
HAL Id: hal-01542101
https://hal.science/hal-01542101v1

Submitted on 19 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding Time Petri nets
Maurice Comlan, David Delfieu, Médésu Sogbohossou, Antoine Vianou

To cite this version:
Maurice Comlan, David Delfieu, Médésu Sogbohossou, Antoine Vianou. Embedding Time Petri nets.
(IEEE) 4th-2017 International Conference on Control, Decision and Information Technologies, Apr
2017, Barcelone, Spain. �10.1109/codit.2017.8102625�. �hal-01542101�

https://hal.science/hal-01542101v1
https://hal.archives-ouvertes.fr

Embedding Time Petri nets
Maurice Comlan ∗†, David Delfieu∗, Médésu Sogbohossou† and Antoine Vianou†

∗Laboratoire des Sciences du Numerique de Nantes
1, rue de la Noë, BP 92101 44321 Nantes Cedex 3

Email: comlan@irccyn.ec-nantes.fr, delfieu@irccyn.ec-nantes.fr
†Ecole Polytechnique d’Abomey-Calavi

01 BP 2009 Cotonou, Benin
Email: sogbohossou medesu@yahoo.fr, avianou@yahoo.fr

Abstract—This paper presents a tool (PN2A) which embeds
Time Petri Nets (TPN) to Arduino micro-controller architecture.
PN2A imports TPN and generates Arduino sketches, which can
be then compiled and uploaded to a micro-controller architecture.
Some transitions (resp. places) of the transition set (resp. place
set) can be assigned to pins of the micro-controller. Theses two
types of transitions generates a new firing semantics combining
weak and strong semantics. Embedded, the TPN becomes par-
tially non-autonomous and can be defined as a microcontroller
Synchronised Time Petri net (mSTPN).

I. INTRODUCTION

Petri nets are a modeling language covering a wide do-
main: control systems, communication protocols, distributed
systems. Several extensions even enlarge its application to
Artificial Intelligence (Predicate-Transition PN), Object Pro-
gramming with Coloured PN, or real-time with temporal
extentions (T-TPN, P-TPN, . . .). This paper focuses on Time
Petri Nets (TPN), particularly adapted to model real-time
concurrent systems.

Generally the modeling of a system with Petri nets is made
only on the control part. It can be, already, a challenge because
it implies to have a good knowledge of the system. From this
model generally, the state space is computed and properties
like boundedness, reachability, liveness, temporal properties
can be verified. When it is necessary to test performance
constraints or implementation aspects, the environment is
modelized and coupled to the application in a global model.
This approach necessites to have a good knowledge of the en-
vironment. In that case, the size of the global model increases
and it can be more difficult to compute the state space.

The idea of this paper is to embed the modelling on a mi-
crocontroller, challenged to its real environment. The structure
of the TPN is translated in an incident matrix and enabling and
firing functions are defined. In addition, one originality of the
appoach is the possibility of a “partial association”: a subset
of places and transitions can be associated to the pins of a
microcontrollers. The environment is external and physical :
actuators, sensors, motors, leds, human interactivity . . . The
modelling can be simulated in a real context.

The TPN is transformed into an Arduino Sketch through
a code generation step (see Figure 1) for a predefined tar-
get architecture. Actually, these architectures are limited to
Arduino cards. The sketch of the TPN contains a matrix

Environment

Temporal Petri
Nets Model

Action Stimuli

13

3V3

AREF
A0A1A2A3A4A55VRST

G
ND

VIN

USB

12111098765432

G
ND

RST
RX0
TX1

M
ISO

SCK
M

O
SI

RX/LED

Arduino

+5v

Code Generation

Pins assignment

Actuators Sensors

Fig. 1. Model and its environment

structure, functions computing the enabling set and the firing
of transition and a timer handler that ages enabled transitions.

Embedding a TPN on a microcontroller requires to set up
two definitions that constitute the major contributions of this
paper:

• The definition of an embedded T PN, connected to its en-
vironment (see definition 2 of section III-C). Connecting a
T PN with a real environment, defines a non-autonomous
Time Petri net : a microcontroller Synchronised Time
Petri net (msT Pn). The definition of an assignment appli-
cation specifies that subset of transitions or place can be
associated to pins. As large microcontrollers can contain
upto several dozens of general purpose Input/Output pins,
a large range of TPN can be projected to microcontroller
cards becoming cheap automatism systems.

• A token player that describes how evolve the msT PN on
the microcontroller. This token player is defined througth
the description of the firing semantics (definition 3 of
section IV).

Section II presents different code generation approaches
from Petri nets and how the methodology presented in this
paper can be situated. Section III introduces definitions about
PN, TPN and msTPN. The section IV presents the firing
semantics, the next section describes the tool while the last
section illustrates the approach by an example with metrics
about execution times and memory occupation.

II. DISCUSSION AND RELATED WORKS

Many studies discuss about code generation from Petri
Nets. A classification of theses approaches can be found
in [9]: Centralized approach, totally centralized and hybrid
approach. Centralized approaches implement a “token player”
investigating every transition to evaluate their firability. Filters
have be founded to decrease the complexity of the algorithm,
however thoses filters does not preseve parallelism.

Lee G., H. Zandong and J. Lee: ([7]) present a centralized
approach to generate Ladder diagrams from Petri nets. They
limit their work to safe and deterministic Petri nets (Control
Petri Net). In [8], Ferrarini proposes to synthetize logic con-
troller from Petri nets, but a lot of restrictions are imposed on
the Petri nets : The whole Petri nets must be covered by place
invariant and transition invariant and the net must be live.

In totally decentralized approach [14], each place and tran-
sition are implemented as a processes. This approach preserves
parallelism but the overhead of time and memory due to the
task scheduler ruins performance. Richta and R. Ko ([16])
propose distributed approach to embed Workflow Petri nets
specification on a microprocessor architecture. Concurrency is
obtained by processes and subprocesses. The initial model is
transformed through several steps into a bytecode interpreted
by a Petri nets Virtual Machine which is part of a Petri nets
dedicated operating system. This approach is more sophisti-
cated (use of virtual machine) than the approach presented in
this paper however, the memory amount is very important for
even small modelizations. The authors admit that the SRAM
memory of the ATmega328 chip (2kB) is a strong limitation
and they propose in future works to use a Raspberry.

In hybrid approaches, the idea is to partition, if possible,
a net into a set of components that can be executed con-
currently. Those components are “sequential state machines”
that can be implemented as processes. Those components can
be indentified by the computing of place invariants. If every
place invariant does not correpond to a state machine, a state
machine corrresponds to a place invariant. Extentions ([6])
using colored invariant can be used to select the right place
invariants.

We place our works in a ”token player” approach : All
the transitions of the net are tested at each evolution step of
the net. The token player stands for a scheduler. Moreover,
this approach deals with Time Petri nets, without restrictions.
This work translates a Time Petri nets into a light structure,
in term of memory (see table I), as an Arduino sketch directly
downloadable, without operating system, on a pre-determined
microcontroller card. We aim to propose a fast, automatic and
low-cost code generation procedure.

III. BASIC DEFINITIONS

A. Petri Net

A Petri Net (PN) [13] N =< P,T,Pre,Post > is a tuple
with: P, a finite set of places, T , the finite set of transitions,
P ∪ T are nodes of the net; (P ∩ T = /0), and Pre : (P×
T) −→ N, the Pre-condition function defining incoming arcs

(and their valuations) between a place and a transition of N
and Post : (T×P) −→ N, the Post-condition relation defining
outgoing arcs (and their valuations) between a transition and
a place of N .

The pre-set (resp. post-set) of a transition t is denoted •t =
{p ∈ P | Pre(p, t)> 0} (resp. t• = {p ∈ P | Post(t, p)> 0}). A
marking of a Petri net N is a mapping M : P −→ N. A
transition t ∈ T is enabled in M iff: ∀p∈ •t, M(p)≥ Pre(p, t).
This is denoted: M t→. Firing of an enabled transition t leads
to the new marking M′ (M t→M′): ∀p ∈ P, M′(p) = M(p)−
Pre(p, t)+Post(t, p). Enabled(M) = {t ∈ T , s.t. M t→}. The
initial marking is denoted M0.

B. Time Petri nets

Numerous extensions have been proposed to take into
account temporal specifications. The two majors extensions are
Timed Petri nets [10] and Time Petri nets (TPN) [11]. In Timed
Petri nets a numerical value is associated to a transition which
represents the firing duration. An equivalent mode is proposed
by [12]: p-time Petri nets where durations are associated to
places.

Concerning TPNs other extensions have been introduced
to enrich expressive power : Scheduling TPN, inhibitors/reset
Arcs TPN, and some other ones. All these extensions use
Stopwatch and are generically named SwT PNs. In this class
[3] state reachability is undecidable, but this paper is restricted
to simple TPN, where this property holds and which gives a
satisfying expressive power in most of usual control applica-
tions.

Definition 1: A Time Petri net is a tuple < N ,m0, Is > in
which N is a Petri net and Is : T → Q+×Q+ ∪∞ is called
the Static Interval Function.

For every transition t is associated a static interval
[e f d(t), l f d(t)] where e f d(t) is the earliest firing date of t,
and l f d(t) is the lastest firing date of t.

The enabling date of a transition is the date of the last
firing date which has enabled t. At this date, the local clock
associated to the transition is reset and begin to be aged. A
transition t, for which time clock value belongs to its static
interval is firable. Time elapsing is generally considered in
a continuous way, and those clocks are defined on R+. In
this paper, time elapsing is generated by a timer, thus, clock
variables will be defined on N+.

Two semantics can be considered ([5]) : in a strong seman-
tics, after l f d(t), the transition t will be unavoidable. In a
weak semantics, this transition can expire if its clock exceeds
l f d(t).

C. Microcontroller synchronised Time Petri net

This work proposes to associate marked places to the
activation of pre-defined output pins (eventually connected to
actuators, like in Figure 1) wheras transitions can be associated
to positive or negative edge on predefined input pins.

Let’s define the assignment of a TPN to a microcontroller.
A transition can be associated, to positive or negative edge
on an associated pin defined as an input. A marked place can

EnterCode

P2 P3

Tries

P5

Pass
[1,3]

Retry
[2,4]

InsertedCard

EjectedCard

T1
[5,5]

Fig. 2. Identification System

provoke a high or a low level on an associated pin that is
defined as output. It is important to note that the assignation of
transitions and places to the pins of the microcontroller is not
complete. The user must defines the transitions and the places
that will be associated to the pins of the micro-controller.

We introduce the term of sensitized. A transition will be
sensitized if it is activated by an pre-defined external event: a
positive edge or a negative edge. Associate a place to a pin
means that a high or a low level will be applied on this pin
when the place is marked.

Notational : Let’s note T a, a subset of T constitued by
a set of transitions associated to some pins of the microcon-
troller, and Pa, a subset of P constitued by a set of places
associated to some pins of the microcontroller. Let’s note
Pins() the set of pins of a microcontroleur. Pins() defines for
each pin a tension level (High, Low).

Definition 2: A microcontroller synchronised Time Petri net
(or msTPN) is a tuple < N ,A ,Pa,T a > in which N is a
Time Petri net, T a (resp. Pa) a subset ot transitions (resp.
places) of T (resp. P) that are associated to a pin of the
microcontroller and A , is the assignment application: A :
Pa∪T a→< Pin,Level >. This application makes correspond
a node n∈Pa∪T a to a pair (pin,L) where pin is a pin number,
and L a logical level.

If n ∈ Pa ∪ T a, then A (n) → pin denotes the associated
pin and A (n) → L denotes the associated tension level of
the pin associated to the node n. A is an application, A (n)
refers to only one pair (pin,L). Two definitions folllows for
the previous:
• In a msTPN, a transition t becomes urgent, if this

transition is not associated to a pin (t 6∈ T a) and when
its local clock reaches its last firing date. We call Urgent
the set of urgent transitions.

• A transition t is senzitised if, on the pin A (t)−> pin, is
observed a level correponding to A (t)−> level.

IV. SEMANTICS

A. Example

The example (Fig. 2) modelizes the identification system
of a cash dispenser. A user has 3 tries for beeing identified

(place P2). If he fails (place P3), two tokens in place Tries,
give him two additional chances. Temporal intervals allows to
implement a watchdog. T1 has not been associated to a pin, if
the user has be inactive until the date 5, the transition T1 is
forced. The place P5 models the use of the cash dispenser.
Pass and Retry have been associated to input pins, con-
nected to switches. While EnterCode, Tries, insertedCard and
E jectedCard are places associated to output pins connected
to leds.

The firing of Pass is conditionned to the occurence of an
event on an input pin of the microcontroller, to its local clock
and to the marking of the place enterCode. Whereas, for the
transition T1, the firing condition is bounded to its local clock
and the marking of enterCode.

Initially, enterCode contains one token, Pass and T1 are
enabled, and theirs clocks are aged. If a positive edge occurs
before date 5, Pass will be fired otherwise T1 will become
urgent and will be fired.

The concept of urgency forces to consider for T1 a strong
semantics. Thus it is relevant to consider that a strong seman-
tics is associated to non connected transition. By opposite, for
connected transitions a weak semantics is necessary: Concern-
ing Retry, this transition is enabled if there is enought token in
incomming places (EnterCode and Tries), and if the expected
event of the associated pin has occured and if its clock belongs
to the interval [2,4]. If the expected event does not occur, then
firing is not forced, and the tokens are implied in input places
becomes dead. For this type of transition (connected transition)
a weak semantics will be adopted.

B. Firing semantics

In a msT PN, the firing of a connected transition is condi-
tionned to three conditions i) its enabling condition, ii) the
value of its local clock and iiii) an edge signal (positive
or negative) observed on its associated pin. While a non
connected transition, the two first conditions are necessary.

The semantics of a microcontroller synchronised Time Petri
net can be stated as a synchronised timed transition system
which is defined in the following definition (Definiton IV).

Notational : Let’s note v(t) the function that defines the
temporal valuation of a transition t. v0 the initial value of all
the clock vector associated to the transitions. < M,v >

θ→<
M,v′ > expresses the firing of t from the marking M, with M′

and v′ respectively the new marking and the new clock vector.
Definition 3 (Semantics of a msTPN): The semantics of a

msTPN N is defined by the transition system:

< Q,{q0},Σ,→>

• Q = N|P|×N|T |
• q0 =< M0,v0 >∈ Q
• Σ = T
• →⊆ Q× (T ∪N)×Q

– The temporal transitions are such that:

< M,v > θ→< M,v′ > iff

∀tk 6∈ T a, M ≥• tk
if (v(tk)+θ ≥ l f d(tk)) ∧ (v(tk)< l f d(tk)) ∧ (tk 6∈ T a)

Urgent+= tk
v′(tk) := v(tk)+θ

– If ti ∈Urgent:

< M,v >
ti→< M′,v′ > iff

{
M ≥• ti
v(ti)≤ l f d(ti)

M′ := M−• ti + t•i
∀tk ∈ T,v′(tk) :={

0 if (tk ∈ newlyEnabled(M′))
else v(tk)

– else
< M,v >

ti→< M′,v′ > iff

 M ≥• ti
e f d(ti)≤ v(ti)≤ l f d(ti)
senzitised(ti)

M′ := M−• ti + t•i
Pins(A (ti)→ pins) = A (ti)→ level

∀tk ∈ T,v′(tk) :={
0 if (tk ∈ newlyEnabled(M′))
else v(tk)

In this definition T a (see section 2) allows to distinguish
connected and not connected transitions (t 6∈ T a). The first item
defines the Urgent set, it is important to note that a connected
transition cannot belong to Urgent. The second defines the
firing of urgent transition, and the third, the firing of not urgent
transition. Let’s remark that if v(t) exceeds l f d(t) ((t 6∈ T a)
this transition is not anymore firable, until it becomes newly
enabled.

C. Algorithm

In practice, the activating of the msTPN is implemented by
the following algorithm:

The algorithm is a loop and the time cycle can be adjusted
by a delay (line 7). The line 3 indicates that urgent transi-
tions are fired in priority. In line 4, every urgent transitions
have been fired, and all other transitions are inspected. Their
enabling and “senziting” conditions are evaluated. When a
transition is fired, as expressed below, the table firable and
senzitised are updated and the associated clock is reset.

In parallel of this algorithm, an interruption preempts this
algorithm every θ unit of time and ages clock variables of
enabled transition:

∀ti ∈ T, if enabled(ti) then v(ti)+ = θ

Every transition that reaches l f d(t) is added to Urgent:

i f ((Horloge[t]< e f d[t])∧ (Horloge[t]+θ >= l f d[t]))
Urgent =Urgent ∪ t;

while true do
1 Read the input pins of the microcontroller ;
2 Update vector sensitized and enabled;
3 while Urgent 6= /0 do

t:=pop(Urgent);
if (enabled(t)∧ f irable(t)∧ (pinTransition[t] =
None)) then

m := m−Pre(p, t)+Post(t, p);
f irable[t] := False;
sensitized[t] := False;
v[t] := 0;

end
end

4 foreach t ∈ T do
if (enabled(t)∧ sensitized(t)∧ f irable(t)) then

m := m−Pre(p, t)+Post(t, p);
f irable[t] := False;
sensitized[t] := False;
v[t] := 0;

end
end

5 For all newly enabled transition t, v[t] := 0;
6 Digital pins corresponding to associated places are

activated;
7 A delay completes the cycle;

end

V. PRACTICAL IMPLEMENTATION

In the example (see section 2), Pass, Retry are associated to
positive edges on two predetermined pins, while EnterCode
and Tries are associated to leds (see the figure 4 in appendix).
Other transitions or places are not associated. T1, is not asso-
ciated, T1 is an internal transition that illustrates a watchdog.

A. Testing

The testing of the model has enabled to asset the time inter-
vals and the time cycle. With two tokens in place enterCode,
when activating the transition Pass with a switch, a bounding
phenomena has lead to empty this place with only one action
on the switch. This problem has been solved by stating the
e f d of Pass to 1.

It has been also interesting to compare with the simulation
mode of Romeo. In this mode, Romeo updates cloks variables
when transitions are selectionned by the user, there is no a
real-time clock that ages transitions. In the initial state of fig
2, if we let the time elapses, after date 5, T1 does not become
urgent ! In a simulation mode, if T1 is activated by the user,
then clocks of enabled transitions are updated (+5), whenever
the date of this activation took place. In the execution of a
msT PN, T1 is fired exactly at date 5.

Embedding the TPN really confronts the model to its
environment. Finally this implementation has allowed to fit
the initial intuition of the modelisation.

B. Complexity and metrics

The greater complexity of the algorithm is the computing of
Enabled(t). The algorithm contains a double loop in |P| ∗ |T |
and loops in |T |. Then the complexity is polynomial in order
of a.n2 +b.n+ c with n = max(|P|, |T |).

For an Atmega2560 with a 16 MHz crystal oscillator,
table I presents the execution times and memory amount of
the embedded TPN correponding to the example. The third
column give execution times of the algorithm (see section
IV-C) from line 1 to 5. This last result has been obtained by
visual observation of pulses on an oscilloscope (precision of
1 µs). Memory amounts have been given by the compilation
step. Column 3 represents the size of the code, whereas column
4 represents the dynamic allocation of memory. The size of
the code and the amount of dynamic memory increase lin-
early, without surprise, proportionnaly to the size of matrices.
Whereas, the execution time grows more significantly: As
expected, the execution time increases in a polynomial order.

For the last test, 25 places and 25 transitions, the execution
time rises to 4 ms, it corresponds near to the maximum number
of input/ouput of the atmega2560. It is important to note
that every transition may not be associated to a pin of the
microcontroller.

TABLE I
EXECUTION TIMES AND MEMORY SPACE

Complexity Time Prog. Space Dyn. Memory
|P|= 5 |T |= 5 150 µs 4.9 kb 592 bytes (5%)
|P|= 10 |T |= 10 180 µs 5.3 kb 1.2 kb (7%)
|P|= 15 |T |= 15 840 µs 5.9 kb 2.1 kb (15%)
|P|= 20 |T |= 20 2.5 ms 6.7 kb 3.3 kb (40%)
|P|= 25 |T |= 25 4 ms 7.7 kb 4.8 kb (59%)

The tests of complexity have been realized from the initial
example: the increasing sizes have been produced by putting
in concurrency n duplications of the basic model.

VI. TOOL

PN2A 1 is a software where binary executables are available
for Windows (64 bits), Mac OS (64 bits) and Linux environ-
ments. Input files describing the TPN can be edited by two
PN editors: Tina and Romeo. The parser, the interface and the
algorithm have been written in Lisp.

PN2A proposes an IDE (see the figure 3 in appendix)
constitued by a main window where the user chooses a
microcontroller card, and defines the assignment between
places, transitions and pins. The user can adjust the delay
of the cycle (cf IV-C) and the time unit. Pressing the button
”Generate Arduino sketch” generates the code downloadable
directly through Arduino IDE.

A. Code generation

An Arduino sketch (a project) is organized around a reper-
tory containing all the implied files. A file with the same

1PN2A is freely available at http://pn2A.rts-software.org/

name as the directory (with ino extention) is the main file
with at least, a loop and a setup functions. setup contains the
initializations while loop is called infinitely and will include
the algorithm IV-C. The code generation is realized from a set
of static files (independent of the TPN) and a “dynamic file”
which is stated from the parsing of the TPN.

B. Parsing TPN files

Romeo produces xml files, while Tina produces text files.
The parsing of those files produces the matrices: Pre, Post,
M0, Arcs, Al pha and Beta that defines the structure of the
TPN:
• Pre and Post are respectivley the pre-condition and the

post-condition matrices
• M0 is the initial marking vector
• Arc gives the valuations of the arcs incomming or outgo-

ing of transitions
• Al pha and Beta represents respectivelly the earlier firing

date and the latest firing date of the transitions.
When the upper bound, l f d is the infinite, it is represented

by the value INT 32 MAX (231−1).

C. Static files and generated files

The main file of the arduino sketch includes many static
files (independant of the models) and generated files by the
parsing:
• Generated file containing structure declaration (described

in previous section VI-B)
• A file contains the algorithm IV-C.
• A static file contains different functions : enabled, fire,

newlyEnabled, findUrgent, . . .
• A file contains the specifications attached to the preselec-

tionned Arduino card and the interruption routine specific
for the microntroller.
a) Interrupt routine: This interruption routine is called

at every 1ms (“ageing timer”). This interrution updates the
clocks of every enabled tansition.

b) Setup routine: The setup procedure initiates the “age-
ing timer” and computes the incidence matrix C from Pre and
Post, and initiates the input pins and the outputs pins of the
microcontroler and initiates the serial communication.

CONCLUSION

This paper proposes a tool which allows to embed a Time
Petri net into an Arduino card. This work needed the definition
of a new semantics based on a combination of weak and
strong semantics. The implementation of a model can valid
(or not) performance constraints of the model relatively to a
target architecture. Checking constraints on a prototype allows
also to uncover constraints that might not have been foreseen
in this initial specification. Time constraints can be asset more
precisely.

In perspective, it could be possible to assign fragment of non
blocking code to place or transition. Moreover, other types
firing semantics can be tested and implemented. It also is
possible to developp monitoring, via the serial communication.

For the problem of complexity, computing place invariant
or unfolding techniques, could bring additional high level
informations allowing to reduce the number of transitions to
inspect, in the computing of enabled transition, improving the
speed of the algorithm.

Furthermore, other boards based on new microcontrollers
can be added. The development of Arduino boards is dy-
manic, recently, various boards have been proposed: Arduino
Due, M0, 101, or Yún. These new boards are architectured
on powerfull microcontroller(ARM core, x86, Atheros, . . .)
with higher frequencies (upto 400 mhz). These improvments
promise better perfomances and use of bigger TPN.

REFERENCES

[1] Attiogbe, C.: Semantic Embedding of Petri Nets into Event B. Interna-
tional IM FMT, Dusseldorf, 2009.

[2] Berthomieu, B., Lime, D., Roux, O. H., Vernadat F.: Reachability
problems and abstract state spaces for time Petri nets with stopwatches.
Discrete Event Dynamic Systems 17, 133-158, 2007.

[3] Cerone A. and Schettini M.: Time-based expressivity of time Petri netds
for system specification Therorical Computer Science, 216,(1-2) : 1-53,
1999.

[4] Kordon F.: Prototypage de systèmes parallèles partir de rèseaux de Petri
colorés, application au langage Ada dans un environnement centralisé
ou rparti Phd Thesis, Université Pierre et Marie Curie, Paris VI, 1992.

[5] Lee G., H. Zandong and J. Lee: Automatic generation of ladder diagram
with control Petri Nets Journal of Intelligent Manufacturing, 15 (2),
2004.

[6] L. Ferrarini: An Incremental Approach to Logic Controller Design with
Petri Nets ArticleinIEEE Transactions on Systems Man and Cybernetics
22(3): 461 - 473, 1992.

[7] C. Girault and R. Valk: Petri nets for system Engineering, a guide to
Modeling, Verification and Applications Springer, chapter 21 : 432-470
- 1998.

[8] Ramchandani, C.: Analysis of Asynchronous Concurrent Systems by
Petri Nets. Cambridge: Massachusetts Institute of Technology. PhD
Thesis, 1974.

[9] Merlin, P. M. and Farber, David J.: Recoverability of Communication
Protocols–Implications of a Theoretical Study. IEEE Transactions on
Communications, vol.24, no.9, 1036-1043, 1976.

[10] Sifakis, J.: Use of Petri Nets for Performance Evaluation. H. Beilner and
E. Gelenbe, Measuring, Modeling and Evaluation of Computer Systems,
75-93, 1977.

[11] Petri, C.A.: Kommunikation mit Automaten. Bonn: Institut fur Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

[12] Taubner, D: On the implementation of Petri nets. Article in Advances in
Petri Nets, Rozenberg, Grzegorz, Springer Berlin Heidelberg, pp 418-
439, 1988.

[13] Delfieu, D. , Comlan M., Sogbohossou M.: Unfolding of time Petri
nets for quantitative time analysis. Sixth International Conference on
Advances in System Testing and Validation Lifecycle, 21-27, 2014.

[14] Tomáš Richta, V. J. and R. Kočı́ (2013).: Petri nets-based development of
dynamically reconfigurable embedded systems. In D. Moldt and H. Rlke
(Eds.), Petri Nets and Software Engineering. International Workshop,
PNSE’13, Milano, Italy, Proceedings. Volume 989 of CEUR Workshop
Proceedings, pp. 203–217, 2013.

APPENDIX

The next figure, that illustrates globally the approach, in-
cludes four frame areas : One, for the edition of the Time Petri
nets, a second for PN2A (pin association and code generation),
a third for Arduino IDE and the last one for he serial monitor
that allows to supervise the automaton.

Fig. 3. From the edition to the execution step

In the next figure a practical lab is connected to an Ar-
duino card (Atmega 2560). Leds, bistable switches provides
interactions to the TPN.

Fig. 4. Arduino card

