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Reentrance of disorder in the anisotropic shuriken Ising model

Rico Pohle,1 Owen Benton,1 and L.D.C. Jaubert1

1Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan

(Dated: February 22, 2016)

For a material to order upon cooling is common sense. What is more seldom is for disorder to
reappear at lower temperature, which is known as reentrant behavior. Such resurgence of disorder
has been observed in a variety of systems, ranging from Rochelle salts to nematic phases in liquid
crystals. Frustration is often a key ingredient for reentrance mechanisms. Here we shall study a
frustrated model, namely the anisotropic shuriken lattice, which offers a natural setting to explore an
extension of the notion of reentrance between magnetic disordered phases. By tuning the anisotropy
of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero
temperature. In this region, the competition between multiple disordered ground states gives rise to
a double crossover where both the low- and high-temperature regimes are less correlated than the
intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau,
a multi-step Curie law crossover and a rather complex diffuse scattering in the static structure
factor. Those results are confirmed by complementary numerical and analytical methods: Monte
Carlo simulations, Husimi-tree calculations and an exact decoration-iteration transformation.

PACS numbers: 75.10.Hk,75.30.Kz,75.10.Kt

Recent progress in frustrated magnetism has deliv-
ered entire maps of long-range ordered and disordered
phases, obtained for example via the variation of bond
anisotropy1–7 or further nearest-neighbour couplings8–14.
Such phase diagrams have allowed to put a series of frus-
trated materials onto a global and connected map, that
can be experimentally explored via physical or chemi-
cal pressure15–18. On such phase diagrams, when two
ordered phases meet, an enhancement of the classical
ground-state degeneracy takes place19. This degeneracy
can either be lifted by thermal fluctuations, giving rise to
multiple phase transitions20,21, or may destroy any kind
of order down to (theoretically) zero temperature. This is
where spin liquids appear. But this picture is less clear at
the frontier between ordered and (possibly multiple) dis-
ordered ground states. In particular how do disordered
phases compete with each other at finite temperature ?

The frustrated shuriken lattice22 – also known as
square-kagome23–30, squagome31,32, squa-kagome33 or
L4-L833 lattice – provides an interesting model-example
for such competition. Being made of corner-sharing
triangles, it is locally similar to the famous kagome lat-
tice, but with the important difference that the shuriken
lattice is composed of two inequivalent sublattices [see
Fig. 1]. Such asymmetry offers a natural setup for lattice
anisotropy. In the asymptotic limits of this anisotropy, a
promising zero-temperature phase diagram has emerged
for quantum spin−1/2, ranging from a bipartite long-
range ordered phase to a highly degenerate ground state
made of tetramer clusters of spins33. However, while
the quantum ground states22,26,30,33 and the influence
of a magnetic field22,24–29,34 have been studied to some
extent, little is known about the finite-temperature
properties in zero field23,31.

In this paper, our goal is to develop a comprehensive
and precise understanding of the frustrated phase

FIG. 1. The shuriken lattice as seen in real space (left) and
Fourier space (right). There are 6 sites per unit-cell with two
sublattices A and B. Interactions between A-sites (square
plaquettes) are described with coupling constant JAA (red),
while interactions between A- and B-sites (octagonal plaque-
ttes) are described with JAB (black).

diagram of the Ising model on the anisotropic shuriken
lattice, relying on a combination of numerical and
analytical methods (Monte Carlo simulations, Husimi
tree calculations and decoration-iteration transfor-
mation). Using the lattice anisotropy as a tuning
parameter, we find that this model supports two long-
range ordered phases (ferromagnet (FM) and staggered
ferromagnet (SFM)), two classical spin liquids (SL1,2)
characterized by complex static structure factors, and
a zero-temperature paramagnet composed of two kinds
of isolated (super)spins with strictly zero correlations
between them. We shall refer to this latter phase as
a binary paramagnet. Over an extended region of the
phase diagram, there is a double crossover from the
high-temperature paramagnet to the spin liquids and
finally into the low-temperature binary paramagnet.
This double crossover gives rise to a non-monotonic
behavior of the correlation length, which can be seen as
an analogue of reentrant behavior between disordered

http://arxiv.org/abs/1602.06115v1
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FIG. 2. Phase Diagram of the Ising model on the anisotropic shuriken lattice. (a) The circles (triangles) correspond
to phase transitions (crossovers), obtained by Monte Carlo simulations (Husimi-tree calculations) [see appendix A for further

details]. As a function of the coupling ratio x = JAB

JAA
, the model supports a long-range ordered ferromagnet (FM) [see panel

(b)], a long-range ordered staggered ferromagnet (SFM) [see panel (c)], a binary paramagnet (BPM) [see panel (d)], and two
classical spin liquids (SL1,2). The BPM illustrated in panel (d) is made of antiferromagnetically ordered square plaquettes,
decoupled from each other and from the intermediate spins sitting on the B sublattice. For |x| & 1, on cooling, the system

undergoes a evolution from “gas
crossover
−−−−−−→ liquid

transition
−−−−−−→ solid”. As for |x| . 1, it provides a remarkable example of reentrance

from “gas
crossover
−−−−−−→ liquid

crossover
−−−−−−→ gas”.

phases. As a by-product, we notice an essentially perfect
agreement between Husimi-tree analytics and Monte
Carlo simulations in the disordered regimes.

The paper is divided as follows. The model is intro-
duced in section I, followed by its phase diagram in sec-
tion II. In section III, we analyze in details the double-
crossover region between disordered regimes. We con-
clude the paper by discussing possible experimental re-
alizations of the shuriken lattice and summarizing our
results in sections IV and V respectively. Most technical
details are given in the appendices.

I. ANISOTROPIC SHURIKEN MODEL

The shuriken lattice is made of corner-sharing triangles
with 6 sites per unit cell [see Fig. 1]. As opposed to its
kagome parent where all spins belong to hexagonal loops,
the shuriken lattice forms two kinds of loops made of ei-
ther 4 or 8 sites. As a consequence, 2/3 of the spins in the
system belong to the A-sublattice, while the remaining
1/3 of the spins form the B-sublattice. Let us respectively
define JAA and JAB as the coupling constants between
A-sites on the square plaquettes, and between A- and B-
sites on the octagonal plaquettes. The Hamiltonian of
the model can be written as:

H = −JAA

∑

〈ij〉AA

σA
i σ

A
j − JAB

∑

〈ij〉AB

σA
i σ

B
j (1)

where we consider Ising spins σi = ±1 with nearest-
neighbor coupling.

There is no frustration for ferromagnetic JAA = +1
where the system undergoes a phase transition with spon-
taneous Z2 symmetry breaking for JAB 6= 0. We shall
thus focus on antiferromagnetic JAA = −1, which will
be our energy and temperature scale of reference. The
thermodynamics will be discussed as a function of the
coupling ratio [25,33,30]

x =
JAB

JAA
, (2)

with ferro- and antiferromagnetic JAB.

II. PHASE DIAGRAM

The Hamiltonian of equation (1) is invariant under the
transformation

σA → −σA

JAB → −JAB (3)

All quantities derived from the energy, and especially the
specific heat Ch and entropy S, are thus the same for x
and −x. Their respective magnetic phases are related by
reversing all spins of the A-sublattices.
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A. Long-range order: |x| > 1

When the octagonal plaquettes are dominating (x →
±∞), the shuriken lattice becomes a decorated square
lattice, with A-sites sitting on the bonds between B-
sites. Being bipartite, the decorated square lattice is
not frustrated and orders via a phase transition of the
2D Ising Universality class35 by spontaneous Z2 sym-
metry breaking. Non-universal quantities such as the
transition temperature can be exactly computed by us-
ing the decoration-iteration transformation35–37 [see ap-
pendix D2]

Tc =
2JAB

ln
(√

2 + 1 +
√

2 + 2
√
2
) ≈ 1.30841JAB (4)

The low-temperature ordered phases, displayed in
Fig. 2.(b) and 2.(c), remain the ground states of the
anisotropic shuriken model for x < −1 and x > 1 re-
spectively. The persistence of the 2D Ising Universality
class down to |x| = 1+ is not necessarily obvious, but is
confirmed by finite-size scaling from Monte Carlo simu-
lations [see appendix C].
These two ordered phases are respectively ferromag-

netic (FM, x < −1) and staggered ferromagnetic (SFM,
x > 1) [see Fig. 2.(b,c)]. The staggering of the latter
comes from all spins on square plaquettes pointing in
one direction, while the remaining ones point the other
way. This leads to the rather uncommon consequence
that fully antiferromagnetic couplings – both JAA and
JAB are negative for x > 1 – induce long-range or-
dered (staggered) ferromagnetism, reminiscent of Lieb
ferrimagnetism38 as pointed out in Ref. [33] for quantum
spins. The existence of ferromagnetic states among the
set of ground states of Ising antiferromagnets is not rare,
with the triangular and kagome lattices being two famous
examples. But such ferromagnetic states are usually part
of a degenerate ensemble where no magnetic order pre-
vails on average. Here the lattice anisotropy is able to in-
duce ferromagnetic order in an antiferromagnetic model
by lifting its ground-state degeneracy at |x| = 1 (see be-
low). This is interestingly quite the opposite of what hap-
pens in the spin-ice model39, where frustration prevents
magnetic order in a ferromagnetic model by stabilizing a
highly degenerate ground state.

B. Binary paramagnet: |x| < 1

The central part of the phase diagram is dominated by
the square plaquettes. The ground states are the same
for all |x| < 1. A sample configuration of these ground
states is given in Fig. 2.(d), where antiferromagnetically
ordered square-plaquettes are separated from each other
via spins on sublattice B. The antiferromagnetic square-
plaquettes locally order in two different configurations
equivalent to a superspin Ξ with Ising degree of freedom.

Ξ = σA
1 − σA

2 − σA
3 + σA

4 = ±4, (5)

where the site indices are given in Fig. 1. These super-
spins are the classical analogue of the tetramer objects
observed in the spin−1/2 model33. At zero temperature,
the frustration of the JAB bonds perfectly decouples the
superspins Ξ from the B-sites. The system can then be
seen as two interpenetrating square lattices: one made
of superspins, the other one of B-sites. We shall refer to
this phase as a binary paramagnet (BPM).
The perfect absence of correlations beyond square pla-

quettes at T = 0 allows for a simple determination of
the thermodynamics. Let Nuc and N = 6Nuc be re-
spectively the total number of unit cells and spins in the
system, and 〈X〉 be the statistical average of X . There
are Nuc square plaquettes and 2Nuc B-sites, giving rise
to an extensive ground-state entropy

SBPM = kB ln
(

2Nuc 22Nuc
)

=
N

2
kB ln 2 (6)

which turns out to be half the entropy of an Ising para-
magnet. As for the magnetic susceptibility χ, it diverges
as T → 0+. But the reduced susceptibility χT , which is
nothing less than the normalized variance of the magne-
tization

χT =
1

N





∑

i,j

〈σiσj〉 − 〈σi〉〈σj〉



 ,

= 1 +
1

N

∑

i6=j

〈σiσj〉, (7)

converges to a finite value in the BPM

χT |BPM =
1

3
. (8)

C. Classical spin liquid: |x| ∼ 1

There is a sharp increase of the ground-state degen-
eracy at |x| = 1, when the binary paramagnet and
the (staggered) ferromagnet meet. As is common for
isotropic triangle-based Ising antiferromagnets, 6 out of 8
possible configurations per triangle minimize the energy
of the system. As opposed to the BPM one does not ex-
pect a cutoff of the correlations [see section III C], making
these phases cooperative paramagnets40, also known as
classical spin liquids.
Due to the high entropy of these cooperative paramag-

nets, the SL1,2 phases spread to the neighboring region
of the phase diagram for |x| ∼ 1 and T > 0, contin-
uously connected to the high-temperature paramagnet
[see Fig. 2]. Hence, for |x| & 1, the anisotropic shuriken
model stabilizes a cooperative paramagnet above a non-
degenerate41 long-range ordered phase. This is a gen-
eral property of classical spin liquids when adiabatically
tuned away from their high-degeneracy point, as ob-
served for example in Heisenberg antiferromagnets on the
kagome42 or pyrochlore43–45 lattices, and possibly in the
material of Er2Sn2O7

19. For |x| . 1 on the other hand,
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FIG. 3. Multiple crossovers between the paramagnetic, spin-liquids and binary regimes as observed in the specific
heat Ch, entropy S and reduced magnetic susceptibility χT . The models correspond to a) x = ±1, b) x = ±0.9 and c) x = 0.
There is no phase transition for this set of parameters, which is why the Husimi tree calculations (lines) perfectly match the
Monte Carlo simulations (circles) for all temperatures. The double crossover is present for x = ±0.9, with the low-temperature
regime being the same as for x = 0, as confirmed by its entropy and susceptibility. The entropy is obtained by integration of
Ch/T , setting S(T → +∞) = ln 2. The vertical dashed lines represent estimates of the crossover temperatures determined by
the local specific-heat maxima. The temperature axis is on a logarithmic scale. All quantities are given per number of spins
and the Boltzmann constant kB is set to 1.

multiple crossovers take place upon cooling which de-
serves a dedicated discussion in the following section III.

III. REENTRANCE OF DISORDER

A. Double crossover

First of all, panels (a) and (c) of Fig. 3 confirm that
the classical spin liquids and binary paramagnet persist
down to zero temperature for x = ±1 and x = 0 respec-
tively, and that all models for |x| 6 1 have extensively
degenerate ground states. For x = ±0.9 there is a dou-
ble crossover indicated by the double peaks in the spe-
cific heat Ch of Fig. 3.(b). These peaks are not due to
phase transitions since they do not diverge with system
size. The double crossover persists for 0.5 . |x| < 1.
Upon cooling, the system first evolves from the standard
paramagnet to a spin liquid before entering the binary

paramagnet. The intervening spin liquid takes the form
of an entropy plateau for |x| = 0.9 [see Fig. 3.(b)], at
the same value as the low-temperature regime for |x| = 1
[see Fig. 3.(a)]. All relevant thermodynamic quantities
are summarized in Table I.

While the mapping of equation (3) ensures the invari-
ance of the energy, specific heat and entropy upon revers-
ing x to −x, it does not protect the magnetic susceptibil-
ity. The build up of correlations in classical spin liquids is
known to give rise to a Curie-law crossover46 between two
1/T asymptotic regimes of the susceptibility, as observed
in pyrochlore46–49, triangular50 and kagome50–52 systems.
This is also what is observed here on the anisotropic
shuriken lattice for x = {−1, 0, 1} [see Fig. 4]. But for in-
termediate models with x = {−0.99,−0.9, 0.9, 0.99}, the
double crossover makes the reduced susceptibility non-
monotonic. χT first evolves towards the values of the
spin liquids SL1 (resp. SL2) for x < 0 (resp. x > 0)
before converging to 1/3 in the binary paramagnet.
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T → 0+ Monte Carlo Husimi tree exact

S(|x| = 1) 0.504(1)
1

6
ln

41

2
≈ 0.5034 n/a

χT (x = 1) 0.203(1) 0.2028 n/a

χT (x = −1) 1.766(1) 1.771 n/a

S(|x| < 1) 0.347(1)
1

2
ln 2 ≈ 0.3466

1

2
ln 2

χT (|x| < 1) 0.333(1)
1

3

1

3

TABLE I. Entropies S and reduced susceptibilities χT
as T → 0+ for the anisotropic shuriken lattice with coupling
ratios |x| 6 1. The results are obtained from Monte Carlo
simulations, Husimi tree analytics and the exact solution for
the binary paramagnet. All quantities are given per number
of spins and the Boltzmann constant kB is set to 1.

FIG. 4. Reduced susceptibility χT with coupling ratios
of x = ±1,±0.99,±0.9 and 0, obtained from Husimi-tree cal-
culations (solid lines) and Monte Carlo simulations (circles).
The Curie-law crossover of classical spin liquids is standard,
i.e. χT is monotonic, for x = ±1 and 0, and takes a multi-
step behavior for intermediate values of x, due to the double
crossover. The characteristic values of the entropy and re-
duced susceptibility are given in Table I. The temperature
axis is on a logarithmic scale

Beyond the present problem on the shuriken lattice,
this multi-step Curie-law crossover underlines the use-
fulness of the reduced susceptibility to spot intermedi-
ate regimes, and thus the proximity of different phases.
From the point of view of renormalization group theory,
the (x, T ) = (±1, 0) coordinates of the phase diagram
are fixed points which deform the renormalization flows
passing in the vicinity.

B. Decoration-iteration transformation

The phase diagram of the anisotropic shuriken model
and, in particular, the double crossover observed for
|x| < 1 [see Fig. 2] can be further understood using an
exact mapping to an effective model on the checkerboard
lattice, a method known as decoration-iteration transfor-
mation [see Ref. [37] for a review]. In short, by summing
over the degrees of freedom of the A-spins, one can arrive
at an effective Hamiltonian involving only the B-spins,
which form a checkerboard lattice. The coupling con-
stants of the effective Hamiltonian are functions of the
temperature T and for |x| < 1 they vanish at both high
and low temperatures, but are finite for an intermedi-
ate regime. This intermediate regime may be identified
as the SL1,2 cooperative paramagnets of Fig. 2, whereas
the low-temperature region of vanishing effective interac-
tion corresponds to the binary paramagnet (BPM). This
mapping is able to predict a non-monotonic behavior of
the correlation length.
In this section we give a brief sketch of the derivation of

the effective model, before turning to its results. Details
of the effective model are given in Appendix D.
To begin, consider the partition function for the sys-

tem, with the Hamiltonian given by Eq. (1)

Z =
∑

{σA
i =±1}

∑

{σB
i =±1}

exp [−βH ] (9)

where β = 1
T is the inverse temperature and the sums

are over all possible spin configurations. Since in the
Hamiltonian of Eq. (1) the square plaquettes of the A-
sites are only connected to each other via their interaction
with the intervening B-sites, it is possible to directly take
the sum over configurations of A-spins in Eq. (9) for a
fixed (but completely general) configuration of B-spins.
Doing so, we arrive at

Z =
∑

{σB
i =±1}

∏

�

Z�({σB
i }) (10)

where the product is over all the square plaquettes of the
lattice and Z�({σB

i }) is a function of the four B-spins
immediately neighbouring a given square plaquette. The
B-spins form a checkerboard lattice, and Eq. (10) can
be exactly rewritten in terms of an effective Hamiltonian
H⊠ on that lattice:

Z =
∑

{σB
i =±1}

exp(−β
∑

⊠

H⊠) (11)

H⊠ = −J0(T )− J1(T )
∑

〈ij〉

σB
i σB

j +

−J2(T )
∑

〈〈ij〉〉

σB
i σB

j − Jring(T )
∏

i∈⊠

σB
i (12)

where
∑

⊠
is a sum over checkerboard plaquettes of B-

spins. The effective Hamiltonian H⊠ contains a constant
term J0, a nearest neighbour interaction J1, a second
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FIG. 5. Behavior of the coupling constants of the
the effective checkerboard lattice model as a function
of temperature [Eq. (12)] for x = −0.9 (upper panel) and
x = −1 (lower panel). Upper panel: All couplings vanish at
both high and low temperatures with an intermediate regime
at T ∼ 1 where the effective interactions are stronger. The
intermediate regime corresponds to the spin liquid region of
the phase diagram Fig. 2, with the high- and low-temperature
regimes corresponding to the paramagnet and binary param-
agnet respectively. Lower panel: For all couplings Ji, βJi

vanishes at high temperature and tends to a finite constant
of magnitude |βJi(T )| << 1 at low temperature. The short
range correlated, spin-liquid regime, thus extends all the way
down to T = 0.

nearest neighbour interaction J2, and a four-site ring in-
teraction Jring. All couplings are functions of tempera-
ture Ji = Ji(T ) and are invariant under the transforma-
tion JAB 7−→ −JAB because the degrees of freedom of
the A-sites have been integrated out. Expressions for the
dependence of the couplings on temperature are given in
Appendix D.

The temperature dependence of the effective couplings
Ji = Ji(T ) can itself give rather a lot of information
about the behavior of the shuriken model.

First we consider the case |x| < 1. In this regime of pa-
rameter space, all effective interactions J1,J2,Jring van-
ish exponentially at low temperature T << 1. For inter-
mediate temperatures T ∼ 1 the effective interactions in
Eq. (12) become appreciable before vanishing once more
at high temperatures. This is illustrated for the case
x = −0.9 in the upper panel of Fig. 5. Seeing the prob-
lem in terms of these effective couplings gives some intu-
ition into the double crossover observed in simulations.
As the temperature is decreased the effective couplings

FIG. 6. Correlation lengths in the effective checker-
board model, calculated from Eq. (15), for x = −0.9 and
x = −1. The correlation length is calculated to leading order
in a perturbative expansion of the effective model in powers
of βJi. Such an expansion is reasonable for |x| ≤ 1 since
βJi << 1 for all T (see Fig. 5). For x = −0.9 the behavior
of the correlation length is non-monotonic. The correlation
length is maximal in the spin liquid regime but correlations
remain short ranged at all temperatures. In the binary para-
magnet regime, the correlation length vanishes linearly at low
temperature. For x = −1, the correlation length enters a
plateau at T ∼ 1, and short range correlations remain down
to T = 0.

|Ji| increase in absolute value and the system enters a
short range correlated regime. However, as the tempera-
ture decreases further, the antiferromagnetic correlations
on the square plaquettes of A-spins become close to per-
fect, and act to screen the effective interaction between
B-spins. This is reflected in the exponential suppression
of the couplings J1,J2,Jring.

In the case |x| = 1, the effective interactions Ji no
longer vanish exponentially at low temperature, but in-
stead vanish linearly

J1,J2,Jring ∼ T. (13)

The ratio of effective couplings to the temperature βJi

thus tends to a constant below T ∼ 1, as shown in
the lower panel of Fig. 5. Thus, the zero temperature
limit of the shuriken model can be mapped to a finite
temperature model on the checkerboard lattice for
|x| = 1 and to an infinite temperature model for |x| < 1.

The behavior of the spin correlations in the shuriken
model can be captured by calculating the correlation
length between B-spins in the checkerboard model. Since
βJi is small for all of the interactions Ji, at all tem-
peratures T (see Fig. 5), this can be estimated using a
perturbative expansion in βJi. For two B-spins chosen
such that the shortest path between them is along nearest
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FIG. 7. Spin-spin correlations in the vicinity of the spin liquid phases for x = −0.9 (a,b) −1 (c,d) and −1.05 (e,f),
obtained from Monte Carlo simulations. The temperatures considered are T = 0.01 (�), 1 (�) and 891.25 (•). Because of
the anisotropy of the lattice, we want to separate correlation functions which start on A-sites (a,c,e) and B-sites (b,d,f). The
radial distance is given in units of the unit-cell length. The agglomeration of data points around C ∼ 2.10−5 is due to finite
size effects. The y-axis is on a logarithmic scale.

neighbour J1 bonds we obtain to leading order

〈σB
i σB

j 〉 = exp

(

− rij
ξBB

)

(14)

ξBB ≈ 1
√
2 ln

(

T
J1(T )

) (15)

where we choose units of length such that the linear size
of a unit cell is equal to 1. Details of the calculation are
given in Appendix D.
The correlation length between B-spins, calculated

from Eq. (15), is shown for the cases x = −0.9 and
x = −1 in Fig. 6. For x = −0.9 the correlation length

shows a non-monotonic behavior, vanishing at both high
and low temperature with a maximum at T ∼ 1. On
the other hand for x = −1, the correlation length en-
ters a plateau for temperatures below T ∼ 1 and the
system remains in a short range correlated regime down
to T = 0. The extent of this plateau agrees with the
low-temperature plateau of the reduced susceptibility in
Fig. 4
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FIG. 8. Static structure factors of the anisotropic shuriken lattice for (a) x = −1, (b) x = 0 and (c) x = 1 at zero
temperature, obtained from Monte Carlo simulations. For x = ±1, the scatterings are strongly inhomogeneous (as opposed to
a standard paramagnet) and non-divergent (i.e. without long-range order), confirming the spin liquid nature of these phases.
The structure factors of the x = +1 and x = −1 models are similar by a (qx, qy) = (60π, 0) or (0, 60π) translation. The
patterns are related to the 6-site unit cell of the shuriken lattice, as visible from Fig. 1. On the other hand for (b) x = 0, the
black background underlines the absence of correlations in the binary paramagnet beyond the size of the superspins (square
plaquettes), which is responsible for the finite extension of the dots of scattering. In order to restore ergodicity, a local update
flipping the four spins of square plaquettes was used in the simulations. A video showing the temperature dependence of the
static structure factor for x = 0.9 is available in the Supplementary Materials.

C. Correlations and Structure factors

The non-monotonic behavior of the correlation length
estimated in the previous section III B can be measured
by Monte Carlo simulations. Let us consider the mi-
croscopic correlations both in real (Cρ) and Fourier (Sq)
space. The function Cρ measures the correlation between
a central spin σ0 and all spins at distance ρ. Because of
the nature of the binary paramagnet, one needs to make
a distinction between central spins on the A and B sub-
lattices. Let DX

ρ be the ensemble of sites at distance ρ

from a given spin σX
0 on the X = {A,B} sublattice. The

correlation function is defined as

CX
ρ =

∑

i∈DX
ρ
|〈σX

0 σi〉|
∑

i∈DX
ρ

(16)

where the absolute value accounts for the antiferromag-
netic correlations. As for the static structure factor Sq,
it is defined as

Sq = 〈σ~q σ−~q〉 =
〈∣

∣

∣

1

Nuc

∑

i

e−i~q·~riσi

∣

∣

∣

2〉

. (17)

CA
ρ and CB

ρ are respectively plotted on the left and
right of Fig. 7. Let us first consider what happens in
absence of reentrant behavior. For x = −1.05 [see panels
(a,b)], the system is ferromagnetic at low temperature
with C(ρ) ≈ 1 over long length scales. Above the phase
transition, the correlations are exponentially decaying.

When x = 1 [see panels (c,d)], the correlations remain
exponentially decaying down to zero temperature. The
correlation length ξ reaches a maximum in the spin-liquid
regime with ξ ≈ 0.3. The quantitative superimposition
of data for T = 0.01 and T = 1 is in agreement with
the low-temperature plateau of the correlation length in
Fig. 6. The spin liquid remains essentially unchanged all
the way up to T ∼ 1, when defects are thermally excited.
However even if the correlations are exponential, they
should not be confused with paramagnetic ones, as illus-
trated by their strongly inhomogeneous structure factors
[see Fig. 8 and Supplementary Materials].
Once one enters the double-crossover region [see

Fig. 7.(e,f) for x = −0.9], the correlation function be-
comes non-monotonic with temperature, as predicted
from the analytics of Fig. 6. In the binary paramag-
net, the B-sites are perfectly uncorrelated, while the A-
sites have a finite cutoff of the correlation that is the size
of the square plaquettes (superspins). This is why Sq

takes the form of an array of dots of scattering, whose
width is inversely proportional to the size of the super-
spins [see Fig. 8]. Please note that the dip of correlations
for the nearest-neighbors in Fig. 7.(e) is because half of
the nearest-neighbors of any A-site are on the uncorre-
lated B sublattice.
The intervening presence of the spin liquids between

the two crossovers is conceptually reminiscent of reen-
trant behavior53–55. Not in the usual sense though, since
reentrance is usually considered to be a feature of ordered
phases surrounded by disordered ones. But the present
scenario is a direct extension of the concept of reentrance
applied to disordered regimes. This reentrance is quan-
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titatively characterized at the macroscopic level by the
double-peak in the specific heat, the entropy plateau and
the multi-step Curie-law crossover of Fig. 3.(b), and mi-
croscopically by the non-monotonic evolution of the cor-
relations [see Figs. 6, 7 and 8]. As such, it provides an
interesting mechanism to stabilize a gas-like phase “be-
low” a spin liquid, where (a fraction of) the spins form
fully correlated clusters which i) can then fluctuate inde-
pendently of the other degrees-of-freedom while ii) low-
ering the entropy of the gas-like phase below the one of
the spin liquids.

IV. THE SHURIKEN LATTICE IN
EXPERIMENTS ?

Finally, we would like to briefly address the exper-
imental situation. Unfortunately we are not aware of
an experimental realization of the present model, but
several directions are possible, each of them with their
advantages and drawbacks.

The shuriken topology has been observed, albeit quite
hidden, in the dysprosium aluminium garnet (DAG)56,57

[see Ref. [58] for a recent review]. The DAG material
has attracted its share of attention in the 1970’s, but its
microscopic Hamiltonian does not respect the geometry
of the shuriken lattice – it is actually not frustrated –
and is thus quite different from the model presented
in equation (1). However it shows that the shuriken
topology can exist in solid state physics.

Cold atoms might offer an alternative. Indeed, the
necessary experimental setup for an optical shuriken
lattice has been proposed in Ref. [32]. The idea was
developed in the context of spin-ice physics, i.e. assum-
ing an emergent Coulomb gauge theory whose intrinsic
Ising degrees of freedom are somewhat different from
the present model. Nonetheless, optical lattices are
promising, especially if one considers that the inclusion
of “proper” Ising spins might be available thanks to
artificial gauge fields59.

But the most promising possibility might be artificial
frustrated lattices, where ferromagnetic nano-islands ef-
fectively behave like Ising degrees-of-freedom. Since the
early days of artificial spin ice60, many technological and
fundamental advances have been made61. In particular,
while the thermalization of the Ising-like nano-islands
had been a long-standing issue, this problem is now on
the way to be solved62–68. Furthermore, since the geome-
try of the nano-array can be engineered lithographically,
a rich diversity of lattices is available, and the shuriken
geometry should not be an issue. Concerning the Ising
nature of the degrees-of-freedom, nano-islands have re-
cently been grown with a magnetization axis ~z perpen-
dicular to the lattice69,70.
To compute their interaction69,70, let us define the

Ising magnetic moment of two different nano-islands:
~S = σ~z and ~S′ = σ′~z. The interaction between them
is dipolar of the form

D

(

~S · ~S′

r3
− 3

(~S · ~r)(~S′ · ~r)
r5

)

=
D

r3
σ σ′ (18)

where D is the strength of the dipolar interaction and
~r is the vector separating the two moments. The result-
ing coupling is thus antiferromagnetic and quickly decays
with distance. Hence, at the nearest-neighbour level, a
physical distortion of the shuriken geometry – by elon-
gating or shortening the distance between A and B sites –
would precisely reproduce the anisotropy of equation (1)
for x > 0. However, the influence of interactions beyond
nearest-neighbours has successively been found to be ex-
perimentally negligible69 and relevant70 on the kagome
geometry. Thus the phase diagram of Fig. 2.(a) could
possibly be observed at finite temperature, but would
likely be influenced by longer-range interactions at rela-
tively low temperature.

V. CONCLUSION

The anisotropic shuriken lattice with classical Ising
spins supports a variety of different phases as a func-
tion of the anisotropy parameter x = JAB/JAA: two
long-range ordered ones for |x| > 1 (ferromagnet and
staggered ferromagnet) and three disordered ones [see
Fig. 2]. Among the latter ones, we make the distinction,
at zero temperature, between two cooperative paramag-
nets SL1,2 for x = ±1, and a phase that we name a binary
paramagnet (BPM) for |x| < 1. The BPM is composed
of locally ordered square plaquettes separated by com-
pletely uncorrelated single spins on the B-sublattice [see
Fig. 2.(d)].
At finite temperature, the classical spin liquids SL1,2

spread beyond the singular points x = ±1, giving rise to
a double crossover from paramagnet to spin liquid to bi-
nary paramagnet, which can be considered as a reentrant
behavior between disordered regimes. This competition
is quantitatively defined by a double-peak feature in the
specific heat, an entropy plateau, a multi-step Curie-law
crossover and a non-monotonic evolution of the spin-spin
correlation, illustrated by an inhomogeneous structure
factor [see Figs. 3, 4,6, 7 and 8]. The reentrance
can also be precisely defined by the resurgence of the
couplings in the effective checkerboard model [see Fig. 5].

Beyond the physics of the shuriken lattice, the present
work, and especially Fig. 3, confirms the Husimi-tree
approach as a versatile analytical method to investigate
disordered phases such as spin liquids. Regarding clas-
sical spin liquids, Fig. 4 illustrates the usefulness of the
reduced susceptibility χT [46], whose temperature evo-
lution quantitatively describes the successive crossovers
between disordered regimes. Last but not least, we
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hope to bring to light an interesting facet of distorted
frustrated magnets, where extended regions of magnetic
disorders can be stabilized by anisotropy, such as on the
Cairo71,72, kagome51,73 and pyrochlore74 lattices. Such
connection is particularly promising since it expands the
possibilities of experimental realizations, for example in
Volborthite kagome75 or breathing pyrochlores76,77.

Possible extensions of the present work can take differ-
ent directions. Motivated by the counter-intuitive emer-
gence of valence-bond-crystals made of resonating loops
of size 6 [30], the combined influence of quantum dynam-
ics, lattice anisotropy x30,33 and entropy selection pre-
sented here should give rise to a plethora of new phases
and reentrant phenomena. As an intermediary step, clas-
sical Heisenberg spins also present an extensive degen-
eracy at x = 126,33, where thermal order-by-disorder
is expected to play an important role in a similar way
as for the parent kagome lattice, especially when tuned
by anisotropy x. The addition of an external magnetic
field25,29 would provide a direct tool to break the invari-
ance by transformation of equation (3), making the phase
diagram of Fig. 2.(a) asymmetric. Furthermore, the di-
versity of spin textures presented here offers a promising
framework to be probed by itinerant electrons coupled to
localized spins via double-exchange.
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Appendix A: Methods

Classical Monte Carlo simulations have been per-
formed based on the single-spin-flip algorithm. Let a
Monte Carlo step (MCs) be the standard Monte Carlo
unit of time made of N attempts to flip a spin chosen at
random. Typical simulations in this paper consist of

• 107 MCs, including 106 MCs for equilibration;

• 1 measurement every 50 MCs for |x| > 1 (total of
180 000 samples);

• 1 measurement every 10 MCs for |x| ≤ 1 (total of
900 000 samples);

• system sizes varying from N = 2 400 to 15 000.
Fig. 2 has been obtained for N = 2 400 sites.

In order to improve the statistics, a large number of
temperatures were simulated, and data were averaged
over 4 neighboring temperatures.

To avoid any potential problems of ergodicity breaking
in Monte Carlo simulations, we combined this numerical
approach to analytical calculations on a Husimi tree78,
a method that has already demonstrated success in frus-
trated magnets46,79–81. In a nutshell, the Husimi tree is
a recursive approach on a Bethe lattice where all vertices
are replaced by a cluster of spins. The clusters are con-
nected to each other via their external corners, without
making any closed loops. This allows to correctly take
into account the interactions within each cluster, where
frustration can be encoded.
Because the shuriken lattice is made of corner-sharing

triangles, a natural choice would have been to consider
triangles as building blocks of the Husimi-tree recursion.
However a single triangle does not properly include the
geometry of the anisotropy presented in Fig. 1. This is
why, in the same way as for the 16-vertex model82,83,
we chose a larger building block made of four triangles
forming a “shuriken” [see Fig. 1], which includes the
anisotropy between A- and B-sites.
On the other hand, it neglects correlations on the

length scale of the octagonal plaquettes and beyond. As
such, the Husimi tree remains a mean field approximation
which can only be qualitative in the vicinity of a critical
point below its upper critical dimension. Since the 2D
Ising Universality class is obviously not mean field, the
Husimi tree underestimates the transition temperatures
for |x| > 1 by a factor of ≈ 0.7. This is why the bound-
aries of the FM and SFM phases have been determined
with Monte Carlo simulations [open circles in Fig. 2.(a)].
But as far as disordered phases are concerned, the

Husimi tree is quantitatively correct, as shown by Fig. 3
and table I. Being analytical, it provides an accurate way
to determine the local maxima of the specific heat during
crossovers [open triangles in Fig. 2.(a)].

Appendix B: Pauling entropy of the spin liquids

In the isotropic case (x = 1), and by symmetry for x =
−1 as well [see equation (3)], a simple Pauling argument
is possible for the calculation of the entropy84. If N is
the number of Ising spins, then there are 2N/3 triangles
in the system. Out of the 2N possible configurations, the
Pauling argument states that approximately (6/8)2N/3

are allowed in the ground state, giving a total number of
ground states in the spin liquids SL1,2

ΩSL−Pauling = 2N
(

6

8

)2N/3

=

(

9

2

)N/3

(B1)

giving an entropy

SSL−Pauling =
N

3
kB ln

9

2

=
N

6
kB ln

40.5

2
≈ N kB 0.50136 (B2)
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FIG. 9. Finite size effects on the specific heat for x = −3 (left) and x = −1.05 (right). Insets: The transition temperature
is scaled as a function of 1/L where L is the linear system size. In the thermodynamic limit, we find Tc = 2.788(5) for x = −3
and Tc = 0.0714(5) for x = −1.05

FIG. 10. Finite size scaling of the magnetization |M | (a,c) and susceptibility χ (b,d) for x = −3.

The small difference between the Pauling estimate
of equation (B2) and Monte Carlo results (0.50366) is
mostly corrected by considering shurikens as building
blocks in the Husimi-tree calculations (0.50340) [see Ta-
ble I].

Appendix C: 2D Ising Universality class

For |x| > 1, the anisotropic shuriken model orders at
low temperature via a spontaneous Z2 symmetry break-
ing [see Fig. 2]. We know it is a critical point of the 2D
Ising Universality class for large |x| [see section IIA]. In

this appendix, our goal is to confirm numerically that
it remains in the same Universality class as |x| → 1+,
by considering two different values of the coupling ratio:
x = −3 and x = −1.05. By symmetry of equation (3),
the results directly apply to x > 1 also.
In Fig. 9, we analyze the specific heat Ch for four dif-

ferent system sizes N = {2400, 5400, 9600, 15000}. The
transition temperature scales like 1/N1/3 to its thermo-
dynamic limit found at

x = −3 ⇒ Tc = 2.788(5) (C1)

x = −1.05 ⇒ Tc = 0.0714(5) (C2)

Based on these values of the transition temperature,
we can define the reduced temperature ǫ = (T − Tc)/Tc.
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FIG. 11. Finite size scaling of the magnetization |M | (a,c) and susceptibility χ (b,d) for x = −1.05.

Following standard finite size scaling85, we confirm in
Figs. 10 and 11 that the nature of the phase transition
is consistent with the 2D Ising Universality class with
critical exponents

β = 0.125, γ = 1.75, ν = 1 (C3)

Appendix D: Details of the decoration-iteration
transformation

In this Appendix we give the details of the map to
the effective model on the checkerboard lattice derived
in Section III B. We give the derivation in Section D1
and then give details of the calculation of the correlation
length in Section D3.

1. Derivation of the effective model on the
checkerboard lattice

Consider the partition function of the anisotropic
shuriken model

Z =
∑

{σB
i =±1}

∑

{σA
i =±1}

exp [−β(HAA +HAB)] (D1)

where HAA and HAB are respectively the Hamiltonian
of the square plaquettes of A- spins and the Hamiltonian
coupling the intermediate B-spins to the square plaque-

FIG. 12. The checkerboard lattice formed by the set of B-
spins on the shuriken lattice.

ttes. Summing over configurations of A- spins, we obtain:

Z =
∑

{σB
i =±1}

∏

�

Z�({σB
i }) (D2)

where the product is over all the square plaquettes of the
lattice and Z�({σB

i }) depends on the configuration of
the four B-spins immediately neighbouring a given square
plaquette.
There are sixteen possible arrangements of the four

spins B-spins surrounding a square plaquette of which
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only four are inequivalent from the point of view of sym- metry. These give rise to four possible values for Z�:

Z++++ = 2(2 + 4 cosh(4βJAB) + exp(−4βJAA) + exp(4βJAA) cosh(8βJAB)) (D3)

Z+++− = 2(3 + 3 cosh(4βJAB) + exp(−4βJAA) + exp(4βJAA) cosh(4βJAB)) (D4)

Z++−− = 4(1 + 2 cosh(4βJAB) + cosh(4βJAA)) (D5)

Z+−+− = 4(3 + cosh(4βJAA)) (D6)

From these we can assign “free energies” Fi =
−T ln(Zi) to each of the four possible inequivalent con-
figurations of B- spins around a square plaquette, i.e.

F++++ = −T ln(Z++++) (D7)

F+++− = −T ln(Z+++−) (D8)

F++−− = −T ln(Z++−−) (D9)

F+−+− = −T ln(Z+−+−) (D10)

The B-spins form a checkerboard lattice as illustrated
in Fig. 12. Using Eqs. (D3)-(D10) we can rewrite
Eq. (D2) in terms of an effective Hamiltonian on the
checkerboard lattice

Z =
∑

{σB
i =±1}

exp

[

−β
∑

⊠

H⊠

]

(D11)

The sum
∑

⊠
is a sum over the elementary units of the

checkerboard lattice. The function H⊠ is a function only
of the four B-spins around a checkerboard unit and re-
turns one of the four Fi defined in Eqs. (D7)-(D10) as
appropriate to the configuration of those four spins.

We can rewrite H⊠ explicitly in terms of interactions
between the spins on the checkerboard lattice. The resul-
tant effective Hamiltonian for the spins on the checker-
board lattice contains a constant term J0, a nearest
neighbour interaction J1, a second nearest neighbour in-
teraction J2, and a four-site ring interaction Jring.

H⊠ = −J0(T )− J1(T )
∑

〈ij〉

σB
i σB

j

−J2(T )
∑

〈〈ij〉〉

σB
i σB

j − Jring(T )
∏

i∈⊠

σB
i (D12)

All couplings are functions of temperature Ji = Ji(T ).

The relationship between the temperature dependent
couplings Ji(T ) appearing in Eq. (D12) and the free en-

ergies Fj defined in Eqs. (D7)-(D10) is:

J0 =
−1

8
(F++++ + F+−+− + 2F++−− + 4F+++−)

(D13)

J1 =
−1

8
(F++++ − F+−+−) (D14)

J2 =
−1

8
(F++++ + F+−+− − 2F++−−) (D15)

Jring =
−1

8
(F++++ + F+−+− + 2F++−− − 4F+++−)

(D16)

We have thus succeeded in mapping the original model
on the shuriken lattice, onto an effective model on the
checkerboard lattice [Eq. (D12)].

2. Transition temperature of the decorated square
lattice

In the limit x → +∞, one obtains the decorated square
lattice. Applying JAA = 0 to Eqs. (D3)-(D10) and then
injecting the results into Eqs. (D14)-(D16), one obtains

J1 =
1

2β
ln(cosh(2βJAB)), (D17)

J2 = Jring = 0. (D18)

The term J0 does not cancel, but it only appears as a
prefactor in the partition function of Eq. (D11) and thus
does not influence the critical point.
Our effective model thereby becomes a square lattice

with a temperature dependent nearest-neighbour cou-
pling J1(T ). It is exactly soluble and the transition tem-
perature Tc = 1/βc is obtained by injecting Eq. (D17)
into Onsager’s solution of the Ising square lattice86

βcJ1(Tc) =
1

2
ln(cosh(2βcJAB))

=
1

2
ln(

√
2 + 1) (Onsager) (D19)

which gives the result of Eq. (4)

Tc =
2JAB

ln
(√

2 + 1 +
√

2 + 2
√
2
)

≈ 1.30841 JAB (D20)
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3. Correlation length

We observed in Section III B that for x ≤ 1 the cou-
plings of the effective model are small compared to the
temperature, for all values of temperature.

An expansion of the partition function of the effective
model in powers of βJi is thus justified. Where |x| < 1
this expansion is assymptotically exact in both high and
low temperature regimes.

Here we show how to use this expansion to calculate
the correlation function 〈σB

0 σB
m〉 for a pair of B-spins.

For simplicity and concreteness we will do the calculation
for a pair separated by a path such as that in Fig. 13,
where the shortest route between them traverses only J1

bonds and contains m such bonds. However, there is no
difficulty in making the calculation for other cases.

We have

FIG. 13. A path (in red) between two spins on the checker-
board lattice containing only nearest neighbour J1 bonds.
The correlation function between two such spins in the disor-
dered regime is calculated in section D3.

〈σB
0 σB

m〉 =
∑

{σi±1} σ
B
0 σB

m exp
[

β
∑

⊠
J0(T ) + J1(T )

∑

〈ij〉 σ
B
i σB

j + J2(T )
∑

〈〈ij〉〉 σ
B
i σB

j + Jring(T )
∏

i∈⊠
σB
i

]

∑

{σi±1} exp
[

β
∑

⊠
J0(T ) + J1(T )

∑

〈ij〉 σ
B
i σB

j + J2(T )
∑

〈〈ij〉〉 σ
B
i σB

j + Jring(T )
∏

i∈⊠
σi

]

=
1

Nc

∑

{σi±1} σ
B
0 σB

m

∑∞
n=0

1
n!

[

β
∑

⊠
J1(T )

∑

〈ij〉 σ
B
i σB

j + J2(T )
∑

〈〈ij〉〉 σ
B
i σB

j + Jring(T )
∏

i∈⊠
σi

]n

1 + 1
Nc

∑

{σi±1}

∑∞
n=1

1
n!

[

β
∑

⊠
J1(T )

∑

〈ij〉 σ
B
i σB

j + J2(T )
∑

〈〈ij〉〉 σ
B
i σB

j + Jring(T )
∏

i∈⊠
σB
i

]n

(D21)

where Nc is the total number of spin configurations of
the checkerboard model.
The leading non-zero term in Eq. (D21) comes from

the n = m part of the sum in the numerator, and corre-
sponds to covering the shortest path between σB

i and σB
j

with J1 interactions. There are m! ways of ordering the
product of terms, which cancels the 1

n! occurring in the
denominator. We thus obtain

〈σB
i σB

j 〉 ≈ (βJ1(T ))
m

= exp

[

−m ln

(

1

βJ1(T )

)]

(D22)

In our choice of units of length, made such that the
linear size of a unit cell equals 1, the distance between
the spins is

r =
m√
2

(D23)

We therefore have a correlation length

ξBB =
1

√
2 ln

(

1
βJ1(T )

) (D24)
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