models, and in this context they added
specific constraints (e.g., all model vertices must be mapped and each image
vertex must be mapped to exactly one model vertex). Therefore, it is difficult to
use this measure for another application.

Ambauen and al. defines [3] a more generic graph similarity measure: the
measure is parameterized by the cost of each possible operation and these costs
can be chosen depending on the considered application. As in [6], this mea-
sure adds an image recognition specific constraint on the considered multivalent
matching. The multivalent matching operations (vertex merging and splitting)
need to be non-overlapping: if we want to link two vertices v and v of one graph
to another vertex u’, we need to merge u and v and as a consequence, it will
not be possible anymore to link u with a vertex v’ without linking v to v’. If
this constraint makes sense in a context where we need to merge over-segmented
region, it is not a desirable property in all applications (in particular for the
application of [11]). Finally, the measure introduced in [3] is not generic enough



to express all kinds of multivalent matching problems: for example, it cannot be
used to model the problem described in [6].

In [28] it has been proven that the similarity measure of Champin and Solnon
[11] is generic in the sense that, thanks to two similarity functions, it can be used
to compute many other similarity measures (including measures of Boeres and
al. [6] and Ambauen and al. [3]). However, if it has been proven generic, it is not
always straightforward to use. The measure of Champin and Solnon [11] deals
with multi-labelled graphs and the similarity of two multi-labelled graphs is
computed with respect to the set of the common labels identified by a mapping.
As a consequence, the comparison of the graph components is a binary operation:
a label is a discrete value so that the label is recovered or not. However, in many
applications and in particular in an image recognition context, one needs to
represent and to compare continuous values. For example, the size of a region of
an image is a continuous value and in order to compare two regions, one needs to
compute the difference between their sizes. Furthermore, when two components
are merged, one needs to have an operator to aggregate these continuous values.
For example, one needs to compute the sum of the sizes or the average color of
a set of merged regions. Finally, some constraints on the allowed matchings are
difficult to express in [11]. For example, it is difficult to constrain a vertex to be
only linked to vertices having a particular property. To express these kinds of
constraints on matchings, we show in [28] that one can label the graph vertices
in such a way that one can reconstitute the original matching from the set of
recovered labels. As a consequence, the similarity of [11] can be used to compute
any other similarity measures based on a best graph matching, whatever the
constraints on the matching are.

Our goal is to propose a generic graph distance measure, i.e., a unifying
framework for all graph matching and distance measures. This framework offers
a better understanding of the different existing matchings and distance mea-
sures. It also allows us to define generic algorithms that can be used to compute
any kind of graph distance/similarity measures. Indeed, many algorithms have
been proposed for computing graph distance measures or solving graph match-
ing problems. However, all these algorithms are dedicated to one problem and
cannot be used to solve other kinds of graph matching problems.

Our generic distance has the same power of expression than the similarity
measure of [11]. However, it has been designed to be more flexible: this distance
is based on a multivalent matching of the graph vertices like in [11] but it is
parameterized by vertex and edge distance functions that can easily express
many different vertex and edge properties (such as labels, real values...).

In section 2, we introduce some definitions and notations needed to define
our distance measure. In section 3, we propose a new generic graph distance
measure. In section 4, we compare our graph distance regarding some classical
graph matching problems. In section 5, we prove that our distance and the graph
similarity measure of Champin and Solnon [11] are equivalent in the sense that
they have the same power of expression. We conclude in section 6 with some
computational issues.



2 Definitions and notations

Graph. A graph is a pair G = (V, E) such that:

— V is a finite set of vertices
— E CV xVis aset of oriented pairs of vertices called edges

Given an edge (u,v) € E, the vertices v and v are called the endpoints of the
edge (u,v).

Partial subgraph, induced subgraph. A graph G’ = (V', E’) is a partial
subgraph of a graph G = (V, E) (noted G’ C G) if and only if V' C V' and
E'CEN(V x V).

A graph G’ = (V' E') is an induced subgraph of a graph G = (V, E) (noted
G CG)ifand only if VC V' and E' = EN (V' x V’). An induced subgraph
G' = (V',E’") of a graph G = (V, E) is the graph that contains all the edges
of G having their endpoints into V’. As a consequence, an induced subgraph is
always a partial subgraph of G.

Partial subgraph Induced subgraph
G cG G G'CG

Fig. 1. Example of a graph G, a partial subgraph G’ of G and an induced subgraph
G" of G

Graphs matching. Given two graphs G = (V, E) and G' = (V', E’), a mul-
tivalent matching m between G and G’ is a relation between V and V', i.e.,
m C V x V'. Without loss of generality, we shall suppose that V NV’ = ().

Given a matching m, we note m(v) the set of vertices matched to a vertex
v. More formally, we define:

VYo € V,m(v) = {v' € V'|(v,v") € m}
Yo' eV m('") = {v e V|(v,v) € m}
By extension, when the set of vertices matched with a vertex v is a singleton

(i.e., /m(v)| = 1), we shall also use m(v) to denote the single vertex that is
element of m(v).



When there is no constraint on the matching, i.e., each vertex may be asso-
ciated in m with 0, 1 or several vertices, the matching is said to be multivalent.

However, one may add constraints on the number of vertices a vertex may
be matched with, thus defining matchings that are partial functions, total func-
tions, univalent matchings, injective matchings and bijective matching. Given
two graphs G = (V, F) and G’ = (V’, E’) and a matching m C V x V', m is said
to be:

— a partial function from G to G’ if m links each vertex of V' to at most one
vertex of G', i.e

YoeV ,|m(v)| <1

— a total function from G to G’ if m links each vertex of V to exactly one
vertex of G', i.e.:

YoeV ,|m(v)| =1

— a univalent matching between G and G’ if m links each vertex of V and V’
to at most one vertex, i.e.:

Yo e VUV m(v)] <1

— an injective matching from G to G’ if m links each vertex of V to a different
vertex of V', i.e.:

Y(u,v) € V x V,|m(u)| = |m(v)| =1 Au# v = m(u) #mv)
Another definition of an injective matching from G to G’ is a matching m
such that:

YoeV , im(v)=1
Yo eV’ |m(v)| <1

— a bijective matching between G and G’ if m links each vertex of V' (resp. V')
to a different vertex of V' (resp. V), i.e

Y(u,v) € (Vx VYUV x V), |Im(u)| = |m@)| =1Au#v=mu) #m)

Another definition of a bijective matching between G and G’ is a matching
m such that m links each vertex of V' and V' to exactly one vertex, i.e.:

Yo e VUV Im(v)|=1

Edges matched by a matching. Given a matching m of the vertices of two
graphs G = (V,E) and G’ = (V' E’), an edge (u,v) € E is said to be matched
to another edge (u',v") € E’ if and only if {(u, ), (v,v")} C m. By extension,
we shall note m(u, v) the set of edges matched to the edge (u,v) by the matching
mi.e.:

Y(u,v) € E, m(u v) ={(u',v") € E'|u/ € m(u),v" € m(v)}
V(u' ") € E',m(u/, {uv)€E|uEm( "N,vem(v)}



Subgraph induced by a matching. Given a matching m of two graphs G =
(V,E) and G’ = (V', E'), the subgraph of G (resp G’) induced by m is noted
Gm = (Vin, En) (resp. Gi,, = (V.,, E/.)) where V,,, and E,,, (resp. V,,, and E})
are the sets of vertices and edges of G (resp. G') matched to at least one vertex
or edge of G’ (resp. G), i.e.:

Vin = {v € V/m(v) # 0}, By = {(u,v) € E/m(u,v) # 0}
Vi ={v e V//m() # 0}, E;, = {(u,v') € E'/m(u',0v") # 0}

54

m m

Fig. 2. Two graphs G and G’ and their subgraphs induced by the matching m =
{(1,a),(1,d),(2,0),(3,0)}

3 A new graph distance measure

In this section, we introduce a new generic graph distance measure. This measure
deals with graphs that may have properties or not. It is tuned by vertex and edge
distance functions expressing local preferences on vertex and edge matchings.

3.1 Vertex and edge distance functions

The first step when computing the distance between two graphs is to match their
vertices in order to identify their commonalities. We consider here multivalent
graph matching, i.e., each vertex of a graph may be matched with a —possibly
empty— set of vertices of the other graph.

Given a matching m, we need to know for each vertex and each edge how
much its properties are recovered by m. Therefore, we assume the existence of a
vertex (resp. edge) distance function ¢, (resp. d.) giving for each vertex v (resp.
edge (u,v)) of the two graphs and each set of vertices s, (resp. set of edges s.) of
the other graph a real number from the intervall [0, +o0o[ expressing the distance
between v (resp. (u,v)) and the set s, (resp. s.). More formally, we assume the
existence of the two following functions:

Oy (Vv p(v/)) U (Vl7 p(V)) - [07 +OO[
de : (B, p(E)) U (E', p(E)) — [0, 400



Generally, the distance will be equal to +oco if the vertex v (resp. the edge
(u,v)) is not comparable with the set of vertices s, (resp. the set of edges s.),
i.e., when the matching violates a hard constraint. The distance is equal to 0
when all the properties of v (resp. (u,v)) are recovered by the set s, (resp. s¢).

Roughly speaking, the function §, (resp. d.) expresses the local preferences
on the way to match a vertex (resp. an edge). The vertex and edge distance
functions depend on the considered application and are used to reflect both the
similarity knowledge and some of the constraints that a matching must respect.

For example, if we are looking for a univalent matching (i.e., each vertex is
linked to at most one other vertex) that recovers a maximum number of vertices
and edges, one can define the functions ¢, and d. as follows:

Vo e VUV Vs, € p(V)U (V'),0,(v,8) =1 — |5y if |s5] <1
+00 otherwise
V(u,v) € EUE' Vs, € p(E)U@(E"),5c((u,v),8.) =1 — |se| if |se] < 1

+00 otherwise

3.2 Graph distance

Given a matching m C V x V' of two graphs G = (V, E) and G’ = (V'E’) and the
two distance functions 4, and d., the distance of these two graphs with respect
to the matching depends on the distance between each vertex (resp. edge) and
the set of vertices (resp. edges) they are matched with, i.e.:

(G, G") = 3({(v,8p(v,m(v))) /v e VUV'}U (1)
{((u, ), 0e((u, v), m(u, v)))/(u,v) € EUE'})

where ® is an application-dependant function which is used to aggregate the
computed distances. Roughly speaking, the function ® is used to express the
global preferences on the distances of the vertices and the edges of the graphs.
The function ® should be defined in such a way that the minimal distance be-
tween two graphs with respect to a matching is equal to 0 and if the distance
between two graphs G and G’ is equal to +oo, the matching of these two graphs
is not acceptable with respect to the considered matching. In most cases, the
function ® is defined as a sum or a weighted sum of the distances of each com-
ponent. However, in order to express more sophisticated distances, we do not
restrict ourself to this particular case. For example, the function ® could be
defined to make the distance between two graphs depending on the number of
vertices that have at most one incoming or outgoing edge having a distance
higher than a threshold.

Formula (1) defines the distance of two graphs with respect to a given match-
ing m between the graphs vertices. Now, we can define the distance of two graphs
G and G’ as the distance induced by the best matching, i.e., the matching giving
rise to a minimal distance:

§(G,G"Y= min_ 6,,(G,G") (2)
xV’

mC



Finally, given two graphs G and G’, a distance measure between G and G’ is
defined as a triple § =< 6,, 0., ® > where 4, is the vertex distance function, J,
the edge distance function and ® is a function used to aggregate the distances
of all vertices and edges of both graphs.

Note that the word "distance" is used here in its common sense: the distance
of two graphs is low when the two graphs share a lot of common properties
and is equal to 0 (the minimum) when we can find a "perfect" matching of the
two graphs (with respect to the considered application). In the general case,
our distance measure does not have the mathematical properties of a classical
distance measure and is not a metric. As a consequence, the distance between two
graphs may have an infinite value, it may not respect the triangular inequality,
nor be symmetric and the distance between a graph and itself may not be equal
to 0. However, depending on the chosen definitions of d,, 6. and ®, our distance
measure may be a metric.

3.3 Graph similarity

We have chosen to define the distance of two graphs but distance and similarity
measures are two dual concepts and we could use this graph distance measure
to define a graph similarity measure of two graphs. For example, in many ap-
plications, the distance between two graphs G' and G’ is always lower or equal
to the sum of the distance between each graph and the empty graph Gy (i.e.,
Gy = (0,0)). As a consequence, we could define a graph similarity measure using
this property:

5(G, G")

T
sim(C G = 1= S o) + 51 )

4 Equivalence with other graph matchings and similarity
measures

In this section, we show how our graph distance measure can be used to solve
classical graph matching problems.

In this section, the function ® is defined by the function ®y- that simply
makes the sum of the distances. More formally, we define ®s~: (VUV'UEU
E") x [0, 4-00[— [0, +-00[ by:

ex(S)= Y d+ > d

(u,d)€S ((u,v),d)eS

4.1 Exact graph matching

In this subsection we show how to solve exact graph matching problems. For all
these kinds of problems, we are looking for a univalent matching between the



vertices of two graphs. As a consequence, the vertex and edge similarity functions
are defines in such a way that a multivalent matching always involves an infinite
positive distance. Furthermore, these problems being satisfaction problems, the
objective is always to find a matching m such that §,,(G,G’) = 0.

Graph isomorphism

Problem definition. Given two graphs having the same number of vertices, the
graph isomorphism problem consists in proving that these two graphs are iden-
tical minor a renaming of their vertices. More formally, two graphs G = (V, E)
and G = (V’, E') such that |V| = |[V’| are isomorphic if and only if there exists a
bijective matching m C V x V' such that (u,v) € E < (m(u),m(v)) € E''. The
graph isomorphism problem is used to prove that two graphs are structurally
identical.

Measure definition. To solve the graph isomorphism problem using our distance
measure, we need to choose vertex and edge distance functions such that these
functions returns 0 if the vertex or edge is matched to exactly one element and
~+00 otherwise (in order to avoid non bijective matchings). More formally:

Vo e VUV Vs, CV UV, §i%v,s,)= 0if |s,] =1
400 otherwise
V(u,v) € EUE' Vs, C EUE', §%°(u,v,s.) =0 if |s| = 1

400 otherwise

Theorem 1. Given two graphs G = (V, E) and G' = (V', E’), the two following
properties are equivalent:

1. G and G’ are isomorphic
2. the distance §"%° =< 0,%°,6%°°, @5~ > between G and G’ is equal to 0

Proof. (1) = (2). By definition, if the two graphs are isomorphic, there exists
a bijective matching m C V x V' such that (u,v) € F < (m(u),m(v)) € E'.
As a consequence, Vo € VUV’ m(v)| = 1 (because m is a bijective matching)
and V(u,v) € EUE' |m(u,v)] = 1 (because V(u,v) € V x V,(u,v) € E &
(m(u),m(v)) € E'). So, given the definition of §:%° and §:*°, the distance of G
and G’ with respect to m is equal to 0 and the distance between G and G’ is
equal to 0.

(2) = (1). If the distance between G and G’ is equal to 0, then, given the
definition of §2%°, there exists a matching m such that Vv € V U V' |m(v)| =
1. As a consequence, the matching m is a bijective matching. Furthermore, if
m involves a distance equal to 0, then, V(u,v) € EU E',|m(u,v)] = 1. As a

! Let us recall that for univalent matchings, when the set of vertices matched with
a vertex v is a singleton, i.e., [m(v)| = 1, we shall note m(v) to denote the single
vertex that is element of m(v).



consequence, each edge of both the graphs is matched to exactly one edge of the
other graph, so (u,v) € E < (m(u),m(v)) € E'. So, m defines an isomorphic
matching between the two graphs and G and G’ are isomorphic.

Partial subgraph isomorphism

Problem definition. Given two graphs G = (V, E) and G’ = (V’', E’) such that
|[V| < |V’|, the partial subgraph isomorphism problem consists in showing that
the graph G is isomorphic to a partial subgraph of the graph G’, i.e., in finding
an injective matching m C V x V' such that V(u,v) € V x V, (u,v) € E =
(m(u),m(v)) € E’. The partial subgraph isomorphism problem is used to prove
that a graph is included into another graph.

Measure definition. To solve the partial subgraph isomorphism problem using
our distance measure, we need to choose vertex and edge distance functions such
that these functions return 0 if an element of G is matched to one element (in
order to preserve the vertices and the edges of G) and +oo otherwise (in order
to avoid non injective matching). Distance functions for vertices and edges of G’
just need to avoid non univalent matching. More formally:

Vv € V,Vs, C V' 60540 (v,5,) = 0 if |s,] = 1

a 400 otherwise
Y(u,v) € E,Vs. C E', 575" (u,v,5.) = 0 if |s.| = 1

400 otherwise
Vv € V' Vs, C V80540 (v, 5,) = 0if |s,| < 1

o 400 otherwise
Y(u,v) € E',Vs. C E, 7" (u,v,s.) = 0 if |s.| < 1

400 otherwise

Theorem 2. Given two graphs G = (V, E) and G' = (V', E"), the two following
properties are equivalent:

1. the graph G is a partial subgraph of G’
2. the distance JPsUb =< §psub spsub ®s~ > between G and G’ is equal to 0

Proof. (1) = (2). By definition, if G is a partial subgraph of G’, there exists
an injective matching m C V x V' such that V(u,v) € V x V, (u,v) € E =
(m(u),m(v)) € E'. As a consequence, Vv € V,|m(v)| =1, Yo € V', |Im(v)| <1
and Y(u,v) € E’,|m(u,v)] < 1 (because m is an injective matching). Further-
more, V(u,v) € E,|m(u,v)| = 1 (because (u,v) € E = (m(u),m(v)) € E’). So,
given the definition of 67*“® and 62%“, the similarity of G and G’ with respect
to m is equal to 0 and the distance between G and G’ is equal to 0.

(2) = (1). If the distance between G and G’ is equal to 0, then, given the
definition of 62°“?, there exists a matching m such that Vv € V,|m(v)| = 1 and



Vv € V', |m(v)] < 1. As a consequence, m is an injective matching. Further-
more, if m involves a distance equal to 0, then, V(u,v) € E, |m(u,v)| = 1. As a
consequence, each edge of G is matched to exactly one edge of G’ and (u,v) €
E = (m(u),m(v)) € E’'. So, there exists an injective matching m C V x V' that
preserves all the edges of G and, by definition, G is a partial subgraph of G’.

Induced subgraph isomorphism

Problem definition. Given two graphs G = (V, E) and G’ = (V’/, E’) such that
|[V| < |V'|, the induced subgraph isomorphism problem consists in showing that
the graph G is isomorphic to an induced subgraph of G’ i.e., in finding an injec-
tive matching m C V' x V' such that V(u,v) € VXV, (u,v) € E & (m(u), m(v)) €
E’. The induced subgraph isomorphism problem is a special case of partial sub-
graph isomorphism: it adds the constraint that for each couple (u,v) € V2, if
(u,v) is not an edge of G, then the corresponding vertices in m must neither be
an edge of G'.

Measure definition. The induced subgraph problem between G = (V, E) and
G' = (V',E') adds a constraint on each couple of vertices of V' (to be or not
matched to an edge of G’). To check these constraints, the edge distance function
de needs to be defined for each couple (u,v) € V x V of vertices of G and
each subset s, C E’ of edges of G’. As a consequence, one needs to compare
the complete graph G” = (V,V x V) to the graph G’ = (V' E’). The vertex
distance function must return +oo if the matching is not injective (1, 3 and
4) and 0 otherwise. The edge distance function must return +oo if an edge of
G is not matched (2.1) or if a couple (u,v) of vertices of G which is not an
edge is matched to an edge of G’ (2.2) and 0 otherwise. More formally, given a
graph G = (V, E) and a graph G’ = (V', E’), we need to compare the graphs
G" = (V,V x V) and G’ with the two following distance functions:

1 Vo € V,Vs, C V', 65 (v,8,) = 0if [s,] =1
+o00 otherwise
G" < 2.1 VY(u,v) € V2 Vs, C E', 638 (u,v,8.) = 0 if (u,v) € EAlse| =1

2.2 =0if (u,0) € EAse =0
400 otherwise
3 Vo € V! Vs, CV,65%(v,s,) = 0if |s,] <1

400 otherwise
4 Y(u,v) € E'\Vse C E, 658 (u,v,8.) =0 if |s.| <1
400 otherwise

G/

Theorem 3. Given two graphs G = (V,E) and G' = (V', E’), the two following
properties are equivalent:

1. the graph G is an induced subgraph of G’



2. the distance 6 =< (55“1’,(5251’,@2 > between G = (V,V x V) and G' is
equal to 0

Proof. (1) = (2). By definition, if G is a subgraph of G’, there exists an injective
matching m C V xV’ such that V(u,v) € VXV, (u,v) € E < (m(u),m(v)) € E'.
As a consequence, Vv € V,|m(v)] = 1, Vv € V' /|m(v)| < 1 and Y(u,v) €
E' |m(u,v)] <1 (because m is an injective matching). Furthermore, V(u,v) €
E,Im(u,v)] = 1 (because V(u,v) € V x V,(u,v) € E = (m(u),m(v)) € E')
and V(u,v) € (V x V) — E,m(u,v) = 0 (because V(u,v) € V x V, (u,v) € E =
(m(u),m(v)) & E'). So, given the definition of 65** and §4, the distance of G”
and G’ with respect to m is equal to 0 and the distance between G and G’ is
equal to 0.

(2) = (1). If the distance between G” and G’ is equal to 0, then, given the
definition of §5“°, there exists a matching m such that Vv € V,|m(v)| = 1 and
Yv € V,|m(v)| < 1. As a consequence, m is an injective matching. Furthermore,
if m involves a distance equal to 0, then, ¥(u,v) € E, |m(u,v)| = 1. As a conse-
quence, each edge of G is matched to exactly one edge of G’, so V(u,v) € V X
V, (u,v) € E = (m(u),m(v)) € E'. Finally, Y(u,v) € (V x V) — E,m(u,v) = 0,
and each couple of vertices of G that is not an edge of G is linked to a couple of
vertices of G’ that is neither an edge of G’. As a consequence, m is an injective
matching such that V(u,v) € V x V, (u,v) € E < (m(u),m(v)) € E' and G is
an induced subgraph of G’

Approximate graph matching

Problem definition. Zampelli and al. propose [30] a problem named "approximate
subgraph matching" that consists in looking for a pattern graph into a target
graph and that is used for the analysis of biochemical networks. The specificity
of this problem is that the pattern graph is composed of mandatory vertices and
edges (i.e., vertices and edges that must be preserved by the matching), optional
vertices (i.e., vertices that may not be matched) and forbidden edges (i.e., edges
that must not be preserved by the matching). Note that an edge having an
optional endpoint is optional until its endpoints are matched?. More formally,
an approximate pattern graph is a tuple G, = (Vj, O,, E,, F},) where (V,, E,) is
a graph, O, C V,, is the set of optional nodes and F,, C (V,, xV,)— E, is the set of
forbidden edges. An approximate subgraph matching m between an approximate
pattern graph G, = (V,,0p, Ep, F,) and a target graph Gy = (V, E;) is a
univalent matching® m C Vp x V4 such that:

1. Yo eV, — Op,Im(v)| =1

2. Yu,v € V,,Im(u)| = 1A Im(w)| = 1 A (u,v) € E, = (m(u), m(v)) € E;

3. Yu,v € Vp, |m(u)| = 1A Im(v)| =1 A (u,v) € F, — (m(u), m(v)) & E;

2 This notion of optional vertices is only useful when we are looking for a matching
satisfying some other constraints. Otherwise, we just have to remove optional vertices
and their edges from the pattern graph

3 In [30], an approximate subgraph matching is defined as a function f : V,, — V; but
for a reason of homogeneity, we define it as a univalent matching



Measure definition. Solving an approximate subgraph matching problem consists
in finding a univalent matching m between G, and the graph G' = (V;,V; x V;)
such that each mandatory vertex is matched to exactly one vertex (1), each
optional vertex is matched to at most one vertex (2), each edge (u,v) is either
matched to a couple of vertices (u/,v") of G’ which is an edge of G; (3.2) or
is not matched at all if one of its optional endpoints is not matched (3.1), each
forbidden edge is not matched (4). Finally, the matching must be univalent (5 and
6). More formally, one needs to compute the distance between G = (V},, E, UF},)
and G’ = (V;, ' = V; x V) with the following vertex and edge distance functions:

1 Yo € Vp — Op,Vsy C V4, 009™ (v, 8y) = 01if |5, =1
+o00 otherwise
2 Yv € Op, Vs, C Vi, 089 (v, 8,) =01if |s] <1

400 otherwise
G < 3.1 Y(u,v) € Ep, Vs C Vi x Vi, 008" (u,0,5.) = 0if 5. = 0

3.2 0if se = {(u/, )} A (v, V) € Ey
400 otherwise

4 V(u,v) € F,Vs. C B, 6.8 (u,v,50) = 0if 5o = {(u/, ")} A (v, 0") & By
400 otherwise

5 Yo € Vi, Vsy CV,, 829™ (v, 8,) = 0if |s,] <1

400 otherwise
6 V(u,v) € B, Vs, C EpU Fp, 008" (u,v,5¢) = 0 if [s¢| < 1
400 otherwise

Theorem 4. Given an approzimate pattern graph G, = (Vy, Op, Ep, Fp), a tar-
get graph Gy = (Vi, Ey) and a mapping m CV x V', the two following properties
are equivalent:

1. m is a solution of the approzimate subgraph matching problem between the
approzimate pattern graph G, = (Vp, Op, Ep, Fp) and the target graph Gy =
(Vi Et)

2. the distance 5" =< 039™, 008", @y~ > induced by the matching m between
the graphs G = (Vp,E UFy) and G' = (Vi, Vi x V4) is equal to 0

Proof. (1) = (2). If m is a solution of the approximate subgraph matching
problem then Vv € V,, — O,,|m(v)| = 1 (condition 2), Vv € V;,|m(v)| < 1 and
V(u,v) € Vp x Vi, Im(u,v)| <1 (condition 1), V(u,v) € Ep, m(u,v) = {(v/,v")} A
(u',v") € By (condition 3) and V(u,v) € F,,m(u,v) = {(u/,v")} A (¢/,0") & E;
(condition 2 and 4). As a consequence, given the definition of the vertex and
edge distance functions, the distance §¢/" =< 059™, 04", ®y~ > induced by
the matching m between the graphs G (V}J, E,UF,) and G' = (V;,V; x V;) is
equal to 0.

(2) = (1). If the distance 6.%" =< 639™,:¢", @s~ > induced by the match-
ing m between the graphs G = (V,,, E, U F},) and G’ = (W4, V; x V;) is equal
to 0, then the matching m is univalent (condltlon 1) because, given the vertex



and edge distance functions, all non-univalent matching give rise to an infi-
nite distance. Furthermore, if the distance induced by m is equal to 0, then
Yo € V, — Op,|m(v)] = 1 so that m respects the condition 2. Furthermore,
V(u,v) € Ep, (m(u) # 0 Am) #0) = (m(u,v) = {(w,v)} A @, 0) € Ey)
and as a consequence, m respects the condition 3. Finally, V(u, v) € F,, (m(u) #
0 Am) #0) = (m(u,v) = {(v,v)} A (W,v') € E;) and as a consequence,
m respects the condition 4 and m is a solution of the approximate subgraph
matching problem.

4.2 Error tolerant graph matching

In this subsection we show how to model error tolerant graph matching problems
as graph distance measures. For all these problems, we are looking for a univalent
matching between the vertices of two graphs. As a consequence, the vertex and
edge distance functions are chosen in such a way that a non univalent matching
always gives an infinite positive distance. Furthermore, these problems being
optimization problems, the objective is always to find the matching giving the
lower distance.

Maximum common partial subgraph

Problem definition. Given two graphs G and G’ the maximum common partial
subgraph problem consists in finding the size of the largest partial subgraph G”
of G that is isomorphic to a partial subgraph of G’. For this problem, the size
of a graph G = (V, E) is defined by the number of its vertices and edges, i.e.,
|G| = |V| + |E|. The maximum common partial subgraph problem is used to
quantify the intersection of two graphs and therefore, it can be used to define a
graph similarity measure. Indeed, the similarity of two objects a and b is usually
defined as size(a N b)/size(a + b) [29,22].

Measure definition. We need to use vertex and edge distance functions forbidding
multivalent matching while encouraging vertices and edges of G and G’ to be
linked. As a consequence, the vertex and edge distance functions must return
400 if the element is matched to more than one element, 1 if it is not matched
and 0 is the element is matched to exactly one element, i.e.:

Yo e VUV Vs, CVUV' §mPs(u,s,) = 1—|s,]if [s,] <1
400 otherwise

V(u,v) € EUE' Vs, CEUE', 67P(u,v,5.) =1 — |s| if |se| < 1
400 otherwise

Theorem 5. Given two graphs G = (V,E) and G' = (V',E'), and a mapping
m CV x V', the two following properties are equivalent:

1. m is a mapping that minimizes the distance 6P =< §,*P, §1P* @5~ >



2. the subgraph G,, of G induced by the matching m is a maximum common
partial subgraph of G and G’

Proof. The proof is decomposed into two steps, we first show that for every
matching m C V x V' such that §7°P*(G, G') = d # +o0, the induced subgraph
G, of G is a common partial subgraph of G and G’ and |G| = (|G|+|G'|—d)/2.
In a second step, we show that, if there exists a subgraph G” of G isomorphic
to a partial subgraph of G’, then, we can find a matching m having a distance
d equal to |G|+ |G'| — 2 % |G”| and such that G = G,,, the subgraph induced
by the mapping m. Then, as we prove that each common partial subgraph G”
corresponds to a mapping inducing a non infinite distance inverse to the size of
G" (and reversely), the property holds.

omers(G,G') = d < 400 = G, is a common subgraph of G and G’ such
that |G| = (|G| + |G’| — d)/2. Given the vertex and edge distance functions, if
dmers(G,G") < +oo then m is a univalent matching (because all non univalent
matchings give an infinite distance). By definition, the subgraph G,, = (V;, Em)
of G induced by m is a partial subgraph of G and the subgraph G}, = (V., E!.)
of G’ induced by m is a partial subgraph of G’. Given the definition of an
induced subgraph and knowing that the mapping is univalent, the matching m
is a bijective matching between the vertices of G, and G, such that (u,v) €
E. < (m(u),m(v)) € E/ . As a consequence, G, and G/, are isomorphic and
G, 18 a common partial subgraph of both G and G’. Given the vertex and edge
distance functions, if §7'P*(G,G’) = d < 400 then d = |G|+ |G| — |G| — |G, -
As G, and G, are isomorphic, then |G,,| = |GL,|. As a consequence, |Gp,| =
(|G| + |G’| — d)/2 and the property holds.

G is a common subgraph of G and G’ = Im such that 67?5(G,G') = |G|+
|G| —2%|G"| and G” = G.,. If there exists a common subgraph G” = (V| E")
of G = (V,E) and G’ = (V', E’), then, by definition of a common subgraph,
there exists at least one graph G = (V" C V/,E" C FE’) and a bijective
matching m C V" x V' such that (u,v) € E” < (m(u),m(v)) € E". As a
consequence, the matching m is such that Yo € V" U V" |m(v)| = 1 (because
m is a bijective matching), V(u,v) € E” U E" |m(u,v)] = 1 (because m is
such that (u,v) € E” & (m(u),m(v)) € E"”. Furthermore, by definition, m
is such that Yo € V. — V" 'm(v) = 0, Vo € V' = V" m(v) = 0, V(u,v) €
E — E" m(u,v) = 0 and Y(u,v) € E' — E" m(u,v) = 0. As a consequence,
omers(G,G') = |G|+ |G| = |G"| — |G"'|. G” and G"" are isomorphic, so, |G"| =
|G| and 0/P*(G,G’) = |G| + |G| — 2 * |G"|. The property holds.

Maximum common induced subgraph

Problem definition. Given two graphs G and G’ the maximum common induced
subgraph problem consists in finding the the largest induced subgraph G” of
G that is isomorphic to an induced subgraph of G’. For this problem, the size
of a graph G = (V, E) is defined by the number of its vertices, i.e., |G| = |V].
As the maximum common partial subgraph, the maximum common induced



subgraph problem is used to define an intersection between two graphs and a
corresponding graph similarity measure [7].

Measure definition. To solve the maximum common subgraph problem using our
distance measure, we need to use vertex and edge distance functions encouraging
vertices of G to be linked while forbidding matching that does not correspond to
common induced subgraph. So, similarly to the induced subgraph isomorphism
problem, the edge distance function must check a constraint (and so be defined)
for each couple of vertices of both the graphs. As a consequence, complete graphs
must be compared. The vertex distance function encourages the vertices of G
to be matched (1) and the edge distance function returns +oco when a couple of
vertices (u,v) of G (resp. (u/,v") of G') is linked to a couple of vertices (u',v")
of G’ (resp. (u,v) of G) such that (u,v) € E ¢ (u',v") € E' (2) (resp. (4)).
Finally, the matching must be univalent (3). More formally, we need to compute
the distance of the graph Go = (V,V x V) with the graph G, = (V', V' x V')
by using the following vertex and edge distance functions:

1 Yo € V,Vs, CV/ 61 (v,8,) =1 —|sy] if [84] <1
400 otherwise
2 VY(u,v) € V3 Vs, C V"2 6785, (u,v,8.) =0 if s, =)
0if se = {(v,v")}
AN(u,v) € E < (u/,v') € E')
400 otherwise
3 Yo e V' Vs, CV,0m(v,s,) =01if |s,| <1
400 otherwise
4 Y(u,v) € V"2 Vs, C V2 6755, (u,v,8.) =0 if s =0
0if s¢ = {(u/,v)}IA
((u,v) € E' & (u,0') € E)
400 otherwise

Ga

Theorem 6. Given two graphs G = (V,E) and G' = (V',E'), and a mapping
m CV x V', the two following properties are equivalent:

1. m is a mapping that minimizes the distance 0™ =< §,'°°, 6], @5~ >
2. the subgraph G, of G induced by the matching m is a mazimum common

induced subgraph of G and G’

Proof. The proof of correctness is decomposed into two steps, we first show that,
for every matching m C V x V' such that 67**(G, G’) = d # +o0, the subgraph
G, of G induced by the mapping m is an induced common subgraph of G and
G’ such that |G,,| = |G| — d. In a second step, we show that, if there exists an
induced subgraph G” of G isomorphic to an induced subgraph of G’, then, we
can find a matching m having a distance d equal to |G| — |G”| and such that
G" = G,,, the subgraph of G induced by the matching m. Then, as we prove
that each common induced subgraph G” corresponds to a mapping inducing a
non infinite distance inverse to the size of G” (and reversely), the property holds.



e (Ge,Gy) = d < +00 = G4y is a common induced subgraph of G and
G’ such that |G| = |G| — d. Given the vertex and edge distance function, if
dmaa (G2, Gy) < +oo then m is a univalent matching (because all non uni-
valent matchings give a distance equal to 4+00). By definition, the subgraph
Gom = (Vam, Eam) of G induced by m is a partial subgraph of G2 and of G.
Furthermore, given the definition of the edge distance function, (u,v) € Eay, =
(u,v) € E and (u,v) & Fam = (u,v) € E. As a consequence, Ga,, is an induced
(i.e., a non partial) subgraph of G and Ga,, = G, In the same way, we can
also prove that the subgraph G5,, = (V3,,, F4,,) of G4 induced by m is an in-
duced subgraph of G’ and that G5, = G/,,. Finally, m is a univalent matching
and, given the definition of the vertex and edge distance functions, m is such
that (u,v) € E,, < (m(u),m(v)) € E], so, m define an isomorphism matching
between G,, and G),. As a consequence Gy, is a common induced subgraph of
G and G'. Finally, as only the number of non-recovered vertices of G influences
(positively) the distance, |Gy, | = |G| — d.

G" is a common induced subgraph of G and G’ = Im such that d,,cer (Ge, GS) =
|G| — |G”| and such that G,, = G”. If there exists a common induced sub-
graph G” = (V' E") of G = (V,E) and G' = (V', E’), then, by definition
of an induced common subgraph, there exists at least one induced subgraph
G" = (V" E") of G’ and one bijective matching m C V" x V" such that
(u,v) € E"” < (m(u),m(v)) € E"”. Given the vertex and edge distance func-
tions, we can see that the distance 6., (G2, G%) is equal to |G| — |G”| and that
Gm =G".

Graph edit distance (ged)

Problem definition. Given two labelled graphs G; and G (i.e., graphs where a
label is associated to each vertex and each edge), the graph edit distance of Gy
and G5 is the minimum cost set of weighted operations needed to transform G;
into G2. Considered operations are insertions, substitutions (i.e., relabelling),
and deletions of vertices and edges. Bunke shows in [7] that, when considering
appropriate weight definitions, ged is closely related to the maximum common
subgraph, and therefore it is also closely related to the similarity measure based
on it.

Bunke and Jiang define formally the graph edit distance in [9]. A labelled
graph is defined by a tuple G = (V, E, L, o, ) where V is a set of vertices, E is
a set of edges, L is a set of labels, a : V' — L is a total function labelling the
vertices of G and §: E — L is a total function labelling the edges of G. Given
two labelled graphs Gl = (Vvl,El,Ll,Oél,ﬂl) and G2 = (%,E27L2,Oé27/82), an
error tolerant graph matching is a univalent matching* m C Vi x V5. The vertex u
is substituted by the vertex v if m(u) = v. If a3 (u) = az(m(u)), the substitution
is called an identical substitution, otherwise, it is a non-identical substitution.
Every vertex v € V; such that m(v) = 0 is deleted by m and every vertex

*In [9], an error tolerant graph matching is defined as a partial injective function
f Vi — V5 but for a reason of homogeneity, we define it as a univalent matching



v’ € V3 such that m(v') = () is inserted by m. The same terms are used for the
substituted, deleted and inserted edges of the graphs. A cost ¢,s (resp. ¢, and
Cvd) 18 associated to the non-identical vertex substitutions (resp. insertions and
deletions) and a cost ces (resp. c.; and c.q) is associated to the non-identical edge
substitutions (resp. insertions and deletions). Once the six operation costs are
set, the cost of an error tolerant graph matching m is defined as the sum of the
costs of each operation induced by m. Finally, the graph edit distance between
two graphs is defined as the minimum cost error-tolerant graph matching.

Measure definition. Each univalent graph matching of our model corresponds to
an error-tolerant graph matching of Bunke and Jiang [9]. As a consequence, if
the vertex and edge distance functions are defined in such a way that they
reproduce the cost of each operation while forbidding non-univalent match-
ings, the distance between G| and GY with respect to a univalent mapping
m corresponds to the cost of the error-tolerant graph matching defined by m.
More formally, to compute the graph edit distance between two labelled graphs
G1=(V1,E1,Li,01,01) and Go = (Va, Ea, Lo, a2, B2), we need to compare the
graphs G| = (V1,E1) and G = (Va, E») with the following vertex and edge
distance functions:

Vv € V1,Vs, C Vs, (55&(1102(1),51,) = Cpagif s, =0
0if s, = {Vv'} A a1 (v) = az(v)
Cps I 8, = {V'} A a1 (v) # ag(v')
o +00 if]s,| > 1
! V(u,v) € E1,Vse C Ea, 552{02 (U, v, 8¢) = Ceq if 5 =0
0if se = {(u/, ")} A Bi((u, ) = Ba((u',v"))
oo 1 5y = {0} A B, 0)) £ (o, ')
+oo if|se| > 1
Vv € Va,Vs, C V4, 532116;2(1),51,) = cpiif s, =0
0if |s,] =1
a +00 if]s,| > 1
2 Y(u,v) € By, Vs, C Ey, 55811612 (U, v, 8e) = Cei if 56 =10
0if [se] =1
+oo if|s.| > 1

Theorem 7. Given two labelled graphs G1 = (Vi,E1,L1,01,01) and Gy =
(Va, Ba, Lo, g, B2), the graph edit distance of Bunke and Jiang [9] is equal to
the distance 6%61%2 =< 553110275525@:@2 > between the graph G} = (V1, E1)
and the graph G4 = (Va, E3).

Proof. The proof of correctness is trivially done first by proving the equivalence
between the set of error-tolerant graph matchings and the set of univalent graph
matchings and second, by proving that, given a univalent matching m, the com-
puted distance with respect to m is equal to the cost of the error-tolerant graph
matching m.



4.3 Multivalent graph matching

In this subsection we show how to model different multivalent graph matching
problems as graph distance measures. These problems being optimisation prob-
lems, the objective is always to find the matching giving the lowest distance.

Extended graph edit distance

Problem definition. In order to compare over- and under-segmented images, Am-
bauen et al. [3] propose to extend ged with two new operations: vertex splitting
—to split one vertex of G into several vertices of G’— and vertex merging —to
merge several vertices of G into one single vertex of G’. These two new operations
are added in order to merge over-segmented regions and to split under-segmented
regions. Each one of these new operations is weighted by a cost cepiir and cmerge
(but, in [3], these costs are set to 0). Finally, non-overlapping constraints are
added on the two kinds of "multivalent matching" operations (vertex merging
and splitting): if we want to link two vertices u and v of one graph to another
vertex u’, we need to merge u and v. As a consequence, it will not be possible
anymore to link u with a vertex v’ without linking v to v’.

Measure definition. We can model the extended graph edit distance with our
graph distance measure in the same way that for the (non extended) graph edit
distance. The vertex and edge distance functions are similar but must not return
400 when a multivalent matching is considered and the vertex distance func-
tion §, must take into account the vertex merging and splitting operation costs.
However, this modelisation does not care of the non-overlapping constraint. To
modelize exactly the graph edit distance, we need to use a more sophisticated
vertex distance function and a function ® different of the function ®y-~ in order
to check the non-overlapping constraint. The idea is to define distance functions
in such a way that the matching m can be reconstructed from the distances,
and then to check in the ® function that the considered matching satisfies the
non-overlapping constraints. We do not present here this more complicated mod-
elisation because we propose a modelisation of the graph similarity of Champin
and Solnon [11] in section 5 and that it has been shown in Sorlin and Solnon
[28] that one can compute the extended graph edit distance by computing this
graph similarity measure.

However, if we consider the extended graph edit distance without the non-
overlapping constraints, the proof of correctness can be trivially done in the
same way than for non-extended graph edit distance: each multivalent match-
ing corresponds to an extended error-tolerant graph matching and our distance
function can weight this graph matching in the same way than Ambauen and
al. did [3].

Non bijective graph matching problem



Definition. Boeres and al. [6] propose a non-bijective graph similarity measure to
compare medical images of brains to an image model of a brain. The model has a
schematic aspect easy to segment whereas the real image is noised and generally
over-segmented. As a consequence, when comparing the image graph to the
model graph, one needs to use a non-bijective graph matching where the vertices
of the model graph may be linked to a set of vertices of the image graph in order
to merge over-segmented regions of the image graph. The similarity between
an image graph and its model is computed with respect to vertex and edge
similarity matrices and the problem consists in finding the best matching (the
one with the highest similarity) that respects application dependant constraints.
More formally, two graphs are used to represent the problem: the model graph
G1 = (W1, E1) and the image graph Gy = (Va, Eq) (with |V1| < |V3]). A solution is
a matching m C Vi x V, between GG; and G2 such that each vertex of G is linked
to a non-empty set of connected vertices of Gy (i.e., Vv € V4, |m(v)] > 1 and the
vertices of m(v) are connected by edges of Fs) —in order to only merge connected
regions—, and each vertex of Gs is linked to exactly one vertex of Gy (i.e., Vv €
Va,|m(v)| = 1). Finally, some couples of vertices cannot be matched together.
Given any matching that respects these constraints, a similarity measure sim/[6],,
is computed with respect to a vertex and an edge similarity function sm,, :
Vi x Vo — [0,1] and sm. : E1 x E5 — [0, 1] as follows:

Z sy (u,v) Z 1 — smy(u,v)

sim[G]m _ (u,v)eMm (u,v)E(VixVa)—m
[Vil.|Va [Vil.[V2|
sme((u, '), (v,0"))
((u,u’),(v,0"))EEL X Ea , {(u,v),(u,v")}em
| E1 || Ex|

+

_|_

1 — sme((u,u), (v,0"))
((w,u’),(v,0"))EEL X Eg {(u,v),(u'v") }¢m
|1 || Es|

Measure definition. By properly choosing vertex and edge distance functions
0, and J., we can model the similarity of Boeres and al. as a graph distance
measure. The vertex distance function returns +oo when the matching violates
a constraint and both the vertex and edge distance function reproduce the sim-
ilarity matrices sm, and sm.. More formally:

Yv € V1,Vs, C %,5Z}b9m(v,$v) = Zv,esv 1 — smy(v,v")
+ Zv’GVz—sU va(’U, UI)
if connected(v, s,)
+o00 otherwise
Y(u,v) € E1,Vs. C Ea, 679 ((u,v), 8.) = Z(u,,v,)ese 1 — sme((u,v), (u',v"))

+ Z(u’,v’)eE275€ Sme((u, U)7 (u/v vl))

Gy



Yo € Vo, Vs, C Vi,8m09™ (v, 5,) = 0 if allowed(v, s,)
Ga 400 otherwise
V(u',v'") € By,Vse C Ey, "9 ((u/,v'),5.) = 0

where connected and allowed are two functions introduced to check the con-
straints. connected is a function returning +oo when a vertex of the model is
not matched or when it is matched to a non-connected set of vertices and 0
otherwise. allowed is a function returning +o0o when a vertex of the image is not
matched to only one allowed vertex of the model and 0 otherwise:

Vv € V1,Vs, C Vo, connected(v, s,,) = true if s, is a non-empty set of
connected vertices
false otherwise
Yo € Vo,Vs, C Vi, allowed(v, s,) = true if s, = {v'} A (v,v')is allowed

false otherwise

Theorem 8. If the matching m minimizing the distance ™9™ =< §nbgm §nbom Ry >
gives rise to a non-infinite distance, then m is the matching that maximizes the
similarity of Boeres et al. otherwise, there does not exist a mapping that satisfies

the hard constraints of the similarity of Boeres et al.

Proof. We can easily prove that, thanks to the functions connected and allowed,
the distance between GG; and G2 with respect to a matching m is equal to +o0
if and only if m is a matching that violates at least one constraint. Finally, by
decomposing the vertex and edge distance functions, we can prove that the dis-
tance 69" is inverse to the similarity of [6] and as a consequence, the matching
minimizing the distance 6"%9™ is the matching that maximizes the similarity of
Boeres et al.

5 Graph similarity of Champin and Solnon [11]

In [28], we show that the similarity of Champin and Solnon [11] is generic in the
sense that, by properly instanciating parameters of this measure, it can be used
to solve all the graph matching problems listed above. In this section, we briefly
present the graph similarity measure of Champin and Solnon and we show that
this measure and our graph distance measure are equivalent in the sense that
they can express the same graph matchings problems.

5.1 Definition of the graph similarity of Champin and Solnon [11]

The measure of Champin and Solnon is defined for multi-labelled graphs, i.e.,
graphs where a non-empty set of labels is associated to each vertex and each
edge of the graphs. More formally, given a set Ly of vertex labels and a set Lg
of edge labels, a multi-labelled graph G is defined by a tuple G = (V,ry,rg)
such that:



— V is a finite set of vertices,

— ry C V x Ly is a relation associating labels to vertices, i.e., ry is the set of
couples (v;,1) such that vertex v; is labeled by I,

— rg CV xV x Lg is a relation associating labels to edges, i.e., rg is the set
of triples (v;,v;,1) such that edge (v;,v;) is labeled by . Note that the set
E of edges of the graph can be defined by E = {(v;, v;)|3l, (vs,v;,1) € rp}.

The first step for measuring graph similarity of two graphs G = (V,ry,rg)
and G’ = (V' ry/,rg:) defined over the same set Ly and Lg of vertex and edge
labels is to match their vertices. The matching m considered here is multivalent,
e, mCV x V.

Once a multivalent mapping is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This
set contains all the features from both G and G’ whose vertices (resp. edges)
are matched by m to at least one vertex (resp. edge) that has the same feature.
More formally, the set of common features G M,, G’, with respect to a matching
m, is defined as follows:

v, 05,1) € ’I’EB(’U;,’U;) € m(v;, vj), (1};,1}}, YETE}
!

U {(vf, v}, 1) € re/|3(vi, v;) € m(vi, v}), (vi,v5,1) € rE}

]7
Given a multivalent matching m, we also have to identify the set of split

vertices, i.e., the set of vertices that are matched to more than one vertex, each
split vertex v being associated with the set s, of its mapped vertices:

splits(m) = {(v,m(v))|v € VUV’ |m(v)| > 2}

The similarity of G and G’ with respect to a mapping m is then defined by:

f(Gw G') — g(splits(m))
f(TV UrgUry, U T’El)

simp (G, G") = (3)

where f and g are two functions that are introduced to weight features and
splits, depending on the considered application.

Finally, the maximal similarity sim(G,G’) of two graphs G and G’ is the
highest similarity with respect to all possible mappings:

J(G Ny, G') — g(splits(m))

im(G,G") =
sim( ) mCVvxVv'  f(ry UrgUry Urg)

(4)



5.2 Our graph distance measure and the graph similarity of
Champin and Solnon

Both our graph distance measure and the graph similarity of Champin and
Solnon have been shown generic in the sense that they can be used to model
many other graph distance and similarity measures from the litterature. We show
here that these two measures have the same ability to represent graph matching
problems.

Theorem 9. Given a graph similarity measure of Champin and Solnon (defined
by the two functions f and g) of two multi-labelled graphs Gy = (Vi,rv1,7E1) and
Go = (Va,1rva,rE2) defined over the same sets Ly and Ly of vertex and edge
labels, there exists a distance definition § =< 0,,0.,® > between two graphs
G} = (V1, E1) and Gy = (Va, E3) such that the matching m which minimizes the
distance 0 between G| and GY is the matching which mazimizes the similarity of

G1 and Gs.

Proof. In order to make the proof, we first show that a multi-labelled graph
G = (V,ry,rg) can be modelled by a graph G’ = (V, E) with two functions [,
and [ labelling the vertices and the edges of G’. Then, we show that it is possible
to define the distance functions J, and J. in such a way that the arguments of
the function ® contains the matching done (i.e., all the information required to
compute the arguments of the functions f and g). As a consequence, the function
® can compute the same value than the functions f and ¢ in the similarity of
Champin and Solnon.

For each multi-labelled graph G = (V,ry,rg) defined over the sets Ly and
L of vertex and edge labels, one can define the graph G’ = (V, FE) and two
labelling functions:

- E ={(u,v),3(u,v,l) € rg}
1V = (L), Yo € V,iu(v) = {1/(0) € rv)
—le: E— p(Lg),Y(u,v) € E,l.(u,v) ={l/(u,v,l) € rg}

Once the graphs to be compared are defined, one needs to define the vertex
and edge distance functions. These functions must return a value corresponding
to the matching done. More formally, as the set of vertices is finite, we can define
a bijective function num : p(V4) — N that associates a unique integer value to
every different subset of vertices of G%. The function num is used by the vertex
distance function 4, to return the set of vertices of G%, matched to each vertex
of G:

Yo € V1,Vs, C Va, 04(v, 8y)
Yo € Va,Vs, C Vi,0,(v,8,) =
V(u,v) € E1,Vse C Ea,6c((u,v), s)
V(u',0v") € Ea,Vse C By, 8.((u/,0"), 8e) =
With such a function 4, the set of tuples S = {(u, §,(u,m(u)))/u € V} can
be used to reconstitute the matching m done:

m = {(u,v)/3(u,d) € SAu € num™(d)}



The set S of these tuples being a subset of its arguments, the function ® can
be defined in such a way that ® reconstitutes the matching m and computes the
sets G My, G’ and splits(m). As a consequence, the function ® can reconstitute
the arguments of the functions f and g°.

Theorem 10. Given a distance definition § =< ,, 0., ® > between two graphs
G1 = V1, E1) and Go = (V, E»), there exists a graph similarity measure of
Champin and Solnon (defined by the two functions [ and g) of two multi-labelled
graphs G| = (Vi,rv1,rm) and Gy = (Va,rya,rE2) such that the matching m
which minimizes the distance 0 between G1 = (V1, E1) and Go = (Va, E3) is the
matching which maximizes the similarity of G| and GY.

Proof. In order to make the proof, we show that, by properly choosing the multi-
labelled graphs G; and G> to compare, the set G1 M,, G2 can contain all the
information required to know the matching m done. As a consequence, the func-
tion f that takes this set as parameter can compute the functions d,, d. and
&.

Given two graphs G; = (V4,E1) and Gy = (Va, Es), we define the multi-
labelled graphs G| = (V1,ry1,rve) and Gy = (Va, rya, rge) and the sets Ly and
Lg of vertex and edge labels such that:

Ly ={(u,v),u e Vi,veVo} Lg={l.}
rv1 = {(u, (u,v)),u € Vi,v € Va} , rg = {(u,v,l.), (u,v) € Er}
rva = {(v, (u,v)),u € Vi,v € Va} , rga = {(u,v,le), (u,v) € FEa}

With such multi-labelled graphs, the set G M,, G5 of common labels recovered
by m contains all the information required to reconstitute the matching m done:

m = {(u,v)/3I(u, (u,v)) € Gy Ny, G5}

The set G My, G4 being its argument, the function f can be defined in such
a way that f reconstitutes the matching m and computes the values of the
functions d,, d. and ®. The property holds.

The measure of Champin and Solnon and our distance measure have the same
ability to represent graph matching problems. However, our distance measure
is more flexible. If vertices and edges have properties represented by continuous
values, our distance measure is able to compare these values in a straightforward
way while the similarity of Champin and Solnon can only binarily compare
properties represented by discrete values. Furthermore, some constraints on the
matching are easier to express with our distance than with the similarity of
Champin and Solnon. For example, the matching constraint "to be only matched
to vertices having a given property" is easily expressed into the function ¢, of our
distance and is difficult to express with the similarity of Champin and Solnon
because this similarity is defined with respect to the set of labels recovered by
the matching.

5 Note however that in one case the problem is to minimize the distance and in the
other case, the problem is to maximize the similarity. So, the function ® must be
defined in consequence.



6 Computing the distance between two graphs

All matching problems described in section 4 are NP-complete or NP-hard prob-
lems, except for the graph isomorphism problem, the complexity of which is not
exactly stated®. As a consequence, computing the distance between two graphs
is also a NP-hard problem in the general case.

Complete algorithms have been proposed for computing the matching which
maximizes the similarity of Champin and Solnon [11] and for computing the
extended graph edit distance of Ambauen and al. [3]. This kind of algorithms,
based on an exhaustive exploration of the search space combined with pruning
techniques, guarantees solution optimality. However, these algorithms are limited
to very small graphs. Therefore, incomplete algorithms, that do not guarantee
optimality but have a polynomial time complexity, appear to be good alterna-
tives. We propose in [11,28,25,26] three incomplete algorithms for computing
the similarity of Champin and Solnon. These algorithms can easily be adapted
to compute our graph distance.

Greedy algorithm. We propose in [11] a greedy algorithm. The algorithm
starts from an empty matching m = {), and iteratively adds to m couples of
vertices chosen within the set of candidate couples cand = V x V' — m. This
greedy addition of couples to m is iterated until m is locally optimal, i.e., until
no more couple addition can increase the similarity. At each step, the couple to
be added is randomly chosen within the set of couples that most increase the
similarity. This greedy algorithm has a polynomial time complexity of O((|V| x
[V'])?), provided that the computation of the f and g functions have linear time
complexities with respect to the size of the matching.

Reactive tabu search. The greedy algorithm of [11] returns a "locally optimal"
matching in the sense that adding or removing one couple of vertices to this
matching cannot improve it. However, it may be possible to improve it by adding
and/or removing more than one couple to this matching. In order to improve
the matching returned by the greedy algorithm, we propose in [11, 28] a reactive
tabu search.

A local search [16,21] tries to improve a solution by locally exploring its
neighborhood: the neighbours of a matching m are the matchings which can be
obtained by adding or removing one couple of vertices to m.

From an initial matching, computed by the greedy algorithm, the search space
is explored from neighbour to neighbour until the optimal solution is found (when
the optimal value is known) or until a maximum number of moves have been
performed. The tabu meta-heuristic [16, 24] is used to choose the next neighbour
to move on. At each step, the best neighbour, i.e., the one that most increase
the similarity, is chosen. To avoid staying around locally optimal matchings by

% For particular graphs (such as trees or planar graphs) the graph isomorphism prob-
lem is polynomial ([1,19,23]) ; in general case, the graph isomorphism problem
clearly belongs to NP but has not be proved to belong in P neither to be NP-
complete.



always performing the same moves, a tabu list is used. This list has a length
k and memorizes the last k moves (i.e., the last & added/removed couples of
vertices) in order to forbid backward moves (i.e., to remove/add a couple recently
added/removed).

The length k of the tabu list is a critical parameter that is hard to set: if
the list is too long, search diversification is too strong so that the algorithm
converges too slowly; if the list is too short, intensification is too strong so that
the algorithm may be stuck around local maxima and fail in improving the
current, solution. To solve this parameter tuning problem, Battiti and Protasi
[5] introduced Reactive Search where the length of the tabu list is dynamically
adapted during the search.

Ant Colony Optimization. We also proposed in [25,26] to use the Ant
Colony Optimization (ACO) meta-heuristic approach to compute the similar-
ity of Champin and Solnon. The ACO meta-heuristic is a bio-inspired approach
[15, 14] that has been used to solve many hard combinatorial optimization prob-
lems. The main idea is to model the problem to solve as a search for an optimal
path in a graph —called the construction graph— and to use artificial ants to
search for 'good’ paths.

The behavior of artificial ants mimics the behavior of real ones: (i) ants lay
pheromone trails on the components of the construction graph to keep track of
the most promising components, (ii) ants construct solutions by moving through
the construction graph and choose their path with respect to probabilities which
depend on the pheromone trails previously laid, and (%4) pheromone trails de-
crease at each cycle simulating in this way the evaporation phenomena observed
in the real world.

Given two graphs G = (V, E) and G’ = (V', E') to match, the construction
graph is the complete non-directed graph that associates a vertex < (u,u’) > to
each couple (u,u’) € V x V'. Each elementary path into this graph represents a
matching m CV x V.

At each cycle, each ant of a colony constructs a matching in a randomized
greedy way: starting from an empty matching m = (), the ant iteratively adds
couples of vertices that are chosen within the set cand = {(u,u’) € V. x V' —m}.
As usually in ACO algorithm, the choice of the next couple to be added to m
is done with respect to a probability that depends on pheromone and heuristic
factors (i.e., the similarity added when adding the couple). A simple local search
procedure may be applied on built matchings to improve their quality.

Once each ant of the colony has built a matching, pheromone trails are up-
dated according to the best matching found. Pheromone is laid on each vertex
< (u,u') > of the best found path in a quantity proportional to the similarity
induced by the matching. As a consequence, the amount of pheromone on a
vertex < (u,u’) > represents the learnt desirability to match u with u'. This
process stops iterating either when an ant has found an optimal matching, or
when a maximum number of cycles has been performed.

Experimental results. These three algorithms have been experimentally com-
pared on three different test suites: graph and subgraph isomorphism problems,



randomly generated multivalent problems and the non-bijective graph matching
problems of Boeres et al. [6]. Each one of these problems has been transformed
into a graph similarity measure computing problem and we always use exactly
the same code whatever the problem to solve is.

Experimental results showed us that on graph and subgraph isomorphism
problems, our algorithms are not competitive with dedicated algorithms: our
reactive tabu search and ACO algorithms are able to solve these problems but are
clearly longer than dedicated algorithms. These results can be explained by the
fact that our algorithms do not use any kind of filtering techniques and potentialy
explore all kinds of mappings, even multivalent ones. On the 7 instances of
the non-bijective graph matching problem, our algorithms obtain better results
than LS+, the reference algorithm of [6] (6 instances on 7 are better solved by
reactive tabu search and 7 instances on 7 are better solved by ACO algorithm).
On all these instances, ACO obtains better results than reactive tabu search
but reactive tabu search finds the solutions in shorter times than ACO. On
multivalent graph matching problems, reactive tabu search and ACO obtain the
same results. However, reactive tabu search finds the solutions in shorter times
than ACO.

As a consequence, ACO usually obtains better results but is slower than
reactive tabu search. These two algorithms are complementary: if we need to
quickly compute a "good" solution of hard instances or if instances are easy, we
can use tabu but if we have more time to spend on computation or if we want
to solve very hard instances, we can use ACO.

7 Conclusion

In this paper, we propose a graph distance measure. This distance is generic: it is
based on multivalent matchings of the graph vertices and it is parameterized by
two distance functions ¢,, and J. used to introduce the application dependant dis-
tance knowledge on vertices and edges and a function ® used to aggregate these
local preferences. We have shown that we can use our graph distance measure
to solve many graph matching problems including the problem of computing the
generic graph similarity of Champin and Solnon. We quickly describe three al-
gorithms to compute this generic distance measure: a greedy algorithm which is
used as a starting point of the two other algorithms, a reactive tabu local search
and an Ant Colony Optimization algorithm to improve the solutions obtained by
the greedy algorithm. These two last algorithms obtain complementary results.
These algorithms are generic so that they can be used to solve any kind of graph
matching problem.

References

1. AV. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer
algorithms. Addison Wesley, 1974.



10.

11.

12.

13.

14.

15.
16.
17.
18.
19.

20.

21.

22.

T. Akutsu. Protein structure alignment using a graph matching technique, cite-
seer.nj.nec.com/akutsu95protein.html, 1995.

R. Ambauen, S. Fischer, and H. Bunke. Graph Edit Distance with Node Splitting
and Merging, and Its Application to Diatom Identification. In E.Hancock and
M. Vento, editors, JAPR-TC15 Wksp on Graph-based Representation in Pattern
Recognition, volume 2726 of LNCS, pages 95-106. Springer, 2003.

R. Baeza-Yates and G. Valiente. An image similarity measure based on graph
matching. In Proceedings of 7th Int. Symp. String Processing and Information
Retrieval, pages 28-38. IEEE Computer Science Press, 2000.

R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
In Springer-Verlag, editor, Algorithmica, volume 29, pages 610-637, 2001.

M. Boeres, C. Ribeiro, and I. Bloch. A randomized heuristic for scene recognition
by graph matching. In WEA 2004, pages 100-113, 2004.

H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18:689-694, 1997.

H. Bunke. Graph matching : Theoretical foundations, algorithms, and applications.
In Proc. Vision Interface 2000, Montreal, pages 8288, 2000.

H. Bunke and X. Jiang. Graph Matching and Similarity, volume Teodorescu, H.-
N., Mlynek, D., Kandel, A., Zimmermann, H.-J. (eds.): Intelligent Systems and
Interfaces, chapter 1. Kluwer Academic Publishers, 2000.

Horst Bunke. Recent developments in graph matching. In ICPR 2000, pages
2117-2124, 2000.

P.-A. Champin and C. Solnon. Measuring the similarity of labeled graphs. In
5th International Conference on Case-Based Reasoning (ICCBR 2003), volume
Lecture Notes in Artificial Intelligence 2689-Springer-Verlag, pages 80-95, 2003.
D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265-298, 2004.

A. Deruyver, Y. Hodé, E. Leammer, and J.-M. Jolion. Adaptive pyramid and
semantic graph: Knowledge driven segmentation. In Luc Brun and Mario Vento,
editors, Graph-Based Representations in Pattern Recognition: 5th IAPR Interna-
tional Workshop, GbRPR 2005, Poitiers, France, April 11-13, 2005. Proceedings,
volume 3434 of LNCS, page 213. Springer, 2005.

M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D.
Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw
Hill, London, UK, pages 11-32, 1999.

M. Dorigo and T. Stiitzle. Ant colony optimization. MIT Press, 2004.

F. Glover. Tabu search - part I. Journal on Computing, pages 190-260, 1989.

A. Hlaoui and S. Wang. A new algorithm for graph matching with application to
content-based image retrieval. LNCS, Volume 2396, 2002.

L. Holm and C. Sander. Mapping the protein universe. Science 273, pages 595-602,
1996.

J.E. Hopcroft and J-K Wong. Linear time algorithm for isomorphism of planar
graphs. 6! Annu. ACM Symp. theory of Comput., pages 172-184, 1974.

J.M. Jolion. Graph matching : what are we really talking about? In 3rd IAPR-
TC15 workshop on Graph-based Representations in Pattern Recognition, pages
170-175, 2001.

S. Kirkpatrick, S. Gelatt, and M. Vecchi. Optimisation by simulated annealing. In
Science, volume 220, pages 671-680, 1983.

D. Lin. An Information-Theoretic Definition of Similarity. In proc. of ICML 1998,
15th Inter. Conf. on Machine Learning, pages 296-304. M. Kaufmann, 1998.



23.

24.

25.

26.

27.

28.

29.

30.

E.M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer System Science, pages 42—65, 1982.

S. Petrovic, G. Kendall, and Y. Yang. A Tabu Search Approach for Graph-
Structured Case Retrieval. In STAIRS 2002, pages 55—64, 2002.

O. Sammoud, C. Solnon, and K. Ghédira. Ant algorithm for the graph matching
problem. In 5th FEuropean Conference on Evolutionary Computation in Combi-
natorial Optimization (EvoCOP 2005) -, volume 3448 of LNCS, pages 213-223.
Springer, April 2005.

O. Sammoud, S. Sorlin, C. Solnon, and K. Ghédira. A comparative study of
ant colony optimization and reactive search for graph matching problems. In 6th
European Conference on Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2006), volume to appear of LNCS. Springer, April 2006.

A. Schenker, M. Last, H. Bunke, and A. Kandel. Classification of web documents
using graph matching. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):475-496, 2004.

S. Sorlin and C. Solnon. Reactive tabu search for measuring graph similarity. In
Luc Brun and Mario Vento, editors, 5th IAPR-TC-15 workshop on Graph-based
Representation in Pattern Recognition, pages 172-182. Springer Verlag, 2005.

A. Tversky. Features of Similarity. In Psychological Review, volume 84, pages
327-352. American Psychological Association Inc., 1977.

S. Zampelli, Y. Deville, and P. Dupont. Approximate constrained subgraph match-
ing. In 11th International Conference on Principles and Practice of Constraint
Programming, number 3709 in LNCS, pages 832-836. Springer, 2005.



