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We study Ising antiferromagnets that have nearest-neighbour interactions on multilayer triangular
lattices with frustrated (abc and abab) stacking, and make comparisons with the unfrustrated (aaa)
stacking. If interlayer couplings are much weaker than in-plane ones, the paramagnetic phase of
models with frustrated stackings has a classical spin-liquid regime at low temperature, in which
correlations are strong both within and between planes, but there is no long-range order. We
investigate this regime using Monte Carlo simulations and by mapping the spin models to coupled
height models, which are treated using renormalisation group methods and an analysis of the effects
of vortex excitations. The classical spin-liquid regime is parametrically wide at small interlayer
coupling in models with frustrated stackings. By contrast, for the unfrustrated stacking there is no
extended regime in which interlayer correlations are strong without three-dimensional order.

I. INTRODUCTION

The triangular lattice Ising antiferromagnet is ar-
guably the simplest model of a highly frustrated magnet
and was probably the earliest such system to be studied
in detail1. At low temperatures it is both highly fluctuat-
ing and strongly correlated; indeed, it remains disordered
down to zero temperature and has a macroscopically de-
generate ground state. The combination of fluctuations
with correlations is typical more generally of highly frus-
trated magnets, which in this regime have been termed
cooperative paramagnets or classical spin-liquids2.

In this paper we consider three-dimensional (3D)
Ising antiferromagnets built from triangular layers that
are stacked in such a way that nearest-neighbour in-
terlayer interactions are frustrated, and make compar-
isons with the unfrustrated stacking. We focus on low-
temperature behaviour in systems with weak interlayer
coupling, where correlations within each layer are nec-
essarily strong but correlations between layers are con-
trolled by a competition between fluctuations and inter-
actions. Using a combination of perturbative and non-
perturbative analytical techniques and Monte Carlo sim-
ulations, we show that this competition leads to a classi-
cal spin liquid regime, in which strong correlations exist
without long range order.

Models for frustrated magnets can be classified at the
mean-field level according to the properties of the matrix
of exchange interactions. In this approach, the eigen-
vectors associated with the minimum eigenvalues of the
interaction matrix provide candidate ordering patterns.
These minimum eigenvalues appear at isolated points in
reciprocal space for unfrustrated systems, but may be
highly degenerate for frustrated systems. For example,
for nearest neighbour interactions on the kagome and
pyrochlore lattices, the subspace of minimum eigenval-
ues forms a flat band that spans the entire Brillouin
zone2–4. Other cases display intermediate behaviour: on
the diamond lattice with nearest and next-nearest neigh-
bour interactions, the minimum eigenvalues form a two-

dimensional surface in the 3D Brillouin zone5. The sys-
tems we discuss here are distinctive in having minimum
eigenvalues that lie on lines in the 3D Brillouin zone6.
One of our central findings is that these systems have a
cooperative paramagnetic regime in which they develop
strong correlations that are centred near these reciprocal-
space lines.

The three different ways of stacking triangular lay-
ers that we compare in this work are indicated in stan-
dard notation by aaa, abc, and abab: see Fig. 1. Of
these, the first provides a reference model without in-
terlayer frustration, while the abc stacking yields mini-
mum eigenvalues along helices in the Brillouin zone, and
the abab stacking gives minimum eigenvalues on a ring
around the Brillouin zone corner. The abc stacking with
equal in-plane and interlayer interactions is equivalent
to a nearest-neighbour model on the face-centered-cubic
(fcc) lattice, while the abab stacking forms the hexagonal-
close-packed (hcp) lattice.

Moving beyond a mean-field classification, the theo-
retical understanding of stacked triangular lattice Ising
antiferromagnets (TLIAFMs) that we develop here is
based on the height model description of low-temperature
states for a single layer7,8. This long-established model
represents ground states of a layer in terms of an emer-
gent height field, with a simple effective Hamiltonian that
captures the entropy of fluctuations. A spin-flip exci-
tation fractionalises into an unbound vortex-antivortex
excitation pair in the height field, and the vortex sepa-
ration sets the correlation length at finite temperature
in the single-layer model. In the following we derive and
study height models for weakly coupled multilayer sys-
tems, showing how the interplay of interlayer coupling
and vortex excitations allows strong correlations to de-
velop between layers, without long-range order. We also
use the results of extensive Monte Carlo simulations to
test these conclusions and to examine behaviour when
interlayer coupling is not weak.

Our study is motivated in part by observations9,10 of
charge ordering in the materials LuFe2O4 and YbFe2O4.
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FIG. 1. The three different ways of stacking triangular lattices
that are considered in this paper: aaa (top left), abc (top
right), abab stacking (bottom). In-plane interactions J and
interlayer interactions J⊥ are indicated with full and dashed
lines, respectively.

The charge states of Fe2+ and Fe3+ ions in these systems
can be represented using Ising pseudospins, with antifer-
romagnetic coupling between pseudospins arising from
screened Coulomb interactions9,11. The pseudospins oc-
cupy the sites of an abc-stacked triangular lattice, though
with an alternating layer spacing that is not included
in the models we study. Experimental studies9,10,12, in
particular of YbFe2O4

10, find helices of scattering inten-
sity in a temperature range above a three-dimensional
charge-ordering transition. These helices mirror in their
reciprocal space location the positions of minimum eigen-
values of the interaction matrix discussed above. While
an accurate description of these materials would require
treating additional (magnetic) degrees of freedom12, the
results we present in this paper demonstrate how strong
interlayer correlations can arise over an extended tem-
perature range without long-range order.

Past theoretical work on charge ordering in these
materials has included quite detailed mean-field
treatments9,11 and Monte Carlo simulations of a bilayer
model13, but has not made use of the understanding
of single-layer TLIAFMs provided by height mod-
els, or used simulations to study correlations in the
paramagnetic phase with the detail we present here.

TLIAFMs with other stackings have been examined
previously in a variety of contexts. Treatments of the
abab case include mean-field theory, a low temperature
expansion, and Monte Carlo simulations14–16. That work

has probed the ordering transition, but without examin-
ing the limit of weakly coupled layers or correlations in
the paramagnetic phase. TLIAFMs with unfrustrated
(aaa) stacking have been of long-standing interest17.
They display a continuous phase transition that, strik-
ingly, is in the 3D XY universality class despite the ab-
sence of a microscopic continuous symmetry18,19. The
two components of the order parameter represent order-
ing at the two inequivalent Brillouin zone corners, and
the XY symmetry is broken in the ordered phase by dan-
gerously irrelevant six-fold anisotropies. This model and
transition are also important as an imaginary time repre-
sentation of the quantum dimer model on the hexagonal
lattice20.

The remainder of the paper is organised as follows.
We introduce the models studied and give an overview
of their physical behaviour in Sec. II. We describe Monte
Carlo results in Sec. III. We introduce height models in
Sec. IV and analyse their behaviour in Secs. V and VI.
Results from our different approaches are compared in
Sec. VII. Some technical details are described in a series
of appendices. An outline of some of the results has been
presented previously in Ref. 21.

II. MODELS AND OVERVIEW

The starting point for our investigation is the near-
est neighbour Ising antiferromagnet on stacked triangular
layers with anisotropic couplings. Each spin is coupled
to its six in-plane neighbours with an exchange constant
J > 0 and to the closest spins in the layers above and
below with an exchange constant J⊥ (see Fig. 1). The
Hamiltonian is

H = J
∑
〈ij〉,z

σi,zσj,z + J⊥
∑
{ij},z

σi,zσj,z+1 +H(1) (1)

where H(1) indicates further-neighbour interactions,
which may be present in the bare Hamiltonian or may
represent terms generated under renormalisation. Here
σi,z = ±1, the notation 〈i, j〉 denotes nearest neighbour
pairs of sites from the same layer, and {i, j} nearest
neighbour pairs from adjacent layers. The sign of J⊥ may
be taken positive without loss of generality, since it can be
reversed by the transformation: σi,z → σ′i,z = (−1)zσi,z.

We are concerned with the statistical mechanics of
these models as a function of temperature T and the in-
teraction strength ratio J⊥/J . At J⊥/J = 1, one expects
ordering below a temperature Tc ∼ J , while for J⊥/J = 0
the system of uncoupled layers remains disordered at all
temperatures. A schematic phase diagram obtained by
interpolating between these limits has the form shown
in Fig. 2. For J⊥/J � 1 the paramagnetic phase ex-
tends to temperatures T � J . In this regime, spins are
highly correlated within each layer. Our objectives are
to understand interlayer correlations and the form of the
phase boundary for small T/J and J⊥/J , in each of the
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FIG. 2. Schematic phase diagram for stacked triangular lat-
tice Ising antiferromagnets. The full line represents the phase
boundary, and the dashed line indicates a smooth crossover.

three stackings. For the two frustrated stackings we find
that at small J⊥/J there is a low-temperature regime
in which the correlation lengths, both in-layer and inter-
layer, are much larger than the lattice spacing. A system
in this regime is termed a cooperative paramagnet or clas-
sical spin liquid. This regime is smoothly connected to
the conventional paramagnetic state at T � J but dis-
tinguished from it by strong correlations.

For orientation it is useful to have a simple approach
that gives an initial indication of likely behaviour. Mean
field theory can often be employed in this way but fails
here, wrongly predicting an ordering temperature set by
J , even for small J⊥. An alternative that has been widely
applied in geometrically frustrated magnets is the self-
consistent Gaussian approximation (SCGA)22. It is well-
controlled only for n-component spins at large n, but is
known in some instances to be quite accurate even for
Ising systems23. In the SCGA, correlations are given in
terms of the interaction matrix J and the inverse tem-
perature β by

〈σiσj〉 =
[
(βJ + λI)

−1
]
ij
. (2)

Here, λ is a parameter fixed by the consistency condition
〈|σi|2〉 = 1, which can be satisfied throughout the para-
magnetic phase. Using a spectral decomposition of J in
terms of its eigenvalues εlq and eigenvectors ulq (α), where
α labels sites within a unit cell and l labels the bands of
J, the SCGA expression for the structure factor is

S(q) =
1

N

∑
i,j

[
(βJ + λI)

−1
]
ij
eiq·(ri−rj)

=
∑
l,α,α′

ul∗q (α)ulq (α′)

βεlq + λ
(3)

From this it is apparent [barring cancellations in the sum∑
α,α′ ul∗q (α)ulq (α′)] that maxima in S(q) arise from

minima in εlq.
Applying the SCGA to stacked triangular lattice an-

tiferromagnets, the paramagnetic phase extends to tem-
peratures T � J if J⊥ � J , and in this regime the

maxima in S(q) are sharply defined. To find the loca-
tion of these maxima in reciprocal space, we examine
the minima of εlq. We take axes with ẑ perpendicular to
the triangular layers, unit spacing between neighbouring
layers for the aaa and abc stackings, and unit spacing be-
tween neighbouring a-layers in the abab stacking, which
has two sites per primitive unit cell. We choose in-plane
lattice vectors

a1 = (1, 0, 0) and a2 = (1/2,
√

3/2, 0), (4)

The corresponding in-plane reciprocal lattice vectors are
A1 = 2π(1,−1/

√
3, 0) and A2 = 2π(0, 2/

√
3, 0). We

use δ to denote the separation vector between neigh-
bouring sites in adjacent layers. Hence δ = (0, 0, 1),

(1/2, 1/(2
√

3), 1) and (1/2, 1/(2
√

3), 1/2) for the aaa, abc
and abab stackings, respectively.

The contribution to εlq from in-plane interactions has
a minimum at the K-points of the triangular lattice Bril-
louin zone:

K = (
4π

3
, 0) and K′ = (

2π

3
,

2π√
3

). (5)

Upon inclusion of small J⊥, these minima evolve in dif-
ferent ways for each of the stackings we consider. For the
aaa stacking, they lie at isolated points, undisplaced in-
plane and at qz = π. For the frustrated stackings, their
locations can be specified in terms of the wavevector-
dependent complex scalar ζ = 1 + eiq·a1 + eiq·a2 . In the
abc case they lie on the curve

ζ = −J⊥
J
eiq·δ (6)

and in the abab case they lie on

|ζ| = J⊥
J
, qz = 0 . (7)

These conditions respectively define helices and rings cen-
tred on the zone corners, as shown in Fig. 3. Further
discussion of the interaction matrix eigenvalues is given
in Appendix A.

III. MONTE CARLO SIMULATIONS

We use extensive Monte Carlo simulations to find the
ordering temperature for all three models and to study
correlations in the paramagnetic phase of models on the
abc and abab stacked lattices. The primary observables
computed are the energy E, specific heat C, and the
structure factor S(q), which is obtained from the Fourier
transform of magnetisation

σ̃(q) =
∑
i

eiq·riσi (8)

as

S (q) =
1

L2Lz
〈|σ̃(q)|2〉. (9)
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FIG. 3. Location of surfaces on which eigenvalues of the in-
teraction matrix are constant and close to the minimum, for
(top) the abc stacking, and (bottom) the abab stacking, at
J⊥/J = 0.2.

Because of the complex energy landscape arising from
geometrical frustration, we employ a parallel tempering
algorithm with single-spin-flip Metropolis dynamics24,25.
Specifically, we simulate Nr replicas (taking Nr ∼ 100)
at geometrically spaced temperatures, with the highest
temperature ∼ 5J . A Monte Carlo sweep involves one
single-spin-flip attempt per site, followed by one paral-
lel tempering swap attempt between replicas at adjacent
temperatures. A system consists of Lz rhombic layers,
each of size L×L lattice constants, with periodic bound-
ary conditions in all directions. A typical simulation
treats ≈ 105 sites (L = 72− 200, Lz = 12− 48) using 105

sweeps. We measure E and C each sweep, and S(q) ev-
ery Nr sweeps. Further details of the data analysis are
presented in Appendix B.

A. Ordering Transition

Phase diagrams as a function of T and J⊥ are shown in
Fig. 4 for both the unfrustrated (aaa) and the frustrated
(abc and abab) stackings. For a given strength of in-
terlayer coupling, the ordering temperature (determined
from the maximum of the heat capacity) is much lower
in the systems with frustrated stackings compared with
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FIG. 4. Phase boundaries for the unfrustrated (aaa) and
frustrated (abc and abab) stackings. Points: data from Monte
Carlo simulations. Lines: fits to theory of Sec. V D; see dis-
cussion in Sec. VII.

the unfrustrated one. In addition, over most of the range
of J⊥/J studied, the transitions in the systems with frus-
trated stackings are strongly first order: the probability
distribution of the energy is strongly bimodal at the tran-
sition unless J⊥/J � 1. The discontinuity in the energy
at the transition decreases with decreasing J⊥, and for
J⊥ . 0.05J the order of the transition is not discernible
from the simulations. Differences in transition tempera-
ture between the two frustrated stackings are very small
for J⊥/J ≤ 1. Our results for the abc stacking at J⊥ = J
can be compared with earlier work on the fcc lattice, and
are in good agreement with the transition temperature
of Tc ≈ 1.72J found in Refs. 26 and 27.

Examples of the energy distribution at different tem-
peratures are shown in Fig. 5. We monitor the overlap
of distributions at adjacent temperatures in the parallel
tempering scheme, as substantial overlap is a requirement
for effective exchange of replicas. The top panel demon-
strates that this is the case in our simulations. At a first-
order transition, the energy distribution is bimodal. The
middle panel illustrates this. Finite size shifts in our es-
timates of the transition temperature are a few percent,
as indicated by a comparison of the middle and lower
panels.

B. Correlation functions

A characteristic feature of classical spin liquids is the
presence of strong correlations and a large correlation
length, without long-range order or proximity to a criti-
cal point. In this subsection we present correlation func-
tions and correlation lengths for TLIAFMs with frus-
trated stackings, determined from Monte Carlo simula-
tions.
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FIG. 5. Distributions P (E) of energy E for the abc stacking
with J⊥ = 0.1J . Top: temperatures in the range 0.4J ≤
T ≤ 0.65J . Middle: temperatures T = 0.50J , 0.51J and
0.52J close to the transition. System size L = 72, Lz = 12.
The distribution closest to the transition is solid red outlined
in black, centered around E = -1.011 in the top panel, and is
the middle temperature in the middle panel. Its bimodal form
indicates a first-order transition. Bottom: finite size effects,
illustrated for L = 96 and T = 0.52J .

1. The abc stacking

The behaviour of the structure factor for a system with
abc stacking in the classical spin-liquid regime is illus-
trated in Fig. 6. Combining information from the series
of slices in reciprocal space that are shown in this figure,
it is apparent that maxima in S(q) lie on helices in re-
ciprocal space. The axes of these helices pass through
corners of the triangular-lattice Brillouin zone.

To analyse this behaviour quantitatively, we extract a

reciprocal-space radius Q for the helix and a correlation
length ξ⊥ by fitting data for S(q) near the maxima to a
sum of in-plane Lorentzians

S (q) =
I

ξ2
⊥ (q⊥ − q0

⊥(qz))
2

+ 1
(10)

from each helix. Provided any dependence of |q0(qz)| on
qz is weak, we can make the identification Q = |q0(qz)|.
(See Appendix B for further discussion.)

Results are shown in Fig. 7. The correlation length
ξ⊥ increases rapidly with decreasing T for T . J , as
demonstrated in Fig. 7(a). It reaches large values within
the paramagnetic phase if J⊥/J is small. Its dependence
on J⊥ at fixed T is very weak, because its value is deter-
mined by the density of vortices in the height field [see
Sec. V] and for J⊥ � J this in turn is controlled mainly
by the value of T/J . The variation of the helix radius
Q with J⊥ and T is illustrated in Fig. 7(b). Its value is
given quite accurately by the SCGA, Eq. (6), for T & J ,
and shows a small increase with decreasing temperature.

In the ordered phase, Bragg peaks are expected in the
structure factor, in place of a continuous distribution of
weight on helices. We probe the evolution between the
two behaviours by computing

Savg(qz) =
1

L2

∑
qx,qy

S(q) . (11)

Results in Fig. 8 show the rapid development of Bragg
peaks as temperature is lowered through the transition.
Although we believe that the transition is first order for
the value of J⊥/J studied here, discontinuities are not ap-
parent in the temperature dependence of Savg(qz), pre-
sumably because of finite-size rounding. Indeed, since
evaluation of correlation functions is more computation-
ally demanding than calculation of energy distributions,
the results presented in Fig. 8 are for smaller system size
than those in Fig. 5; we find (data not shown) that the
energy distribution at the transition is not bimodal for
the smaller size.

2. The abab stacking

Because the abab-stacked lattice has two sites in a
primitive unit cell, the relation between fluctuations and
correlations is less direct than for the abc stacking, in
which the unit cell has a single site. More specifically,
the form of S(q) is affected by interference between con-
tributions from the two sites. Within the SCGA, this is
apparent from Eq. (3), where contributions involving a
given eigenvalue εlq of the interaction matrix are weighted

by a sum
∑
α,α′ ul∗q (α)ulq (α′) that includes both site-

diagonal (α = α′) and interference (α 6= α′) terms. In
order to eliminate these interference effects and expose
fluctuations in the abab stacking in a simple way, we com-
pute the structure factor using contributions only from
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one of the two sites in each unit cell, by restricting the
sum in Eq. (8) to this set of sites.

We expect from Eq. (7) that this single-sublattice
structure factor will have its maxima lying on closed
loops in the qz = 0 plane. An overview of our data,
illustrating this behaviour, is given in Fig. 9.

A simple way to extract a correlation length ξ⊥ is by
fitting data for qz = 0 and qx, qy close to a selected Bril-
louin zone corner to the functional form

S (q) =
I

ξ2
⊥ (Q− |q⊥ −K|)2

+ 1
, (12)

where K denotes the location of the Brillouin-zone cor-
ner and Q specifies the reciprocal-space radius of the
ring of intensity. This fitting function provides a good
description of the data for small values of J⊥/J , where
the maximum in the structure factor lies on a circle, but
it does not capture the triangular distortions for larger
J⊥/J that are apparent in the left-most panel of Fig. 9.
As shown in Fig. 10, and as for the abc stacking, the
resulting values of ξ⊥ increase rapidly with decreasing
temperature but vary little with J⊥.

3. Self-consistent Gaussian Approximation

As discussed in section II, the SCGA provides a useful
description of frustrated magnets in the strongly corre-
lated regime. In particular, it offers a simple theoretical
prediction for S(q), which we now show to be a good
representation of our simulation data. We use the func-
tional form of Eq. (3) in two ways, which are distinct
in principle but yield very similar results. One of these
treats the variable λ as a fitting parameter with respect
to simulations; the other fixes its value using the SCGA
condition 〈|σi|2〉 = 1.

The SCGA form for S(q) is especially helpful at larger
values of J⊥/J , when detailed lattice effects are impor-

tant. The results of these lattice effects for the abc stack-
ing include a dependence of the helix radius [q0

⊥(qz) in
Eq. (10)] on qz. For the abab stacking they generate
correlations that are not represented using the circular
maximum in S(q) implied by the fitting function given
in Eq. (12). The SCGA gives a good description of this
physics. Most notably, for the abab stacking the SCGA
fits are effective in capturing the triangular distortion of
the rings, as demonstrated in Fig. 11.

Once the value of λ is obtained from the fit, the cor-
relation length can be extracted from the model. The
results for ξ⊥ are shown in Fig. 12. They agree to ∼ 10%
with those obtained by fitting the functional forms given
in Eq. (10) and Eq. (12) for the abc and abab cases respec-
tively (see Figs. 7a and 10). Alternatively, the value of λ
can be determined without reference to simulations, us-
ing the SCGA condition, yielding a theoretical prediction
for ξ⊥. From Fig. 12, it is apparent that both approaches
to determining λ yield very similar results.

IV. HEIGHT MODEL

h = 1
3

(hA + hB + hC) hA hB hC σA σB σC

0 0 1 5 + − −
1 0 1 2 + − +
2 3 1 2 − − +
3 3 4 2 − + +
4 3 4 5 − + −
5 0 4 5 + + −

TABLE I. Heights (all modulo 6) defined at triangle centres
(column 1) and at triangle corners (columns 2-4), for each
ground state spin configuration (columns 5-7) of the triangle.
The spin configuration determines the height configuration
up to a global shift. The sublattice labelling is illustrated in
Fig. 13b.
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We now turn to an analytical treatment of stacked
triangular lattice Ising antiferromagnets. Although the
SCGA, as demonstrated, provides a good approximate
description, it is formally correct only for n-component
spins in the large-n limit. It is therefore not a natu-
ral starting point for a systematic approach. By con-
trast, the height model provides a representation of a
single-layer TLIAFM that is known to capture exactly
the physics at low temperatures and long distances. Here
we use the height model to construct a description of the
multilayer system that allows for a controlled treatment
of weak interlayer interactions.

Following Blöte et al.7 and Zeng and Henley8, we map
ground states of a single layer Ising model onto states
of a height model in such a way that spin configurations
with long-range three-sublattice order correspond to flat
height configurations. Because of frustration, domain
walls can be introduced without energy cost between re-
gions with different types of three-sublattice order. These
domain walls correspond to steps in the height field. In
a coarse-grained description, steps are represented by a
gradient in the height field, and a large value for this
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FIG. 8. Development of Bragg peaks in the ordered phase for
the abc stacking. Top: Savg(qz) [Eq. (11)] as a function of qz
at four selected temperatures near the transition, in a system
with J⊥ = 0.1J . Data are for T = 0.45J , 0.5J , 0.52J and
0.6J , in order of decreasing peak intensity, and the transition
temperature is Tc ≈ 0.54J . Bottom: Savg(qz) as a function
of T for the three values of qz that are marked with vertical
dashed lines in the top panel. Results for both panels were
obtained in a system of size L = 36, Lz = 48.

gradient carries an entropy penalty.

The mapping is conveniently described in two stages.
First we define heights at the sites of the triangular lat-
tice, as in Ref. 7. Second, following Ref. 8, we aver-
age these site heights to define heights at the centres of
triangles, obtaining a height model that is easily coarse-
grained.

To map from a spin configuration to heights at lat-
tice sites, we first assign height zero to a reference site.
The heights on all other sites of the lattice are then fixed
by the requirement that the height difference between
the neighbouring sites i and j is +2 if σi = σj , and −1
if σi = −σj going anticlockwise around an up-triangle
(or clockwise around a down triangle): see Fig. 13a.
Heights at triangle centres are defined as the averages
of site heights at vertices. The advantage of this locally-
averaged height field is that ground states with three-
sublattice order are exactly flat in these variables: see
Fig. 13c. In the following, we use the term ‘height field’
exclusively for the locally-averaged quantity.

This mapping is summarised for a single triangle in
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FIG. 9. Cross-sections of structure factor at qz = 0 for systems with varying J⊥ in the abab stacking. Intensity is maximum on
a closed loop, which is approximately circular for small J⊥/J but develops triangular distortions with increasing J⊥/J . Data
(from left to right) are for T = 1.14J , 0.71J , 0.64J , 0.57J , obtained in systems of size L = 72, 90, 90, 204 and Lz = 12, 12, 30,
6. Note the changing intensity scale and increasing maximum intensity as J⊥ and T decrease. The ordering temperatures are
Tc/J = 0.99± 0.008, 0.680± 0.014, 0.602± 0.007 and 0.502± 0.01.
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FIG. 10. Correlation length, ξ⊥, as a function of temperature
for various values of J⊥ in the abab stacking, obtained by
fitting to the functional form given in Eq. (12).

Table I. Here the sites of the triangular lattice are divided
into three sublattices, labelled A, B, C and indicated by
the three colours of dots at the vertices in Fig. 13b. With
this convention, the six ground states of each triangle are
specified by the orientation of the spin on sublattice A
and the location of the frustrated bond. The ground-
state spin configuration of a triangle fixes the value of
the height h at its centre modulo 6.

The mapping is unique up to labelling conventions.
Permuting the choice ofA, B and C sublattices (which re-
sults from lattice translations or rotations by 2π/3 about
the centre of a triangle) corresponds to a global shift
h→ h+ 2. (By contrast, rotations about an axis passing
through a site leave the labelling and hence the height
field invariant.) Shifting h → h + 3 corresponds to a
global spin flip operation. The remaining possibilities
(shifting h by 1 or 5) correspond to a combination of the
global spin-flip and re-assignment of the three sublattices.

The inverse mapping, from a height configuration to a
spin configuration, can be expressed in terms of a func-
tion f(h) and a constant sα. The function f(h) ≡ f(h+6)
takes the values f(h) = +1 for h = −1, 0, 1 and f(h) =
−1 for h = 2, 3, 4. The constant sα takes values sA = 0,
sB = 2 and sC = −2 on sublattices α = A,B or C. The
spin orientation is then given by

σα = f(h+ sα) ≡ fα(h). (13)

For integer h we can represent this function as f(h) =
4
3 cos πh3 −

1
3 cosπh. Note that since each spin is part of

six triangles, to fully specify the mapping we must choose
which triangle’s height dictates which spin. Reassuringly,
one can verify that this choice is unimportant: when the
height configurations are integers, and can change by at
most 1 between any pair of adjacent triangles, every con-
vention yields the same spin configuration.

Excitations of the spin model consist of triangles in
which all spins are up, or all are down. They are rep-
resented by vortices in the height field, which is multi-
valued in their presence: it increases by 6 on going anti-
clockwise around an upward-facing excited triangle, and
decreases by 6 around a down-facing triangle. An excited
state produced from a ground state by reversing a single
spin necessarily contains a vortex-antivortex pair, which
may be separated by additional spin flips without further
energy cost.
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FIG. 11. Comparison of SCGA and simulation results for
S(q) in the abab stacking. J⊥ = 0.4J, T = 1.36J

A. Height-model analysis for a single layer

Before discussing stacked TLIAFMs, it is instructive
to review how the height model captures the physics of
a single triangular layer. The relative entropic weights
of different height configurations are represented by the
effective Hamiltonian7

H =
K

2

∫
d2r |∇h(r)|2 +

∫
d2r Ṽ (h) . (14)

We can determine the value of K (and verify that (14)
captures the correct physics) by comparing the correla-

tion functions of this model with Ṽ (h) = 0 to those of
the exact solution for the 2D TLIAFM. Stephenson28 has
shown that at long distances

〈σα(r)σβ(r′)〉 ∼ ωs√
|r− r′|

+ c. c. , (15)

where s = (sα − sβ)/2 and ω = ei2π/3. The dominant
terms in the expression for the intra-sublattice spin-spin
correlation function in terms of the height fields are

〈σα(r)σβ(r′)〉 ∼ 〈eiπ3 [h(r)−h(r′)]〉ωs + c. c.

∼ exp

[
− 2π

36K
ln |r− r′|

]
(ωs + ω−s)

∼ |r− r′|− 2π
36K (ωs + ω−s) (16)

Hence at zero temperature, to reproduce the long-
wavelength properties of the exact solution, we take
K = π/9.

What about the potential term, which we ignored in
the above calculation? Microscopically the heights are
integers; we can account for this by including the poten-
tial Ṽ (h) = −v cos(2πh). At short distances v is large
and positive. At longer length scales the effective value
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FIG. 12. Correlation length ξ⊥ as a function of temper-
ature for various values of J⊥ as obtained from the SCGA.
Top: abc stacking. Bottom: abab stacking. The data la-
beled ‘SCGA’ have been derived by imposing the condition
〈|σ|2〉 = 1 while the variable λ is used as a fitting parameter
in the other curves. For clarity, results from the first of these
approaches are shown only at one value of J⊥; agreement is
similar at other values of J⊥.

of v is determined by the scaling dimension of the op-
erator cos 2πh, which can be deduced from the 2-point
function

〈cos(2πhr) cos(2πhr′)〉 ∼ |r− r′|− 2π
K

implying

∫
d2r cos(2πhr′) ∼ L2− π

K . (17)

This yields the scaling dimension 2− π
K = −7 at T = 0;

hence the effective value of the coefficient v decreases
rapidly as we probe the system at longer length-scales,
and its effect on the long-wavelength correlations is neg-
ligible.

Finally, we can ask about behaviour at finite temper-
ature. To describe the system at finite temperature we
must include the possibility of vortices in the height field.
Dropping Ṽ (h) in Eq. (14) but including vortices, we
recover the physics of the 2D xy model at an effective
temperature that is set by the value of K. The scaling
dimension of the vortex can be computed by estimating
its free energy: for v = 0 the entropic cost of the gradi-
ents in the height field required to insert a single vortex
into a triangular layer of side length L is δH = 9K

π lnL/a,
where a is the lattice constant. The number of ways to
place the vortex in the system is L2/a2. Together, these
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FIG. 13. Mapping from Ising spins to heights on the triangular lattice. (a) The height field decreases by 1 (increases by 2) along
an unfrustrated (frustrated) bond as an upward-facing triangle is traversed in the counter-clockwise direction. This ensures
that the net change in height field around each triangle is zero provided the triangle is in one of its ground states. (b) and
(c): Sample patterns of frustrated bonds and height fields. Green (red) edges on the triangular lattice represent frustrated
bonds between pairs of up (down) spins; blue edges correspond to unfrustrated bonds. The number at the centre of each
triangle indicates the value of the corresponding height variable; the different shades highlight regions with different heights.
(b) shows a maximally tilted configuration (height variables at triangle centres decrease as rapidly as possible from left to right),
corresponding to the true ground state for the abc and abab stackings; (c) shows a flat, three-sublattice ordered configuration
with a single domain wall (height variables differ only along the domain wall). Our convention for the three sublattices of Table
I

is indicated by the coloured circles: A= solid blue; B= yellow with dashed border; C= open white.

contributions to the free energy of a single vortex are

δF =

(
9K

π
− 2

)
ln

(
L

a

)
. (18)

For K = π/9 this grows more negative with increasing L.
We are therefore in the high-temperature phase of the xy
model, where vortices are unbound. The vortex density,
determined by the fugacity associated with the vortex
excitation energy 4J , sets the correlation length. This
reflects the fact that the triangular layer, which is critical
at T = 0, is a paramagnet at any finite temperature.

Hence the height model (14) correctly reproduces the
phase diagram and correlations of an isolated triangu-
lar layer. The potential Ṽ (h) is an irrelevant operator
and can be dropped from the long-wavelength analysis;
however the vortices arising at finite temperature are rel-
evant, making the system paramagnetic for any T > 0.

B. Coupled layers in the height model description

We now turn to the situation of interest, in which spins
in triangular layers are coupled to their nearest neigh-
bours in the planes directly above and below. We will
derive expressions for these couplings in the height lan-
guage, and discuss their effect on the physics of the sys-
tem.

Frustrated interlayer coupling favours domain walls in
the three-sublattice order that is represented by flat con-
figurations of the height field. To minimise the interlayer

exchange energy, these domain walls should stack in such
a way that a domain wall consisting of up spins sits in
the adjacent layer to a domain wall consisting of down
spins, as shown in Fig. 14.

!!! !!!

!!! !!!

FIG. 14. Energetically preferred domain wall stacking. Ar-
rows at sites of a triangular lattice represent the spin con-
figuration in one layer. The height in this layer increases
by 1 moving from the blue region to the white region. The
dashed parallel green and red lines indicate the energetically
favourable domain walls in a neighbouring layer, with spin
orientations as illustrated. The height difference between ad-
jacent layers determines the orientation of the domain walls.

To find the functional form of the interlayer coupling in
height language, we use Eq. (13) to express it in terms
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of the height fields. We then find the scaling dimen-
sions of the various contributions to determine which
of these play an important role in the long-wavelength
physics. We will show that, as in the SCGA treatment,
for frustrated stackings the relevant terms in the nearest-
neighbour model lead to one-parameter sets of degenerate
ground states in the height models, whose symmetry can
be broken by including further-neighbour couplings.

1. Unfrustrated stacking

It is instructive to begin by studying the unfrustrated
stacking. For the aaa stacking, the interlayer coupling is

J⊥(σA,zσA,z+1 + σB,zσB,z+1 + σC,zσC,z+1)

=
8J⊥

3
cos

π

3
(hz+1 − hz)

+
J⊥
3

cosπhz cosπhz+1 + . . . (19)

where . . . represents terms of quadratic and higher order
in the derivatives, which we drop as they are irrelevant in
the scaling sense. The most relevant term is cos π3 (hz+1−
hz), which has a scaling dimension of 3/2 for K = π/9.
The term cosπhz cosπhz+1 has scaling dimension −5/2
and can be neglected. Hence the effective Hamiltonian
of the height model for the aaa stacking is

H(aaa) =
K

2

∑
z

∫
d2r

{
|∇hz(r)|2

+κ3 cos
π

3
(hz+1 − hz)

}
, (20)

with κ3 = 16βJ⊥/3K. The ground states

hz(r) = γ (21)

of this effective model have a U(1) symmetry under
changes of the constant γ. This symmetry is broken down
to a six-fold discrete symmetry by the interaction Ṽ (h),
which is irrelevant in the scaling sense at the fixed point
describing uncoupled layers, and dangerously irrelevant
at the three-dimensional ordering transition19.

2. Frustrated stackings

For both the abc and the abab stackings, we consider
two neighbouring layers as shown in Fig. 15. There is a
coupling between each site on the black lattice and the
three sites around it from an up-triangle on the red lat-
tice, or equivalently between each site on the red lattice
and the three sites around it from a down triangle on
the black lattice. We denote heights on the black lattice
by hz+1(r), and ones on the red lattice by hz(r). The
coupling is

H⊥ = J⊥
∑
r∈A

σA(r)[σa(r + e1) + σb(r + e2) + σc(r + e3)] + symmetry-related terms

= J⊥
∑
r∈A

fA(hn+1(r))[fa(hn(r + e1)) + fb(hn(r + e2)) + fc(hn(r + e3))] + symmetry-related terms, (22)

where ‘symmetry-related terms’ have B or C in place of A, and a corresponding permutation of the vectors ei. These
are defined in terms of the lattice vectors [Eq. (4)] by e1 = 2

3a2 − 1
3a1, e2 = 2

3a1 − 1
3a2 and e3 = − 1

3a1 − 1
3a2, and

are illustrated in Fig. 15 . Expanding h(r) in a Taylor series, we obtain

H⊥ = −4πJ⊥

9
√

3

∑
r

(
cos

π

3
(hz+1(r)− hz(r))∂xhz(r)− sin

π

3
(hz+1(r)− hz(r))∂yhz(r)

)
+ . . . (23)

where . . . indicates RG-irrelevant terms. Thus keeping only the relevant inter-layer couplings leads to the effective
Hamiltonian for the abc stacking

H(abc) =
K

2

∑
z

∫
d2r

{(
∂xhz − κ⊥ cos

π

3
(hz+1 − hz)

)2

+
(
∂yhz + κ⊥ sin

π

3
(hz+1 − hz)

)2

−
(κ⊥
K

)2
}

(24)

with κ⊥ ∝ βJ⊥.

For the abab stacking, the derivation is identical except that the vertical unit cell contains two layers, with the
layers above and below offset in opposite directions. We use integer z to label unit cells in the vertical direction and
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µ = 1, 2 to label layers within each unit cell. The effective Hamiltonian is

H(abab) =
K

2

∑
z

∫
d2r

{∑
µ

|∇hz,µ|2 − κ⊥
{
∂x(hz,1 + hz,2) cos

π

3
(hz,2 − hz,1)− ∂y(hz,1 + hz,2) sin

π

3
(hz,2 − hz,1)

+∂x(hz+1,1 + hz,2) cos
π

3
(hz,2 − hz+1,1)− ∂y(hz+1,1 + hz,2) sin

π

3
(hz,2 − hz+1,1)

}}
. (25)

e2

e3

e1

A C B

C B A

A C B

C B A

a c b

c b a

a c b

c b a

FIG. 15. Two stacked layers, with sublattice labels and defi-
nitions of the vectors e1, e2, and e3.

C. Symmetries and further-neighbour couplings

For both frustrated stackings, emergent continuous
symmetries not present in the lattice models are dis-
played by the effective Hamiltonian of Eqns. (24) and
(25) if terms irrelevant at the J⊥ = 0 fixed point are
omitted. Both models have a U(1) × U(1) symmetry.
One U(1) symmetry is associated with global shifts in
the height field. It results from the discrete symmetry of
the microscopic model related to global shifts in h, which
– as for the single-layer height model – is enhanced to
become a continuous symmetry because the pinning po-
tential Ṽ (h) is RG-irrelevant and has been omitted. As
in the unfrustrated case [see Eq. (21)] we parameterise
it with γ. The second U(1) symmetry is associated with
real-space rotations and is reduced to the discrete rota-
tional symmetry of the lattice by irrelevant terms. We
parameterise it with θ.

In detail, these symmetries take the following form.
Let Rθ denote a rotation in the xy plane through the
angle θ and write r′ = Rθ(r). Then H(abc) is invariant
under the transformation

hz(r)→ h′z(r) = hz(r
′) +

3zθ

π
+ γ . (26)

Similarly H(abab) is invariant under hz,µ(r) → h′z,µ(r)

with

h′z,1(r) = hz,1(r′)− 3θ

2π
+ γ

and h′z,2(r) = hz,2(r′) +
3θ

2π
+ γ . (27)

Ground state configurations of the height model for the
abc stacking have the form

hz(r) = κ⊥(x cos θ − y sin θ) +
3zθ

π
+ γ . (28)

For the abab stacking the ground states are

hz,1(r) = κ⊥(x cos θ − y sin θ)− 3θ

2π
+ γ

hz,2(r) = κ⊥(x cos θ − y sin θ) +
3θ

2π
+ γ , (29)

together with a second symmetry-related set.
The symmetry under continuous changes of θ is not

a feature of the microscopic model: it is broken by the
leading irrelevant terms in Eq. (23). For the abc stacking
these have the form

Hb = κb
∑
z

∫
d2r

{[
(∂xhz(r))

2 − (∂yhz(r))
2
]

cos δhz(r)

+ 2∂xhz(r)∂yhz(r) sin δhz(r)

}
, (30)

where we introduce the notation δphz(r) = π
3 [hz+p(r) −

hz(r)] and δhz(r) ≡ δ1hz(r). (The form for the abab
stacking follows the obvious equivalent pattern.)

Significantly, it may also be broken by relevant further-
neighbour couplings, if these are present microscopically,
or are generated under renormalisation. For the abc
stacking, some relevant and marginal couplings that are
not included in Eq. (24) are

Hm =
Km

2

∑
z

∫
d2r∇hz(r) · ∇hz+m(r)

H2 = κ2

∑
z

∫
d2r

{
∂xhz(r) cos

π

3
(hz+2 − hz)

+∂yhz(r) sin
π

3
(hz+2 − hz)

}
H3 = κ3

∑
z

∫
d2r cos

π

3
(hz+3 − hz) . (31)

H3 is the most relevant of these three: it breaks the de-
generacy of Eq. (28), selecting ground states for which
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3θ = 0 (π) for κ3 < 0 (κ3 > 0). H2 has the same scaling
dimension as the bare interlayer coupling. It also breaks
the symmetry, again favouring states for which 3θ = 0
(π) for κ2 < 0 (κ2 > 0). Hm is marginal, and does not
break the degeneracy between the ground states identi-
fied above, all of which have the same in-plane gradients
in each layer.

Therefore as well as potentially being broken sponta-
neously at low temperature, the emergent U(1) spiral
symmetry of the abc model can be broken explicitly at a
scale set by the coefficients κ2 and κ3. We discuss this
scenario in Sec. V.

For the abab stacking, the perturbations of interest are
interlayer gradient couplings similar to Hm, and also

H3 = κ3

∑
z,µ

∫
d2r cos

π

3
(hz+1,µ − hz,µ), (32)

the unfrustrated coupling between spins two layers apart.
In contrast to the abc case, H3 is not expected to be im-
portant in determining the ordering temperature: the
minimum-energy solutions of the abab model have a def-
inite value of hz+1,µ − hz,µ, and so this term does not
lift the ground-state degeneracy. Instead, symmetry is
broken by the irrelevant coupling Hb, Eq. (30).

V. BEHAVIOUR OF THE HEIGHT MODEL

To understand the phase diagrams of these coupled-
layer height models, we take two successive steps. First
we make a perturbative renormalisation group (RG)
analysis of the behaviour of weakly coupled layers, as de-
scribed in Sec. V A. Depending on the values of T and J⊥,
the model under scaling may remain weakly coupled: this
happens in the weakly-correlated paramagnetic regime.
Alternatively, it may flow to strong interlayer coupling.
In that case a separate analysis is necessary of the influ-
ence of vortex pairs, which is presented in Sec.V B. We
find that the minimal models with exact U(1) × U(1)
symmetry have anomalously soft excitations. For this
reason vortex pairs destroy long-range order, establishing
instead a paramagnetic regime with strong interlayer cor-
relations. Symmetry-breaking or ‘locking’ interactions
act in competition to vortex pairs, and stabilise the or-
dered phase when they dominate.

A. Perturbative RG

Our perturbative analysis follows the standard
renormalisation-group techniques of Refs. 31 and 38. For
small J⊥ and low T , this allows us to use arguments sim-
ilar to those of Sec. IV A regarding the phase diagram of
these models. If unbound vortices proliferate, the inter-
layer coupling flows to zero at long distances, while if
the coefficient of one of the cosine terms grows large, a
strong-coupling analysis is necessary.

The leading-order behaviour of the RG equations is
simply determined by the scaling dimensions of the rel-
evant interlayer couplings and vortices. (The intra and
interplane gradient terms flow only at higher order.) For
the interlayer couplings, these can be calculated either
from the two-point functions as described in Sect. IV A,
or (as is more appropriate for operators involving deriva-
tives of the height field) using a standard momentum-
shell RG (see Appendix C 1). Using ` to denote the short-
distance cut-off and following the notation of Eqns. (24),
(25) and (31), this gives

∂κ⊥
∂ ln `

= (1− β1)κ⊥ ,

∂κ3

∂ ln `
= (2− β1)κ3

and
∂y

∂ ln `
= (2− α1) y . (33)

Here, κ⊥ is the frustrated interlayer coupling that acts
between neighbouring layers in the abc and abab stack-
ings, and κ3 is the unfrustrated inter-layer coupling,
which couples nearest neighbour layers in the aaa stack-
ing, second neighbours in the abab stacking and third
neighbours in the abc stacking. Finally, y is the vortex
fugacity, which dictates the unbound vortex density. For
weakly coupled layers we have

β1 =
π

18K
and α1 =

9K

π
. (34)

For the unfrustrated stacking the bare value of κ3 is
κ3,0 ∼ βJ⊥. For the frustrated stackings the bare value of
the interlayer coupling κ⊥ is κ⊥,0 ∼ βJ⊥. In both cases,
the bare value of the vortex fugacity is y0 ∼ e−4βJ . The
initial value of ` is the lattice spacing, which we set to
unity.

Let us now consider what we learn from these scal-
ing dimensions about behaviour in the three different
models, keeping only nearest-neighbour interactions and
the intralayer gradient interaction K. Using the value
K = π

9 appropriate for decoupled triangular layers, we
have α1 = 1, β1 = 1/2, and single-layer vortices are more
relevant than their multi-layer counterparts. Solving the
RG equations (33) gives

y = y0`, κ⊥ = κ⊥,0`
1/2 and κ3 = κ3,0`

3/2.

The calculation reaches its limit of validity at the scale
` where the largest coupling is of order unity, and the
physical state of the system is signalled by which coupling
first crosses this threshold. If y ∼ 1 with κ⊥ and κ3 � 1,
the system is a weakly correlated paramagnet. If either
κ⊥ ∼ 1 or κ3 ∼ 1 with y � 1, layers are strongly coupled.
We turn next to this regime.

B. Strongly coupled layers

To understand behaviour of the height models at large
interlayer coupling, we examine the effective Hamiltonian
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for each type of stacking at quadratic order in an expan-
sion about the ground states given in Eqns. (21), (28)
and (29).

For orientation, consider first the aaa stacking. Let
ϕz(r) denote the deviation of hz from a ground-state con-
figuration and introduce its Fourier transform via

ϕz(r) =
1

(2π)3

∫
d3qϕ(q)ei(q⊥r+qzz) . (35)

The energy cost at quadratic order of this deviation from
a ground state is

δH =
K

2(2π)3

∫
d3q E(q)|ϕ(q)|2 (36)

with

E(q) = q2
x + q2

y + κ̃(1− cos qz), (37)

where κ̃⊥ = (π2/9)|κ3|. Thus, for this unfrustrated
stacking, excitations have a dispersion E(q) that is con-
ventional in the sense that it is quadratic in wavevector
for all orientations of q.

An equivalent calculation for the abc stacking (for fluc-
tuations around the ground state with θ = 0) yields the
quite different dispersion relation

E(q) = q2
x + (qy − κ̃⊥ sin qz)

2 + κ̃2
⊥(1− cos qz)

2, (38)

where κ̃⊥ = (π/3)κ⊥. This is anomalously soft, being
quartic in wavevector along the line qy = κ̃⊥qz. The soft
modes do not give rise to divergent harmonic fluctua-
tions, since

〈[hn+1(r)− hn(r)]2〉 =
1

K

∫
d3q

(1− cos qz)
2

E(q)
(39)

is finite provided κ⊥ 6= 0.
For the abab stacking, since there are two layers within

a unit cell, it is necessary to introduce two fields ϕz,µ(r),
with µ = 1, 2. The resulting quadratic Hamiltonian has
two eigenvalues, which for θ = 0 are

E±(q) = q2
x+q2

y+2κ̃2
⊥±2κ̃⊥| cos(qz/2)|

√
q2
y + κ̃2

⊥ . (40)

In this case as well, the dispersion relation is quartic for
one direction, since E− = q2

x+(κ̃2
⊥q

2
z+q4

y/κ̃
2
⊥)/4 for small

|q|, but harmonic fluctuations are bounded for κ⊥ 6= 0.

C. Destruction of order by defects

Our discussion of harmonic height-field fluctuations
around ground states of the multilayer model accounts
for spin fluctuations within the ground-state manifold
of each triangular layer, but a separate treatment is re-
quired to understand the effect of excitations out of this
ground-state manifold. That is the subject of this sub-
section.

The excitations are represented by vortices and an-
tivortices. These are unbound in a single layer, as dis-
cussed in Sec. IV A, but acquire a linear confining po-
tential within ordered states of the multilayer systems.
More specifically, suppose that the height field in a layer
containing a widely separated vortex-antivortex pair has
a step of height 6 and width w: its energy cost per unit
length is ∼ Kw(w−2+κ2

⊥) and is minimised by the choice

w ∼ κ−1
⊥ . Pairs are therefore bound with typical separa-

tion w when interlayer correlations are strong. Remark-
ably, although in other settings bound vortex pairs are
typically irrelevant at large scales, we find that they exert
a controlling influence in multilayer height models with
frustrated stackings.

Height fields in the presence of vortices are in general
multivalued, but can be taken to be single-valued in a do-
main that excludes a core around each vortex-antivortex
pair. The presence of these pairs influences the height
field far from the cores. A convenient alternative to an ex-
plicit treatment of multivalued height fields is to impose
a potential that couples linearly to the height field and
has the same effect on the far field as a votex-antivortex
pair. In order to demonstrate the required form of this
potential, consider a single layer containing a pair cen-
tred at the origin with separation vector b. This pair is
described by the height field configuration

h(r) =
3

π

[
arctan

(
2x+ b · x̂
2y + b · ŷ

)
− arctan

(
2x− b · x̂
2y − b · ŷ

)]
.

For |r| � |b| we have

h(x, y) ≈ 3

π

ẑ · (b× r)

r2
(41)

or equivalently

h(q) ≈ 6i
ẑ · (q× b)

q2
. (42)

The same far-field height configuration can be in-
duced by adding a potential term v(q) to the ef-
fective Hamiltonian for the height field. Specif-
ically, for an isolated layer, the effective Hamil-
tonian (K/[2π]2)

∫
d2q

[
1
2E(q)|ϕ(q)|2 − ϕ(−q)v(q)

]
has

the minimum energy configuration

ϕ(q) =
v(q)

E(q)
(43)

with E(q) = q2 for a single layer. Thus choosing a po-
tential

v(q) = 6iẑ · (q× b) (44)

we recover the desired far-field configuration.
To examine the effect of many pairs j with locations

rj , zj and separations bj we impose on the multilayer
system the potential

vtot(q) = 6i
∑
j

ẑ · (q× bj) e
−i(q⊥rj+qzzj) . (45)
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The ground state in the presence of these pairs is again
given by (43), but now with the multilayer form for E(q).
We compute the mean square amplitude of the fluctua-
tions these pairs generate, averaged over bound pair posi-
tions with a Poisson distribution at a density ρ, obtaining

〈[ϕz(r)]2〉 =
ρ

(2π)3

∫
d3q
〈|v(q)|2〉
E2(q)

(46)

where 〈. . .〉 indicates an average over pair separations b.
This integral is convergent at small q for the unfrustrated
stacking but divergent for the frustrated systems. More-
over, corrections to a Poisson distribution arising from
correlations between pairs appear only at higher order in
ρ. Vortex-antivortex pairs in the absence of locking in-
teractions therefore destroy long-range order in the frus-
trated systems.

We can estimate the correlation length in this disor-
dered state by determining the small-wavevector cut-off
for which 〈[ϕz(r)]2〉 ∼ 1. We write 〈|b|2〉 ∼ `2, where ` is
the cut-off scale at which the system reaches the strong-
coupling regime with κ⊥ ∼ 1. This scale is ` ∼ (βJ⊥)−2.
Then for the abc stacking the correlations lengths in the
in-plane and z-directions are

ξ⊥ ∼ κ−1
⊥ (`2ρ)−2 and ξz ∼ (`2ρ)−1 . (47)

For the abab stacking the corresponding expressions are

ξ⊥ ∼ κ−1
⊥ (`2ρ)−1/2 and ξz ∼ (`2ρ)−1/2 . (48)

The phase transition to a long-range ordered state in-
volves a competition between this disordering effect of
bound vortex pairs, and the opposite tendency produced
by locking interactions. A simple estimate for the loca-
tion of the phase boundary is obtained demanding that
the locking interaction at the scale `, integrated over the
correlation volume, is of order unity.

The most RG-relevant locking interaction for the abc
stacking is κ3 [see Eq. (31)]. As this is a coupling between
layers three apart, it is not present in the bare description
of a system with only nearest-neighbour interactions. It
is however generated under the first steps of RG, so that
the initial value can be taken to be κ3,0 ∼ (βJ⊥)7 (see
Sec. VI). At the scale ` the locking interaction is hence
κ3 ∼ (βJ⊥)4. Note that an important role is played
by the fact that κ3 is generated only at high order: if
instead one had κ3,0 ∼ (βJ⊥)3 as might naively have
been expected for a third-neighbour coupling, then the
value of κ3 at scale ` would be O(1) and independent of
J⊥. This would leave no scope for a regime with strong
interlayer correlations but no long-range order.

For the abab stacking, we have not found locking in-
teractions that are RG-relevant. The leading (least irrel-
evant) locking term in this case is κb, given in Eq. (30).
At the scale ` it is of order βJ⊥`

−1/2 ∼ (βJ⊥)2.

D. Phase diagram

Combining results from our discussion of RG for
weakly coupled layers with our results on the effect of de-
fects in strongly coupled layers, we can determine regimes
of behaviour and phase boundaries for systems with each
type of stacking, in the limit J⊥ � J . The phase bound-
aries determined theoretically in this section are com-
pared with Monte Carlo results in Sec. VII.

For the unfrustrated stacking, bound vortex pairs have
no important effects. The phase boundary is the point
at which y ∼ κ3 ∼ 1. From the results of Sec. V A,
this implies ` ∼ e4βJ and βJ⊥e

6βJ ∼ 1. Solving ap-
proximately in the limit J⊥ � J , the phase boundary
is at J⊥ ≈ Je−6βJ . Interlayer correlations are weak for
J⊥ � Je−6βJ while the system has long-range order for
J⊥ � Je−6βJ . Within the minimal model of Eq. (20),
the set of ordered states has a U(1) symmetry, as dis-
played in Eq. (21). This is broken by the (RG-irrelevant)

interaction Ṽ (h), introduced for a single layer in Eq. (14).
It selects integer values of the height field, corresponding
to six possible types of three-sublattice spin order.

In contrast, for both types of frustrated stacking, the
condition y ∼ κ⊥ ∼ 1 implies J⊥ ≈ Je−2βJ . Interlayer
correlations in this case are weak for J⊥ � Je−2βJ . The
paramagnetic regime with only weak interlayer correla-
tions therefore extends to parametrically lower tempera-
tures and larger values of J⊥ in these systems than in the
unfrustrated stacking. Moreover, because of the effect of
bound vortex pairs in systems with frustrated stacking,
long range order appears at still lower temperatures or
larger values of J⊥ than strong interlayer correlations.

In the case of the abc stacking, if long range order is sta-
bilised by generation of the RG-relevant third-neighbour
coupling κ3 the condition κ3ξ

2
⊥ξz ∼ 1 implies order for

J⊥ & Je−5βJ/3. Alternatively, order may be stabilised by
residual contributions from the RG-irrelevant coupling
κb. Specifically, RG flow stops on the scale at which
κ⊥ ∼ 1. At this scale, interactions (whether RG-relevant
or RG-irrelevant) that break the U(1)× U(1) symmetry
of Eq. (26) down to a discrete one will act coherently over
a correlation volume. This ordering tendency competes
with the disordering effect of bound vortex-antivortex
pairs. Since κ3 is generated rather slowly under RG,
RG-irrelevant interactions turn out to be the dominant
cause of locking if microscopic interactions are just near-
est neighbour.29 The condition κbξ

2
⊥ξz ∼ 1 implies order

for J⊥ & Je−20βJ/11.

For the abab stacking, locking is driven only by irrel-
evant interactions. Taking into account the dependence
of ξ⊥ and ξ‖ on ρ for the abab stacking, the condition

(βJ⊥)2ξ2
⊥ξz ∼ 1 yields a boundary for long range order

at J⊥ ≈ Je−5βJ/3.

In summary, with J⊥ � J , the classical spin liq-
uid regime, in which correlations are strong both within
and between layers, extends for both types of frustrated
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stacking over the interval

e−2βJ . J⊥/J . e−cβJ (49)

with c = 20/11 for the abc stacking and c = 5/3 for the
abab stacking.

E. Spin correlations from the height model

In the classical spin liquid regime, in which interlayer
correlations are strong but there is no long-range order,
the system is approximately ordered within each correla-
tion volume ξ2

⊥ξz but different correlation volumes are es-
sentially independent. We can compute correlations ap-
proximately in this regime as an average over all ground
states. The starting point for this calculation is the ex-
pression (13) for spin variables in terms of height fields,
and the expressions (28) and (29) for ground states of
the minimal height models in the systems with frustrated
stackings.

We require Fourier components of the spin density at
wavevectors that are close in-plane to either of the cor-
ners K and K′ of the triangular-lattice Brillouin zone. To
obtain the leading contribution at long distance it is suffi-
cient to use the approximation σj,z ∼ cos π3 (hz(rj) + sα),
omitting higher harmonics in hz(rj).

Recalling that sα = 0,±2 on the three sublattices,
we have for the aaa stacking eiK·rj,z = eiπsα/3 and
eiK

′·rj,z = e−iπsα/3. The same result holds for the abab
stacking on one of the two layers in the unit cell, but for
the abc stacking it is necessary to take account of the rel-
ative displacement e1 of neighbouring sites on the same
sublattice in successive layers. We have (modulo 2π)

(K + n1A1 + n2A2) · rj,z
=
π

3
sα − z(K + n1A1 + n2A2) · e1 =

π

3
(2pz + sα)

with p = n1 + n2, and

(K′ + n1A1 + n2A2) · rj,z =
π

3
(2p′z − sα)

with p′ = 2 + n1 + n2. Retaining only smoothly vary-
ing contributions, we can then write for q⊥ small but qz
arbitrary∑
j

σj,ze
i(K+q)·rj,z ∼

∫
d2r e−i

π
3 hz(r) ei(q⊥·r+[qz+ 2π

3 p]z)

and∑
j

σjz e
i(K′+q)·rjz ∼

∫
d2r ei

π
3 hz(r) ei(q⊥·r+[qz

2π
3 p

′]z)

where we can include the aaa and the a-layers of the abab
stacking by setting p = p′ = 0 in these cases.

We use these expressions to evaluate

S(K + q) =
∑
j,z

〈σ0,0σj,z〉ei(K+q)·rj,z (50)

and the equivalent with K′ in place of K, computing the
average 〈. . .〉 over ground states [Eqns. (28) and (29)].
For the abc stacking this gives

S(K + q) ∝ δ(qx −
π

3
κ⊥ cos[qz +

2π

3
p])

× δ(qy +
π

3
κ⊥ sin[qz +

2π

3
p]) (51)

and

S(K′ + q) ∝ δ(qx +
π

3
κ⊥ cos[qz +

2π

3
p′])

× δ(qy +
π

3
κ⊥ sin[qz +

2π

3
p′]) . (52)

For the abab stacking, following our discussion in
Sec. III B 2, we focus on the contribution to the struc-
ture factor from sites on only one of the two sublattices
by restricting

∑
z,µ to the layer µ = 1. This gives

S(K + q) = S(K′ + q) ∝ δ(qz)δ(2)(q2
⊥ − [

π

3
]2κ2
⊥) . (53)

It is reasonable to expect that the main consequence of
finite correlation lengths ξ⊥ and ξz will be broadening of
the delta functions in these expressions for S(q). Making
that allowance, we see that the height model calculation
produces results similar to the ones from the SCGA and
from Monte Carlo simulations.

VI. RENORMALISATION GROUP FLOWS
BEYOND LEADING ORDER

Our calculation of RG flow is perturbative in inter-
layer coupling and vortex fugacity. We can improve the
estimates of the previous section by including terms to
higher order. Qualitatively, this has two potentially im-
portant consequences. First, the in-plane stiffness K be-
comes scale-dependent and interlayer gradient couplings
are generated under the RG flow. This in turn mod-
ifies the dimensions of the various operators discussed
above. Second, for the abc stacking, the relevant further-
neighbour couplings that break the U(1) symmetry under
spatial rotations are generated from the irrelevant contri-
bution to the nearest-neighbour interlayer coupling, Eq.
(30).

A. Simply stacked triangular layers

To set the stage, it is instructive to consider the case
of aaa-stacked triangular layers. The model [Eq. (20)]
is simply a 3D XY model, in which the coupling be-
tween neighbouring layers is much weaker than the intra-
layer coupling. For small interlayer couplings there is a
regime where the RG flows are well-described by those
of a system of coupled 2D XY models35,36. Though this



17

treatment is not adequate to describe the transition be-
tween the low-temperature ordered phase and the high-
temperature paramagnet, which is in the 3D XY univer-
sality class, it represents behaviour well so long as the
renormalised interlayer coupling is not strong.

For uncoupled layers, two different ways exist to de-
rive RG equations. The original work by Kosterlitz and
Thouless30,31 on the 2D XY model used a real-space
calculation, integrating out vortex-antivortex pairs sep-
arated by less than a minimum length scale `, and this
method has been extended to include models analogous
to (20) with vortices33. Somewhat later, the momentum-
shell RG approach was applied to these systems34 and
we use this second approach, which is more transparent
in the case of the frustrated abc and abab stackings. We
review the method and give technical details of our cal-
culations in Appendix C; here we discuss the physical
implications of the results.

Including the most relevant interlayer couplings, the
marginal gradient couplings introduced in Eq. (31), and
a new second-layer coupling term cos π3 (hz+2(r)− hz(r))
with coefficient g2, the RG equations additional to (33)
to quadratic order in κ3 and y are

∂K

∂ ln `
= c1κ

2
3 − y2K2

∂K1

∂ ln `
= −c1κ2

3

∂g2

∂ ln `
= g2(2− π

18K
)− c2κ3

3. (54)

Here we have allowed for the effect of fluctuating bound
vortex pairs on the stiffness. A deficiency of the
momentum-space approach is that this correction cannot
be evaluated easily, and so we take the result computed
in the real-space RG using Coulomb gas methods32. The
constants c1 and c2 are given in Eq. (C37).

The RG flow described by Eqs. (33) and (54) includes
several important effects. First, at this order the stiffness
K flows towards smaller values if vortices dominate. As
the interlayer coupling κ3 is irrelevant if K is sufficiently
small, this ensures that the paramagnetic phase is sta-
ble to weak interlayer coupling. Second, new interlayer
couplings are generated from κ3: the marginal gradient
coupling K1 and the relevant second-neighbour coupling
g2. The latter contributes to stabilising long-range order
if vortices are not dominant.

Interlayer gradient couplings change the scaling dimen-
sions of other interlayer couplings and of the fugacity for
multilayer complexes of vortices. The scaling dimensions
of Eq. (34) become more generally

β1 =
π

18

∫ π

−π

dkz
2π

[
1− cos kz

K0 +
∑
pKp cos pkz

]

α1 =
9

π

∑
i,j

σiσjK|i−j|, (55)

where σi is the vortex strength in layer i.

A striking consequence of interlayer gradient couplings
that follows from these results for scaling dimensions is
the possibility of a sliding phase,37 in which for appro-
priate values of {Kp} neither vortices nor interlayer co-
sine couplings are relevant. The window of stability of
this phase is however quite narrow, and it does not seem
likely that it would be reached by RG flow starting from
stacked TLIAFMs with only nearest-neighbour interac-
tions, whether frustrated or not.

B. abc stacking

We now consider the abc stacking. As for the aaa
stacking, under RG at second order the stiffness K flows
and further-neighbour interactions are generated. The
most important of these are shown in Eq. (31) with cou-
pling constants denoted by κ2 and κ3. As they break
the spatial U(1) symmetry of H(abc) [see Eq (24)], their
generation involves the RG-irrelevant nearest-neighbour
interaction κb appearing in Eq. (30). The coupled RG
equations

∂K

∂ ln `
= c3κ

2
⊥ − y2K2

∂K1

∂ ln `
= −c4κ2

⊥

∂κb
∂ ln `

= − π

18K
κb

∂κ2

∂ ln `
= κ2

(
1− π

18K

)
+ c5κ⊥κb

∂κ3

∂ ln `
= κ3

(
2− π

18K

)
+ c6κ⊥κ2 (56)

and values of the constants c3, c4, c4 and c6 are given
in Eq. (C37); both c5 and c6 are proportional to K1

for small K1. For each coupling, we have included the
flow due to its scaling dimension, as well as (for those
not initially present in the nearest-neighbour model) the
leading-order term that generates it. Flow of the vortex
fugacity y is given in Eq. (33). For the in-plane stiffness
K, we have included the leading-order non-vanishing con-
tributions to its RG flow, demonstrating that this is slow.

The most important physical effect captured by this
second-order calculation is the generation of the locking
interaction κ3 from κb (which appears microscopically in
a nearest-neighbour model) via the coupling κ2. Since
κ3 is more strongly RG-relevant than κ2 (which has the
same scaling dimension as κ⊥), it is the key interaction.
It is generated only in the presence of non-zero K1, it-
self produced from the nearest-neighbour interaction κ⊥.
Combining these steps, we find for a system with initial
values κ⊥ = κ⊥,0, κb ∼ κ⊥,0 and K1 = κ2 = κ3 = 0,
that κ3 ∼ (κ⊥,0)7 is generated after an RG scale change
of order one. As discussed in Sec. V D, this locking in-
teraction stabilises long-range order if it dominates over
the disordering effects of vortex-antivortex pairs.

We have not examined RG for the abab stacking in
detail beyond leading order, since we have not identi-
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fied RG-relevant interactions that break the continuous
ground-state symmetry of the minimal model. Symme-
try is instead broken by RG-irrelevant nearest-neighbour
interactions that are present microscopically, as discussed
in Sec. V D.

VII. DISCUSSION

The results from the three approaches we have pre-
sented – the self-consistent Gaussian approximation,
Monte Carlo simulations, and analysis of height models –
establish a consistent picture. They show that triangular
lattice Ising antiferromagnets with frustrated stackings
exhibit classical spin liquid behaviour over an extended
temperature range if interlayer coupling is weak. In this
regime, there are strong correlations within and between
layers, but without long-range order.

The most significant weakness of the SCGA is that
it fails to capture the ordering transition, giving in-
stead a finite correlation length at all non-zero tem-
peratures. The SCGA also predicts a temperature-
independent value for the helix radius Q, while within
the height model Q is a function of βJ⊥. Small in-
creases inQ with decreasing T at fixed J⊥ are apparent in
Fig. 7(b), although the anticipated continuum behaviour
is not fully-developed.

Some more detailed comparisons between Monte Carlo
simulations and height model calculations are possible.
The prediction of Sec. V D that the ordering transition
is at larger values of J⊥ and smaller temperatures in sys-
tems with frustrated stacking compared to the unfrus-
trated case (J⊥ ≈ Je−20βJ/11 or J⊥ ≈ Je−5βJ/3 com-
pared with J⊥ ≈ Je−6βJ) is clearly consistent with sim-
ulation results shown in Fig. 4. For a quantitative test,
we fit the phase boundaries determined in simulations to
the form J⊥ = AJ exp(−cβJ). We obtain c = 1.90±0.08
for the abc stacking, c = 1.63±0.11 for the abab stacking,
and c = 5.44 ± 0.2 for the unfrustrated case, in striking
agreement with analytical results. Values of the other
fitting parameter are A = 2.87±0.2, A = 2.16±0.27 and
A = 6.43± 0.5, respectively.
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Appendix A: Reciprocal-space form of interaction

In this appendix we discuss the reciprocal-space form
of the interaction. This is input for SCGA calculations

and is illustrated in Fig. 3. Definitions of the lattice
vectors, reciprocal lattice vectors, and K, K ′ points are
given in Eqns. (4) and (5).

The contribution for all three stackings from in-plane
couplings is

J2D(q) = J [cos(qx) + 2 cos (qx/2) cos(
√

3qy/2)] . (A1)

For the aaa stacking, the interplane interactions con-
tribute J⊥(q) = cos qz and the combined minima of
J(q) ≡ J2D(q) + J⊥(q) are isolated points in recipro-
cal space, at ( 4π

3 , 0, π) and (2π
3 ,

2π√
3
, π).

For the abc stacking, setting ζ = 1 + eiq·a1 + eiq·a2 ,
we can write the interplane coupling as J⊥(q) =
J⊥(ζe−iq·δ + c.c.)/2. The in-plane coupling can also be
expressed in terms of ζ, as J2D(q) = J(|ζ|2 − 3)/2. The
combined interaction can hence be put into the form

J(q) =
J

2

∣∣ζe−iq·δ + J⊥/J
∣∣2 − 3J

2
− J2

⊥
2J

. (A2)

From this it is clear that the minima of J(q) lie on
the lines ζ = −(J⊥/J)eiq·δ. If J⊥ � J , these lines
are helixes with axes passing through K-points [Eq. (5)]
of the triangular-lattice Brillouin zone: for J(k) with
k = K + n1A1 + n2A2 + q, the line is

qx ≈
2J⊥√

3J
cos(qz +

2π

3
p),

qy ≈ −
2J⊥√

3J
sin(qz +

2π

3
p) (A3)

where p = n1 + n2, as in Sec. V E. For k = K′ + n1A1 +
n2A2 + q the line is

qx ≈ −
2J⊥√

3J
cos(qz +

2π

3
p′),

qy ≈ −
2J⊥√

3J
sin(qz +

2π

3
p′), (A4)

where p′ = 2 + n1 + n2. At larger values of J⊥/J , the
helix is deformed, acquiring triangular projection in the
x− y plane, but the degeneracy of the line of minima is
not lifted.

As the abab stacking has two sites per unit cell, the
combined interaction in this case is represented by a ma-
trix

J(q) =

(
J2D(q) Jab⊥ (q)
Jba⊥ (q) J2D(q)

)
(A5)

with Jab⊥ (q) = ζ cos(qz/2)eiq·δ and Jba⊥ (q) = [Jab⊥ (q)]∗.
The eigenvalues are

ε±q =
J

2
(|ζ|2 − 3)± J⊥ cos (qz/2) |ζ|. (A6)

Minima lie on the line qz = 0, |ζ| = J⊥/J . For J⊥ � J
they form circles around the K-points of the triangular-
lattice Brillouin zone, as shown in Fig. 3.
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Appendix B: Analysis of Monte Carlo results

In this appendix we discuss in further detail our Monte
Carlo results for S(q) and the fitting procedures used to
analyse them.

As a simple check, we start by considering uncoupled
layers, which are expected to display power-law correla-
tions at low temperature with S(K + q) ∝ q−3/2. The
behaviour illustrated in Fig. 16 matches this quite accu-
rately. Interlayer interactions produce significant changes
in S(q), and no clear remnant of the 3/2 power law is
identifiable even for the smallest values of J⊥/J that
we have investigated. Instead, we find for non-zero J⊥
that S(q) is well-represented using Lorenztian functions
of wavevector.
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FIG. 16. Illustration of power-law behavior without interlayer
coupling: line has slope − 3

2
; system parameters are L = 72

and T = 0.31J .

1. Correlations for the abc stacking

The data displayed in Fig. 6 show helices of high in-
tensity with axes passing through the K-points of the
triangular-lattice Brillouin zone. In broad terms, we ex-
tract the correlation length ξ⊥ and the helix radius Q
by analysing simulation results for S(q) separately at
each qz, and fitting data near the maximum to a sum
of Lorentzian contributions, one from for each helix that
intersects the plane.

In detail, we consider values of S(q) at fixed qz with
(qx, qy) spanning one Brillouin zone. To focus on the
maxima, we retain the N largest values of S(q) from a
total of L2 points within each qz-plane. If N is too large,
some points are included that are too far in reciprocal
space from the helix to be well-represented by the fitting
function; if N is too small, statistical accuracy is sacri-
ficed. Results are insensitive to the choice of N in the
range 20 ≤ N ≤ 200, and we use N = 50. Referring to
Fig. 17, the form of S(q) near the K-points labelled a and
b should be dominated by helices with their axes passing
through these K-points, but may also be influenced by
helices with axes passing through the four K-points c –

d

e

A1

A2

f

a

c b

FIG. 17. Brillouin zone for the triangular lattice, with K-
points labelled a–f .
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FIG. 18. Comparison of F4nn with data for L = 72, Lz = 12,
J⊥ = 0.2J , T = 0.8J in the abc stacking.

f if the helix radius is large. Our fitting function

F4nn(q⊥) =
∑
i

I

ξ2
⊥ (q⊥ − q⊥,i)

2
+ 1

(B1)

therefore includes six terms, labelled by i. Since the dif-
ferent values of q⊥,i are related by symmetry, it contains
four real scalar fitting parameters. The quality of fit we
obtain in this way is illustrated in Fig. 18.

In principle, one expects S(q) to be characterised by
two distinct correlation lengths, ξ⊥ and ξz, as discussed
in Sec. V. In practice, we have been unable to extract a
second correlation length from our Monte Carlo data for
the abc stacking, for reasons we now discuss. Consider
first the ideal form of correlations, reached in the limit
of divergent correlation lengths:

Sideal (q) = δ
(
qx − q0

x (qz)
)
δ
(
qy − q0

y (qz)
)
. (B2)

The consequences of finite correlation lengths can be rep-
resented by convolving Sideal (q) with a form factor that
is characterised by its width in two directions transverse
to the line q0

x(qz), q
0
y(qz). The fitting function F4nn (q⊥)

corresponds to a choice for this form factor that has circu-
lar contours in the qx–qy plane. More general possibilities
have elliptical contours; we have made fits of this type,
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FIG. 19. S(q) vs qz for fixed qx, qy in the abc stacking, com-
paring data and fitting function. J⊥ = 0.1J , L = 36, Lz = 48,
T = 0.56J .
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FIG. 20. S(q) vs qz, for fixed qx, qy passing through the max-
imum, in the abab stacking: data (red); fit to SCGA (green);
sum of Lorentzians (black). J⊥ = 0.20J, T = 0.73J .

but find they do not show significant in-plane anisotropy.
As a demonstration that the form F4nn (q⊥) is an ade-
quate representation of our data, we show in Fig. 19 a
comparison of it with Monte Carlo data, as a function
of qz at fixed qx, qy, on a line passing through the helix.
The close match indicates that the broadening within the
qx–qy plane that is contained in F4nn (q⊥) also accounts
for the broadening of the helix along qz.

2. Correlations for the abab stacking

For the abab stacking, our fitting of S(q) as a function
of qx and qy follows similar steps to the ones used for the
abc stacking, but analysis of the dependence on qz has
new features. For this stacking the peak width of S(q) as
a function of qz yields directly the interlayer correlation
length ξz. An example of a fit is shown in Fig. 20 and
the resulting values of ξz are displayed as a function of
J⊥ and T in Fig. 21.
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FIG. 21. ξz vs T for different values of J⊥ in the abab stacking.
The unit of length is the spacing between successive a-layers.

Appendix C: RG calculations

Here we present technical aspects of our RG calcula-
tions, following a standard momentum-shell approach38.
The general method is as follows. Our objective is to
evaluate correlation functions or the partition function

Z =

∫
D[h]e−(H0+H1) (C1)

with an initial momentum cutoff Λ = 1/`, where ` is
the lattice constant. Here H0 is a quadratic effective
Hamiltonian, which may include both in-plane and inter-
plane gradient terms:

H0 =
1

2

∑
z

∫
d2 r

[
K (∇hz(r))

2

+
∑
p>0

Kp∇hz(r) · ∇hz+p(r)

]
. (C2)

We divide the height field into short-wavelength and
long-wavelength modes by writing

h>z (r) =

∫
Λ/s<|q|<Λ

d2q hz(q)eiq·r

and h<z (r) =

∫
|q|≤Λ/s

d2q hz(q)eiq·r . (C3)

A new effective Hamiltonian Heff with a reduced cutoff
Λ/s is obtained by integrating out the short-wavelength
modes, and then re-scaling all in-plane lengths by s. Note
that we retain the layer index z as a discrete variable, and
coarse-grain only the in-plane co-ordinates. Expanding
in powers of H1

e−Heff =

∫ ∏
z

D[h>z ]e−(H0+H1) (C4)

≈
∫ ∏

z

D[h>z ]e−H0

{
1−H1 +

1

2
H2

1 + ...

}
.
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To quadratic order, the effective Hamiltonian with the
reduced cutoff Λ/s is

Heff = H′0 + 〈H1〉0 −
1

2
〈H2

1〉0 + ... (C5)

where all terms are functions of only the long-wavelength
fields h<z (r), the average 〈. . .〉0 is over short-wavelength
fields with weight e−H0 and H′0 is obtained from H0 by
omitting the short-wavelength fields. As a final step,
lengths in H′0, and in the expectation values on the right
are re-scaled according to r→ sr.

1. First-order calculation

We derive the first-order RG equations as follows. Con-
sider the interlayer coupling

H1 = κ⊥

∫
d2r [∂xhz(r) cos δhz(r)− ∂yhz(r) sin δhz(r)]

= κ⊥Im

[∫
d2r ∂ζze

iδhz(r)

]
(C6)

where we have introduced ζz = xz + iyz, and z denotes
the layer with which the coordinates x, y are associated.
We have

〈H1〉0 = κ⊥Im

[∫
d2r ∂ζze

iδh<(r,z)〈eiδh>(r,z)〉0
]
. (C7)

Defining

Fn ≡ 〈h>(r, z)h>(r, z + n)〉

=
γn

4π2K

∫
Λ>|q|>Λ/s

d2q
1

q2
=

γn
2πK

log s

(C8)

with

γn =
1

2π

∫ 2π

0

dkz
K cosnkz[

K +
∑
p>0Kp cos pkz

]
and βn =

π

18K
(γ0 − γn) , (C9)

we obtain

〈eiδnh(r,z)〉 = exp

[
−π

2

18
〈δnh(r, z)2〉

]
= exp

[
−π

2

9
(F0 − Fn)

]
= s−βn . (C10)

The re-scaling r→ sr gives

Heff = κ⊥

∫
d2r Im

[
∂ζze

iδh<(r,z)
]
s1−β1 (C11)

In the continuum limit s→ 1 we have

∂κ⊥
∂ ln `

= (1− β1)κ⊥. (C12)

Scaling dimensions of the other operators can be deduced
in a similar way.

2. Second-order calculation

At second order, we must evaluate the quadratic terms
in Eq. (C5). It is useful to introduce some notation.
Let Hn(z) denote a contribution to interlayer coupling
involving the height differences δphz(r) ≡ π

3 [hz+p(r) −
hz(r)] and define

∆m,n,z−z′ = 〈Hm(z)Hn(z′)〉0 − 〈Hm(z)〉0〈Hn(z′)〉0 .

We are primarily interested in two types of such term:
those that contribute to the most relevant interlayer
couplings, and those that contribute corrections to the
marginal gradient couplings.

a. Corrections to gradient couplings

We first compute corrections to the gradient couplings that are generated by ∆n,n,0 for various n. An example is

∆3,3,0 = 〈H3(z)H3(z)〉0 − 〈H3(z)〉0〈H3(z)〉0

=
(κ3)2

2

∫
d2r d2r′

{
cos
(
δ3h

<
z (r) + δ3h

<
z (r′)

) (
〈eiδ3h

>
z (r)eiδ3h

>
z (r′)〉0 − s−2β3

)
+ cos (δ3h<(r, z)− δ3h<(r′, z))

(
〈eiδ3h>(r,z)e−iδ3h>(r′,z)〉 − s−2β3

)}
(C13)

We write

〈eiδ3h
>
z (r)eiδ3h

>
z (r′)〉0 − s−2β3 = s−2β3

(
e−4πβ3G(r−r′) − 1

)
, (C14)
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where

G(r) =

∫
Λ/s<|q|<Λ

d2q

4π2

eiq·r

q2
. (C15)

Assuming that
(
e4πβ3G(r−r′) − 1

)
is small unless |r − r′| � 1, we expand the long-wavelength height fields in

R = r− r′ to obtain

∆3,3,0 =
(κ3)2

2

∫
d2r d2r′

[
cos
(
2δ3h

<
z (r)

)
+ (r− r′) · ∇δ3h<z (r) sin

(
2δ3h

<
z (r)

)
+ ...

]
s−2β3

(
e−4πβ3G(r−r′) − 1

)
+

1

2

∫
d2rd2r′

{
1− 1

2

(
(r− r′) · ∇δ3h<z (r)

)2
s−2β3

(
e4πβ3G(r−r′) − 1

)}
(C16)

The terms in the first line are new, less relevant couplings between spins 3 layers apart, and can be ignored. The first
term in the second line is a constant, and the second term in the second line is the contribution to the gradient energy
that we are interested in. After performing the angular integration, only terms of the form (∇δh<)2 remain and we
obtain

∆3,3,0 = − (κ3s
−β3)2

8
B

∫
d2r |∇(δ3h

<
z (r))|2 + const + ..., (C17)

where the ellipsis represents the less relevant interlayer couplings, and

B =

∫
d2RR2

(
e4πβ3G(R) − 1

)
. (C18)

The other important corrections to the gradient energy come from ∆1,1,0 and ∆2,2,0. These contain two types of
terms, with the forms

∆1,1,0(+) = −(κ⊥)2

∫
d2r d2r′

[
〈∂ζz∂ζ′ze

i(δhz(r)+δhz(r′))〉0 − 〈∂ζze
iδhz(r)〉0〈∂ζ′ze

iδhz(r′)〉0 + c.c.
]

and ∆1,1,0(−) = (κ⊥)2

∫
d2r d2r′

[
〈∂ζz∂ζ′ze

i(δhz(r)−δhz(r′))〉0 − 〈∂ζze
iδhz(r)〉0〈∂ζ′ze

−iδhz(r′)〉0 + c.c.
]
. (C19)

Terms of the first type generate new (but irrelevant) inter-layer couplings that do not lift the helical degeneracy; they
are not important for our analysis. We are interested in terms of the second type, which reduce to

∆1,1,0(−) =
(κ⊥)2

2

∫
d2r d2r′∂ζz∂ζ

′
z

{
cos
(
δh<z (r)− δh<z (r′)

)
s−2β1

(
e4πβ1G(r−r′) − 1

)}
(C20)

Differentiating both slow and fast fields, and expanding for small R, we obtain the four terms

∆1,1,0(−) =
(κ⊥)2

2
s−2β1

∫
d2r

{
C0|∇h<z (r)|2 − C1

(
∇h<z (r)

)
·
(
∇δh<z (r)

)
+ C2|∇δh<z (r)|2 + C3

}
+ irrel. (C21)

where

C0 =

∫
d2R

(
e4πβ1G(R) − 1

)
, C1 = 4πβ1

∫
d2R (R · ∇RG(R)) e4πβ1G(R) = −C0

C2 = −1

4

∫
d2RR2

[
∇2
Re

4πβ1G(R) − 8π2β2
1 |∇RG(R)|2 e4πβ1G(R)

]
= −1

4
C0 +

π2

9K
(γ1 + γ0)

∫
d2RR2∇2

RG(R)e4πβ1G(R)

C3 =

∫
d2R

(
π2

9K
γ0∇2

RG(R) + 2πβ2
1 |∇RG(R)|2

)
e4πβ1G(R) (C22)

and we have exploited symmetries in the integration over R.
Summing over layers, the contribution to the gradient energy is

δH =
(κ⊥s

−β1)2

2

∑
z

∫
d2r

{
2C2|∇h<z (r)|2 − (2C2 − C0)

(
∇h<z (r)

)
·
(
∇δh<z+1(r)

)}
. (C23)

A similar contribution arises from ∆2,2,0. Although the leading irrelevant terms in the interlayer coupling also
renormalise the gradient energy, we will neglect their effect here as it influences only the initial part of the RG flow.
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b. Generation of new interlayer couplings

We now turn to the most important part of our RG calculation, which is to determine at what order in κ⊥ the
relevant inter-layer coupling H3 is generated in a microscopic theory with only nearest-layer couplings. (Recall from
Eq. (31) that H3 couples layers three apart in the abc stacking.) Importantly, we show that though one might expect
H3 to be produced at order κ3

⊥, in fact this is not the case: generating this interaction requires K1 6= 0, and it
consequently appears at order κ7

⊥.
If H3 is absent, then to generate it we must keep the leading irrelevant term that breaks the U(1) symmetry, which

is the interlayer coupling Hb(z) of Eq. (30). Then H2 [Eq. (31)] is generated by the bilinear

∆b,1,1 = 〈H1(z)Hb(z + 1)〉 − 〈H1(z)〉〈Hb(z + 1)〉 (C24)

and H3 is generated by

∆2,1,1 = 〈H1(z)H2(z + 1)〉 − 〈H1(z)〉〈H2(z + 1)〉. (C25)

Other cross-terms, such as 〈H1(z)H1(z + 1)〉 and 〈H3(z)H1(z)〉 also generate new inter-layer couplings. However, for
our purposes these can be ignored: they are either less relevant than the terms listed above, or equally relevant but
appear at a higher order in κ⊥.

We have

∆2,1,1 = −κ⊥κ2

∫
d2r d2r′

[
〈∂ζz∂ζ′z+1

ei(δhz(r)+δ2hz+1(r′))〉 − 〈∂ζze
iδhz(r)〉〈∂ζ′z+1

eiδ2hz+1(r′)〉+ h.c.
]

+ ...

≈ −
(
κ⊥s

−β1
) (
κ2s
−β2
)
C3(2)

∫
d2r cos (δ3hz(r)) + less relevant terms (C26)

where +... represents a contribution that generates terms of the form exp
[
iπ3 (hz+3(r′) + hz(r)− hz+1(r′)− hz+1(r))

]
,

which produce inter-layer couplings less relevant than the terms of interest, which have been neglected in the second
line. Additionally, in the second line we have kept only terms in which all derivatives are applied to the fast height
fields, as these generate the most relevant inter-layer coupling, and neglected all but the leading order term in a
derivative expansion of the argument of the cosine term for small R = r− r′. The coefficient is

C3(n) =
π2

9K

∫
d2R

{
−γ1∇2

RG(R) +
π2

9K
(γ1 − γn+1) (γ1 − γ0) |∇RG(R)|2

}
e
π2

9K (γ0−γ1+γn+1−γn)G(R) . (C27)

The frustrated second-layer coupling is generated by

∆b,1,1 = −4κ⊥κb

∫
d2r d2r′

[
〈∂ζze

iδhz(r)(∂ζ′z+1
eiδhz+1(r′)/2)2〉 − 〈∂ζze

iδhz(r)〉〈(∂ζ′z+1
eiδhz+1(r′)/2)2〉+ h.c.

]
+ ...

where again, +... generates interlayer couplings of the form exp
[
iπ3 (hz+2 + hz − 2hz+1)

]
, which we omit as they are

less relevant. In this case, because H2 involves one derivative of the slow height fields, we must calculate two terms.
First, applying all three of the derivatives to h> gives the terms

κ⊥κb

∫
d2rd2r′ei(δh

<
z (r)+δh<z+1(r′)) lim

r′′→r′
∂ζz∂ζ

′
z+1

∂ζ′′z+1
〈eiδh

>
z (r)eiδh

>
z+1(r′)/2eiδh

>
z+1(r′′)/2〉+ h.c.

=
(
κ⊥s

−β1
) (
κbs
−β1
)( π2

9K

)3 [
(γ1 − γn+1)(γ1 − γ0)2

]
×
∫

d2rd2r′
[
ei(δh

<
z (r)+δh<z+1(r′))∂ζzG(r− r′)(∂ζ′

z′
G(r− r′))2 + h.c.

]
e−

π2

9K (γ0+γ2−2γ1)G(R) .

Next, we Taylor expand for small R = r−r′. After integrating over R, the leading-order term vanishes, and the most
relevant term that we are left with is(

κ⊥s
−β1
) (
κbs
−β1
)
C4

∫
d2r

[
∂xδ2h

<
z (r) cos

(
δ2h

<
z (r)

)
+ ∂yδ2h

<
z (r) sin

(
δ2h

<
z (r)

)]
(C28)

where

C4 =

(
π2

9K

)3 [
(γ1 − γn+1)(γ1 − γ0)2

] ∫
d2RRx∂xG(R)|∇G(R)|2e− π2

9K (γ0+γ2−2γ1)G(R) (C29)
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Second, applying one derivative to h< in Eq. (C28) generates the contribution to H2

4κ⊥κb

∫
d2r d2r′

[
eiδh

<
z+1(r′)/2∂ζ′ze

iδh<z+2(r′)/2〈∂ζze
iδh>z (r)(eiδh

>
z+1(r′)/2∂ζ′ze

iδh>z+1(r′)/2)〉+ h.c.
]

= κ⊥κb

∫
d2r d2r′

[
∂ζ′ze

iδh<z+1(r′)〈∂ζze
iδh>z (r)∂ζ′ze

iδh>z+1(r′))〉+ h.c.
]

≈
(
κ⊥s

−β1
) (
κbs
−β1
)
C3(1)

∫
d2r

(
∂xh

<
z (r) cos(δ2h

<
z (r)) + ∂yh

<
z (r) sin(δ2h

<
z (r))

)
(C30)

with C3(n) as defined in Eq. (C27). The remaining contributions, which come from applying two or three derivatives
to h<, necessarily produce irrelevant couplings, and are safely omitted from our RG calculation. In total, we therefore
obtain

∆b,1,1 =
(
κ⊥s

−β1
) (
κbs
−β1
) ∫

d2r
[(
C3(1)− π

3
C4

){
∂xh

<
z (r) cos

(
δ2h

<
z (r)

)
+ ∂yh

<
z (r) sin

(
δ2h

<
z (r)

)}
+
π

3
C4

{
∂xh

<
z+2(r) cos

(
δ2h

<
z (r)

)
+ ∂yh

<
z+2(r) sin

(
δ2h

<
z (r)

)}]
+ irrelevant terms (C31)

Though the first terms in the second line are just as relevant as the terms in the first line, they do not contribute to
generating H3 until inter-layer kinetic terms Kn are generated for n > 1 (see Eq. (C2)). Hence we have neglected
them in our discussion, as their impact on the other couplings in the RG is very weak. We will also see presently that
the coefficient C4 is negligibly small compared to C3(1).

We emphasise that both C3(1) and C4 are of order at least κ2
⊥, since for K1 � K and Kn = 0, n > 1, we have

γ0 =
1√

1−
(
K1

K

)2 ≈ 1 , γ1 =
K

K1

1− 1√
1−

(
K1

K

)2
 ≈ K1

2K
, γn = 0 , n > 1 , (C32)

and K1 is generated only at order κ2
⊥. Therefore, in summary, κ3 is generated not at order κ3

⊥, as one might naively
have expected, but at order κ7

⊥. A similar effect was noted for frustrated couplings in Ref. 39.

3. Evaluation of coefficients

To proceed further, we must evaluate the coefficients B,C0, C1, C2, and C3(n). In order to compute the relevant
integrals, we expand the exponentials for small G(r). (We will justify this expansion presently). To ensure that all
integrals are absolutely convergent, we take our system to have a finite size Lx = Ly = L, and use periodic boundary
conditions. In this case the first-order terms vanish after integration, since∫

d2rG(r) =
1

L2

∫
d2r

′∑
Λ/s<q<Λ

eiq·r

q2
=

1

L2

′∑
Λ/s<q<Λ

1

q2

∫
d2r eiq·r =

′∑
Λ/s<q<Λ

{
1 if q = 0

0 else
.

A similar derivation applies for derivatives of a single power of G, which also vanish. The leading-order contributions
are therefore quadratic in G. Keeping only these terms, the integrals of interest are

I0 =

∫
d2r (G(r))

2
, I1 =

∫
d2r r2 (G(r))

2
, I2 =

∫
d2r r2G(r)∇2G(r) and I3 =

∫
d2rG(r)∇2G(r)−

∫
d2r|∇G(r)|2 .

The two integrals not involving explicit powers of r are easily evaluated as

I0 =

∫
d2r (G(r))

2
=

1

L4

∫
d2r

∑
q,k

ei(q+k)·r

q2k2
=

1

L2

′∑
q

1

q4
≈ 1

4π2

∫ Λ

Λ/s

d2q

q4
=

1

2πΛ2

s2 − 1

2
≈ ds

2πΛ2

I3 =

∫
d2r

(
G(r)∇2

rG(r)
)

=
1

L4

∫
d2r

′∑
q,k

ei(q+k)·r

q2
≈ 1

(2π)2

∫ Λ

Λ/s

d2q

q2
=

log(s)

2π
≈ ds

2π
.

We note, somewhat surprisingly, that it is the terms quadratic in G(r) – rather than the linear terms – that are
proportional to ds. Our Taylor expansion is nevertheless justified: for higher powers of G, the δ-function constraint
takes the form δ(

∑n
i=1 ki). In practice, this means that non-zero contributions to momentum integrals require both
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that |ki| is within the momentum shell for each i and also that |
∑n−1
i=1 ki| lies in this shell. This leads to a strong

phase-space suppression of the relevant angular integrals for n > 2, justifying the quadratic approximation used here.
Evaluating I1 and I2, we encounter a second difficulty: the resulting integrals retain an explicit dependence not

only on the cutoff Λ but also on the system size L. This stems from the factors of r2 in the integrands, which arise
from Taylor expansions of the type

f(h<(R)− h<(R + r)) ≈ f(r · ∇h<(R)) + ... (C33)

followed by an expansion of f for small r. The expansion is justified if G(r) falls off sufficiently quickly in r that only
small values of r contribute; however, in the cases at hand this is not so.

To circumvent this difficulty, we instead expand the function f to quadratic order in the difference h<(R)−h<(R+r)
of the height fields, without making a Taylor expansion of the height fields in powers of r. The approach amounts to
the substitution ∫

d2q q2h<q h
<
−q

∫
d2r r2F (r) ≈

∫
d2qh<q h

<
−q

∫
d2r 2(1− cosq · r)F (r) .

Using this, we obtain

q2I1 = 2

∫
d2r (1− cosq · r) (G(r))

2
=

1

L4

∑
k1,k2

∫
d2r

(
2
ei(k1+k2)·r

k2
1k

2
2

− ei(k1+k2+q)·r

k2
1k

2
2

− ei(k1+k2−q)·r

k2
1k

2
2

)

≈ 1

4π2

∫
d2k

k2

(
2

k2
− 1

|k + q|2
− 1

|k− q|2

)
,≈ −q2 ds

πΛ4
(C34)

where in the last line we have kept terms only to quadratic order in q, as higher-order terms are RG-irrelevant.
Similarly, we may evaluate

q2I2 = 2

∫
d2r (1− cosq · r)G(r)∇2

rG(r) =
1

L4

∑
k1,k2

∫
d2r

(
2
ei(k1+k2)·r

k2
1

− ei(k1+k2+q)·r

k2
1

− ei(k1+k2−q)·r

k2
1

)

≈ 1

4π2

∫
d2k

(
2

k2
− 1

|k + q|2
− 1

|k− q|2

)
≈ −q2 ds

πΛ2
. (C35)

Note that in both of these evaluations, we have ignored an important constraint, which is that for the terms involving
q, we must have Λ/s ≤ |k + q| ≤ Λ, in addition to Λ/s ≤ k ≤ Λ. However this constraint, if included, will modify
the result by a factor of order unity, provided that q is not large compared to Λ− Λ/s. The final results are

B = −16πβ2
3

ds

Λ4
, C0 =

1

2
(4πβ1)

2
I0 = 4πβ2

1

ds

Λ2
, C4 = 0 (C36)

C2 = −C0

4
+

π2

9K
(4πβ1)(γ1 + γ0)I2 = −π

(
β2

1 + 8
( π

18K

)2 (
γ2

0 − γ2
1

)) ds

Λ2

C3(n) = −
(
π2

9K

)2

[γ1(γ0 − γ1 + γn+1 − γn) + (γ1 − γn+1)(γ1 − γ0)] I3 =
ds

2π

(
π2

9K

)2

[γ1γn − γ0γn+1] .

Here the factors of Λ in each coefficient reflect the total
engineering dimension of the couplings involved; these
factors can be eliminated by defining appropriate dimen-
sionless couplings. From these expressions, we can ex-
tract values for the constants appearing in Eqns. (54)

and (56), obtaining

c1ds = − 1
8B c2ds = 2πβ2

3
ds
Λ2

c3ds = C2 c4ds = C0

2 − C2

c5ds = − 1
2C3(1) c6ds = 1

2C3(2) .
(C37)
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