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Monopole holes in a partially ordered spin liquid

L.D.C. Jaubert1

1Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan

(Dated: February 9, 2016)

If spin liquids have been famously defined by what they are not, i.e. ordered, the past years have
seen the frontier between order and spin liquid starting to fade, with a growing number of materials
whose low-temperature physics cannot be explained without co-existence of (partial) magnetic order
and spin fluctuations. Here we study an example of such co-existence in the presence of magnetic
dipolar interactions, related to spin ice, where the order is long range and the fluctuations support a
Coulomb gauge field. Topological defects are effectively coupled via energetic and entropic Coulomb
interactions, the latter one being stronger than for the spin-ice ground state. Depending on whether
these defects break the divergence-free condition of the Coulomb gauge field or the long-range order,
they are respectively categorized as monopoles – as in spin ice – or monopole holes, in analogy with
electron holes in semiconductors. The long-range order plays the role of a fully-occupied valence
band, while the Coulomb spin liquid can be seen as an empty conducting band. These results are
discussed in the context of other lattices and models which support a similar co-existence of Coulomb
gauge field and long-range order. We conclude this work by explaining how dipolar interactions lift
the spin liquid degeneracy at very low energy scale by maximizing the number of flippable plaquettes,
in light of the equivalent quantum dimer model.

The possibility to recast the collective behavior of elec-
trons and atoms as elegant emergent phenomena is prob-
ably one of the most fascinating aspect of condensed mat-
ter. The emergence of quasi-particles does not only al-
low for a deeper understanding of the problem at hand
but has also often led to surprising connections across
physics, as recently illustrated by photon-like magnetic
excitations in quantum spin ice1–4. Such approach takes
an enhanced flavor when the particle has not yet been
observed at high energy, or may not exist. This is
for example the case for Majorana fermions observed in
nanowires coupled to superconductors5, and for magnetic
monopoles and their underlying Coulomb gauge field6.

Coulomb gauge theories have emerged from a va-
riety of discrete models, on the kagome lattice7, in
fully-packed loop models8, itinerant-electron systems at
partial-filling9–11 and chemically disordered materials
such as CsNiCrF6

12. We refer the interested reader to the
excellent review by Chris Henley on this topic13. But its
most famous experimental realization has probably been
observed in the classical spin liquid ground state of spin
ice materials Dy2Ti2O7 and Ho2Ti2O7, where topological
excitations take the form of magnetic monopoles effec-
tively interacting via long-range Coulomb interactions.

Interestingly, a Coulomb phase is not incompatible
with partial magnetic order. For example, the stabil-
ity of a Coulomb ferromagnet has been discussed in the
context of the generalized Quantum Spin Ice model14,15

and observed over a finite temperature window in a clas-
sical spin ice model with broken rotational symmetry16.
In two dimensions, such co-existence has been studied in
the two-stage ordering process of the dipolar kagome ice
model17,18, of direct interest for artificial magnetic lat-
tices19. In higher dimensions, advanced numerical simu-
lations of the nearest-neighbour valence-bond wave func-
tions on the cubic and diamond lattices have shown per-
sistence of a small but clearly finite squared staggered

moment in the thermodynamic limit20.

Our goal in this paper is to study what happens when
a Coulomb spin liquid co-exists with long-range order
on the pyrochlore lattice21–23. In particular, based on
the Helmholtz decomposition of Fig. 2, we explain in
section V how quasi-particles which break the long-range
order can be understood as monopole holes in analogy
with electron holes in semiconductors. In that sense,
the Coulomb spin liquid plays the role of a conduction
band where defects are “standard” monopoles, while the
long-range ordered part of the spin degrees of freedom
serves as a fully occupied valence band.

After a brief presentation of the physics of spin ice
in section I, we introduce the concept of a Fragmented
Coulomb Spin Liquid (FCSL) in section II which will be
the central theme of our paper. In particular, the topol-
ogy of the FCSL and its mapping onto the hard-core
dimer model on the diamond lattice are discussed, before
presenting the numerical methods used in this work. The
nearest-neighbour version of the FCSL is briefly studied
in section III in order to compute the strength of the
entropic Coulomb potential between topological defects.
Magnetic dipolar interactions are included in section IV
and the FCSL is explained in terms of the dumbbell
model6, focusing on the properties due to the underly-
ing co-existence with long-range order. Notably, topo-
logical defects can be divided into two kinds of quasi-
particles and are found to interact via an effective en-

ergetic Coulomb potential. Based on these results, sec-
tion V is devoted to the similitudes between the FCSL
and semiconductor physics. The relevance of our work
to other systems, especially on the cubic lattice, is dis-
cussed in section VB. To conclude, in section VI, we con-
firm that dipolar interactions order the FCSL at very low
temperature21 whose ground state we identify to be the
so-called R-states that have been studied in the quantum
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dimer model on the diamond lattice24–26. Additionally,
the pinch points in the structure factor of Fig. 10 are
found to persist down to the transition temperature, de-
spite the build-up of R-states correlations.

I. WHAT IS THE COULOMB SPIN LIQUID IN

SPIN ICE ?

The spin ice model consists of Ising spins ~Si on the py-
rochlore lattice made of corner-sharing tetrahedra. The
pyrochlore structure is given in Fig. 1. Each spin be-
longs to two tetrahedra and can only point towards the
center of these two tetrahedra. In spin-ice materials, this
constraint is imposed by the surrounding crystal field of
the oxygens. Thus for a given tetrahedron, its four spins
are not collinear and form four distinct sublattices. For
nearest-neighbour ferromagnetic interactions, the ground
state of this model is a highly degenerate classical spin
liquid27,28 where all tetrahedra have two spins pointing in
and two spins pointing out. The resulting coarse-grained
magnetization field is locally conserved and divergence-
free, conferring the name of Coulomb spin liquid to the
ground state of spin ice, in analogy to Maxwell’s equa-
tions. Experimentally, the resulting spin-spin correla-
tions are dipolar-like and take the form of pinch-points
in the structure factor, as measured by neutron scatter-
ing in Ho2Ti2O7

29–32.
But what happens beyond nearest-neighbours ? The

question is especially relevant to magnetic dipolar inter-
actions (see Eq. (1)), which can be important for rare-
earth ions where nearest-neighbour couplings are rather
weak (∼ 1K) and single-ion magnetic moments very large
(up to ∼ 10µB):

Edip = Dr3p
∑

i>j

~Si · ~Sj − 3
(

~Si · ~eij
)(

~Sj · ~eij
)

r3ij
(1)

where i, j are pyrochlore sites separated by a distance
rij along the unit-length vector ~eij and rp is the nearest-
neighbour distance on the pyrochlore lattice. The size of
the magnetic moment µ is included in the prefactor

D =
µ0 µ2

4π r3p
(2)

where µ0 is the vacuum magnetic permeability. Re-
markably, the Coulomb-spin-liquid degeneracy is only
weakly lifted by such long-range interactions33,34, be-
cause magnetic dipolar interactions between spins can
be recast as effective magnetic Coulomb interactions
between topological excitations, namely the magnetic
monopoles6,35,36. The spin-ice ground state thus appears
as a vacuum of magnetic charges. Following the proce-
dure developed in Ref. [6], the Coulomb potential be-
tween two magnetic charges at distance r is

V = −µ0 Q
2

4π r
where Q = ±2µ

rd
(3)

where rd is the nearest-neighbour distance on the dia-
mond lattice and shortest distance between charges. Us-
ing Eq. (2), the potential energy can be expressed dimen-
sionless as follow

V

D
= −8

3

√

2

3

1

r/rd
(4)

At very low energy scales, the quasi-degeneracy of
the Coulomb spin liquid is ultimately lifted by dipo-
lar interactions37–39 and leads to exotic physics in a
magnetic field, such as the magnetisation plateau in a
[001] field analogue to a quantum solid phase in (2 + 1)
dimensions40.

II. WHAT IS A FRAGMENTED COULOMB

SPIN LIQUID ?

A. Presentation

In spin ice, the nearest-neighbour coupling plays the
role of an effective chemical potential for monopoles6.
Using chemical pressure42,43, it is possible to tune the

FIG. 1. The Fragmented Coulomb Spin Liquid (FCSL) stud-
ied here is made of Ising spins on the pyrochlore lattice where
all up (blue) and down (red) tetrahedra respectively carry
effective positive (“3 in - 1 out”) and negative (“3 out - 1
in”) magnetic charges. The magnetic charges crystallize in
a zinc-blende structure on the diamond lattice, whose sites
are in the centers of the tetrahedra. Time-reversal symmetry
reverses the sign of all charges, but conserves the FCSL en-
semble. The minority spins are colored in green and shared
by both neighbouring tetrahedra. A given spin configuration
is entirely determined by the minority spins, modulo time-
reversal symmetry, which provides a two-to-one mapping onto
a hard-core dimer model on the diamond lattice24,26,41. Please
note that the fully saturated configuration in a [111] magnetic
field is part of the FCSL ensemble.
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FIG. 2. The Helmholtz decomposition of the spin degrees of
freedom is done as follow22 . Each spin contributes to two
magnetization fluxes. Left : for the double charges “4 in”
(or “4 out”), all fluxes are pointing inwards (or outwards),
giving rise to maximum or full divergence. Right : for the “2
in - 2 out” configurations, there are as many fluxes pointing
inwards as outwards, giving rise to a divergence-free field,
i.e. with local flux conservation. Center : for the “3 in -
1 out” configurations, the two contributions are noticeably
different, being the sum of a full - and a zero - divergence. In
the FCSL, the former contribution represents the long-range
charge order, while the latter contribution is the Coulomb
spin liquid. Creating a “4 in / 4 out” or a “2 in - 2 out”
defect out of the FCSL locally breaks respectively the zero-
or the full-divergence.

chemical potential and favor monopoles. Theoretically,
if we forbid the presence of “4 in / 4 out” tetrahedra, a
large negative chemical potential shall order the singly-
charged monopoles into a zinc-blende structure21,22, as
depicted on Fig. 1. In this long-range charge order, all
positive charges have four negatively charged nearest
neighbours, and vice-versa. As illustrated in Fig. 2, the
Helmholtz decomposition of the spin degrees of free-
dom22 shows that a fraction of the degrees of freedom
forms a divergence-full configuration (the zinc-blende
charge order) while the remaining part is divergence-free
and supports an extensive degeneracy. In this phase, the
local divergence condition is thus half-full, or arguably,
half-empty. To emphasize this feature, we shall refer to
this partially ordered phase as a Fragmented Coulomb
Spin Liquid (FCSL). In particular, we use the term
“fragmented” as a generalization since other phases may
present the same physics with various degree of magnetic
order (see discussion in section VB).

The competition between the FCSL and the spin-
ice ground state has been studied for fixed density of
monopoles21 and fixed chemical potential22 in absence of
“4 in / 4 out” tetrahedra. However, in order to study
the general properties of the Coulomb spin liquid co-
existing with magnetic order, we do not want to elim-
inate any configuration a priori. In presence of “4 in

/ 4 out” tetrahedra, the FCSL is a priori unstable with
only nearest-neighbour Ising spin-spin coupling and dipo-
lar interactions22,23. But it can be stabilized for example
via four-body interactions

H = J�
∑

ν





∑

〈ij〉∈ν

~Si · ~Sj





2

, (5)

where ν runs over all tetrahedra in the system and 〈ij〉
represents the six pairs of spins in tetrahedron ν. As il-
lustrated in Fig. 3 for Hamiltonian (5), the eight single
charges are in the ground state (“3 in - 1 out” and “3
out - 1 in”), while the six “2 in - 2 out” and two “4 in
/ 4 out” configurations are excited states. Dipolar in-
teractions would then naturally order the singly-charged
monopoles into a zinc-blende structure as in Fig. 1. Fur-
ther nearest-neighbour interactions can then easily tune
the energy cost of the “2 in - 2 out” and “4 in / 4 out”
configurations. It should also be noted that the FCSL
can be partially stabilized for a precise set of parameters
of the dipolar spin ice model23. More generally, singly-
charged monopoles may be favored by quantum fluctua-
tions in the context of Yb2Ti2O7

44 and magneto-electric
coupling45,46.
However, our goal in this paper is not to focus on

a given Hamiltonian or to propose a mechanism to
stabilize the FCSL phase, which will be investigated
elsewhere47. Our goal is to describe and understand how
the co-existence of order and spin liquid, mediated by
dipolar interactions, affect the emergence of topological
defects and eventually the ordering of the spin liquid
phase itself. From now on, we shall assume that the
FCSL is stable and that “2 in - 2 out” and “4 in / 4 out”
spin configurations are excitations out of the FCSL.

B. Pseudo-magnetization

A convenient way to distinguish between the different
phases that will be encountered in this work is via the
pseudo-magnetization

ρ =
1

N

∣

∣

∣

∣

∣

∑

i

~Si · ~ei

∣

∣

∣

∣

∣

=
1

N

∣

∣

∣

∣

∣

∑

i

σi

∣

∣

∣

∣

∣

(6)

where ~ei is the local easy-axis vector pointing out of down

tetrahedra. Hence the pseudo-spin σi = ~Si · ~ei = −1
if the spin points inwards a down tetrahedron, and
+1 if it points outwards. The “2 in - 2 out” spin-ice
ground state, FCSL and antiferromagnetic “all in / all
out” long-range order respectively take the values of
ρ = {0, 1/2, 1}, both globally for the entire system and
locally on each tetrahedron. This quantity will be of
particular interest when discussing the semiconductor
analogy in section V.
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FIG. 3. The fragmented Coulomb spin liquid considered in
this paper is entirely composed of single charges (“3 in - 1
out” and “3 out - 1 in”), as opposed to the spin-ice ground
state made of “2 in - 2 out” tetrahedra. The “2 in - 2 out” and
“4 in / 4 out” configurations are considered as excitations out
of the FCSL. All blue (resp. red) spins are pointing inwards
(resp. outwards) of these up tetrahedra.

C. The dimer model on the diamond lattice

The minority spins of the FCSL can be recast as
dimers on the diamond lattice, as shown in Fig. 1 where
the dimers are the green spins. This mapping allows for
a direct estimate of the degeneracy of the FCSL, with
approximately 1.3N/2 configurations41, where N is the
total number of pyrochlore sites. This value is to be
compared to the spin-ice ground state degeneracy, with
approximately 1.5N/2 configurations48,49. The nearest-
neighbour version of our model is thus the classical
version of the quantum dimer model on the diamond
lattice24–26, which has been discussed in the context of
the magnetization plateau observed in HgCr2O4 and
CdCr2O4

50–52. This parallel will be useful in section VI.

D. Topology

Starting from a given FCSL configuration and flipping
a closed chain made of spins which are alternatively
pointing in and out of successive neighboring tetrahedra,
automatically creates another FCSL configuration. This
is because such a spin update respects both the full- and
zero-divergence constraints of the FCSL phase. This
closed chain of spins is often better known as a “worm”
because it is used as an update of the worm algorithm
in Monte Carlo simulations. A worm can be local and
as small as 6 sites, as illustrated by the thick lines on
Fig. 9, or on the contrary extensively long and winding
around the system with periodic boundary conditions.
The “2 in - 2 out” and “4 in / 4 out” excitations

mentioned previously are actually topological defects
whose creations, diffusion and annihilations correspond
to worm updates.

The topology of the FCSL phase is thus strongly rem-
iniscent of the topology of the “2 in - 2 out” spin-ice
ground state13, but with one main difference. In a topo-
logical phase, two configurations belonging to the same
topological sector are connected by non-winding-worm
updates. When winding worms are necessary and suffi-
cient to transform one configuration into the other, the
two configurations belong to different topological sectors,
but to the same Kempe sector53,54. A trivial example is
the fully saturated configuration along a given [111] di-
rection, which is a topological sector by itself. When two
configurations cannot be related by any worm update,
then they are said to belong to different Kempe sectors.
In the “2 in - 2 out” ensemble, any pair of configurations
can be transformed into each other by successive worm
updates; there is thus only one Kempe sector. This is not
the case for the FCSL. By construction, a worm cannot
transform a positive charge into a negative one, or vice-
versa. Thus two FCSL configurations connected by time-
reversal symmetry cannot be connected by worms. It is
easy to show that the FCSL is actually divided into two
different Kempe sectors. As a consequence of the time-
reversal symmetry, a given Kempe sector is selected by
a saturating magnetic field in the [111] direction, while
reversing the magnetic field selects the other Kempe sec-
tor. It means there is a bijective mapping between the
dimer model on the diamond lattice and each of the FCSL
Kempe sectors. In absence of any time-reversal symme-
try breaking term, the properties of the two Kempe sec-
tors are the same.

E. Numerical methods

The dipolar energy of Eq. (1) has been implemented by
Ewald summation into classical Monte Carlo simulations,
without a demagnetization factor55,56. A variation of the
worm algorithm22,56 has been used to separate topologi-
cal defects in sections III and IV, and to equilibrate the
system in section VI. In the latter case, acceptance of the
worm updates was done via a Metropolis argument. To
further help thermalization in section VI, parallel tem-
pering was also included57,58.

III. ENTROPIC COULOMB INTERACTIONS IN

THE NEAREST-NEIGHBOUR MODEL

Even though one of the foci of the present paper is on
the influence of long-range dipolar interactions, we shall
briefly consider nearest-neighbour physics in this section.
Due to the underlying divergence-free condition,

Coulomb phases are known to support entropic dipolar
correlations between spins13,59,60, which can be recast as
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an entropic interaction between topological defects. In
the case of the “2 in - 2 out” spin-ice phase, this entropic
interaction has been computed analytically and checked
numerically by Castelnovo et al.61, and found to be

Eent = αSI

kBT

R
, where αSI = 0.36755 (7)

where T is the temperature and R = r/rd is the dimen-
sionless distance between topological defects in units of
the diamond nearest-neighbour distance rd. As a conse-
quence, the probability for two topological defects in a

Coulomb phase to be separated by a vector ~R is inde-
pendent of the temperature

P (~R) ∝ exp
(

Eent/kBT
)

= exp
(

α/|~R|
)

. (8)

To measure such distribution is not only the signa-
ture of an emergent Coulomb gauge theory but also a
way to characterize the Coulomb phase by the value of
its parameter α. Since the exponential law of Eq. (8) is
independent of the temperature, it remains valid in the
limit T → 0+ where we can assume that only one pair
of topological defects persists. This is why we have per-
formed Monte Carlo simulations to measure the proba-
bility distribution for a unique pair of topological defects

to be separated by vector ~R, or equivalently, the proba-

bility distribution to be separated by distance R = |~R|,
renormalized by the number of diamond sites sitting on a
sphere of radius R. Technically, starting from a random
FCSL configuration, we create a pair of topological de-
fects which we separate using a worm algorithm. At each
step, one of the defect is randomly moved to a neighbour-
ing diamond site, keeping the number of defects constant,
until the pair of defects is annihilated. The distribution
is updated at each step. The process is repeated over 104

closed worms and averaged over 100 independent initial
configurations. In order to check the validity of the expo-
nential law over large distances, we considered a system
made of 16 millions (1.6 107) sites. To validate our simu-
lations against existing literature, we have also simulated
the “2 in - 2 out” spin-ice phase.

As shown in Fig. 4, our numerical results for spin ice
(green triangles) perfectly match the theoretical value of
αSI = 0.36755 (solid black line). As for the FCSL, we find
a higher entropic interaction of αFCSL = 0.473 ± 0.005.
For the sake of completeness, we have considered sepa-
rately the cases where the initial pair of defects out of
the FCSL were “2 in - 2 out” and “4 in / 4 out”, but the
parameter αFCSL was found to be the same in both cases.
The stiffness of a Coulomb phase is inversely related to
the variance of the divergence-free field60 and is known
to be proportional to α61. Since the coarse-grained mag-
netization field of the FCSL is not divergence-free, one
needs to be careful when defining the stiffness of the
FCSL. However, since the divergence-full field is anti-
ferromagnetic, it does contribute to the magnetization
of the system. Magnetic fluctuations of the FCSL are

FIG. 4. Monte Carlo simulations confirm that, in absence

of dipolar interactions, the entropic probability distribution
for a unique pair of topological defects to be separated by
a vector ~R follows an exponential scaling law as in Eq. (8).
This scaling law for the “2 in - 2 out” spin-ice phase (black
solid line) is known exactly61 and serves as a validity check
of our simulations (△). As for the FCSL (� and •), the
exponential scaling law is found to be characterized by a pa-
rameter αFCSL = 0.473± 0.005 (dashed line). For the sake of
completeness, the two cases where the initial pair of defects
out of the FCSL were “2 in - 2 out” (•) and “4 in / 4 out”
(�) were considered separately, but no pertinent difference
was noticed. The y−axes are on a logarithmic scale, while
the x−axes are on a a) linear and b) logarithmic scale to re-
spectively emphasize the exponential scaling law and the long
distance behavior. All data have been arbitrarily normalized
to 1 at R = 1, rd being the shortest distance between charges.
The error bars are smaller than the data symbols.

thus expected to come from the divergence-free contri-
bution of the magnetization and, according to our re-
sults, to be smaller than in spin ice. Indeed, with χ be-
ing the susceptibility, the variance of the magnetization
∆M = (χT )T→0 is 2.00(1) in spin ice62–64 and 1.52(2) in
the FCSL22 with the same ratio as for the α’s

∆MSI

∆MFCSL

= 1.30(2) =
αFCSL

αSI

(9)
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IV. ENERGETIC COULOMB POTENTIAL

FROM DIPOLAR INTERACTIONS

From now on, we shall include long-range dipolar in-
teractions as given in Eq. (1).
Starting from a FCSL configuration and flipping one

spin creates a pair of topological defects. But as opposed
to spin ice, these defects can be categorized into two dif-
ferent kinds. On one hand, if a minority spin is flipped,
then a pair of 4 in / 4 out topological defects is cre-
ated, breaking the local divergence-free contribution of
the Helmholtz decomposition (see Fig. 2). On the other
hand, if a majority spin is flipped, then a pair of 2 in
- 2 out topological defects is created, breaking the local
divergence-full contribution.
To study the nature of these topological defects, the

averaged potential energy between them has been com-
puted using the same worm algorithm as in section III.
The total dipolar energy of the system is computed at
each step of the defect diffusion and stored as a func-
tion of the distance between the two defects, until they
eventually annihilate each other, forming a new FCSL
configuration. The procedure is repeated for 104 worm
updates, and averaged over 100 independent initial con-
figurations, in order to obtain good statistics. Simula-
tions were done for reasonably big system sizes (16 000
sites) in order to minimize finite size effects. Indeed,
when the pair of defects is separated by half the system
size, the influence of the mirror images due to periodic
boundary conditions is not negligible. For a systematic
analysis, the potential energy between two “2 in - 2 out”
defects (noted Vhh), between “4 in” and “4 out” defects
(noted Vmm) and between “2 in - 2 out” and “4 in / 4
out” defects (noted Vhm) were computed separately (see
the three panels of Fig. 5).
Our results clearly confirm the emergent Coulomb

potential between topological defects. It should be em-
phasized that this potential is directly coming from the
dipolar energy between spins and should not be confused
with the entropic potential considered in section III.
Furthermore, as shown later in section VI, the FCSL
degeneracy is weakly lifted by dipolar interactions. Even
if small when compared to the total energy of the system,
this degeneracy lift is extensive. It is thus remarkable
that despite extensive fluctuations of the total dipolar
energy of the system, especially for configurations with
finite magnetization, the averaged interaction between a
single pair of defects is quantitatively described by the
Coulomb potential of Eq. (4).

Based on the dumbbell model6, it is possible to quan-
tify these excitations analytically. When a pair of topo-
logical defects is created, the energy cost ∆E has three
origins:

• the chemical potential of each defect, ph for “2 in -
2 out” and pm for “4 in / 4 out”;

• the Coulomb attraction between the newly cre-

FIG. 5. Averaged potential energy between a) two “2 in - 2
out” defects (◦), b) “4 in” and “4 out” defects (△), c) “2 in - 2
out” and “4 in / 4 out” defects (�), as illustrated in the inset
of each panel, obtained from Monte Carlo simulations with
dipolar interactions. “2 in - 2 out” tetrahedra are colorless,
while the “4 in / 4 out” tetrahedra are represented by thick
lines. The green spins in panel c) represent the double-spin
motion responsible for the creation of the “2 in - 2 out” and “4
in / 4 out” defects. To compare the simulations with Eq. (4)
(dashed lines), the data have been shifted by a reference en-
ergy, serving as fitting parameter, whose origin is discussed in
Eqs. (12−14). There are no multiplicative prefactors, mean-
ing that all defects carry a unit of magnetic charge. The
dipolar energy scale D is set to 1. The error bars, computed
from the results of 100 independent samples, are smaller than
the data symbols.



7

ated pair of neighboring opposite charges, Vnn =

− 8
3

√

2
3
D;

• the Coulomb potential between each defect and
the rest of the charge-ordered crystal, VM =

− 8
3

√

2
3
DMzb, where Mzb = 1.638 is the Madelung

constant of the zinc-blende structure22.

As computed in the Supplementary Information of
Ref. [6] for spin ice, the dipolar interactions also con-
tribute to the chemical potential of magnetic monopoles.
When applied to the FCSL, the chemical potentials can
be rewritten as

ph = ph +
8

3

(

1 +

√

2

3

)

D (10)

pm = pm − 8

(

1 +

√

2

3

)

D, (11)

where pi={h,m} is the chemical potential of non-dipolar

origin, such as from Hamiltonian (5) for example. As
discussed in section II, the values of pi={h,m} are chosen
such that the FCSL phase is stable. We now have all
ingredients to estimate the energy cost for creating a pair
of “2 in - 2 out” defects (∆Ehh) or “4 in / 4 out” defects
(∆Emm)

∆Ehh = −2ph + Vnn − 2VM

= −2ph +
16

3

[

−1 +

(

Mzb −
3

2

)

√

2

3

]

D

= −2ph − 4.73D, (12)

∆Emm = −2pm + Vnn + 2VM

= −2pm +

[

16 +
8

3

√

2

3
(5− 2Mzb)

]

D

= −2pm + 19.75D. (13)

In Monte Carlo simulations with dipolar interactions,
corrections beyond the dumbbell model slightly modifies
the numerical values of equations (12) and (13) and
respectively give −4.34D and +19.70D; the comparison
is excellent for ∆Emm and with a relative error of 8%
for ∆Ehh.

As for spin ice6,65,66, the emergent Coulomb potentials
are thus rather natural in the context of the dumbbell
model. But the motivation of this work is that the un-
derlying magnetic order brings a new flavor to the prob-
lem. Once a pair of charges is created, additional spin
flips separate the topological defects. Since the under-
lying long-range charge order takes place on a bipartite
diamond lattice, with alternative positive and negative
charges, a defect moving from one tetrahedron to the
neighboring one alternatively becomes, for example, 2 in
- 2 out, 4 in, 2 in - 2 out, 4 in ... carrying its topological
and magnetic charge with it. This situation is analogous

to kagome-ice physics17,18. Since “2 in - 2 out” and “4
in” defects have a priori different chemical potentials (see
Eqs. (10) and (11)), the hopping of topological defects
from a tetrahedron to its neighbor alternatively costs and
gains energy. Since the energy cost due to the chemical
potential cancels out every two spin flips, this process
does not confine the defects. Actually, this oscillating
energy even disappears if we consider the simultaneous
flipping of two spins successively pointing in and out, en-
suring that the hopping of the quasi-particle remains on
the same diamond sublattice. We shall refer to such dy-
namics as a double-spin motion, which is reminiscent of
a dimer move on the diamond lattice and of the mobility
of holons and spinons in frustrated Mott insulators on
bipartite lattices67. The creation of a pair of “2 in - 2
out” and “4 in / 4 out” defects by a double-spin motion
is depicted by green spins in the inset of Fig. 5.c), and
costs an energy

∆Ehm = −ph − pm + Vnnn

= −ph − pm +

(

4 +
16

√
2

3
√
3

)

D

= −ph − pm + 8.35D (14)

where Vnnn = −4D/3 is the next-nearest-neighbour
Coulomb potential energy (see Eq. (4)). Please note that
the Madelung term dissappears because the two defects
with opposite charges sit on the same diamond sublat-
tice. A Monte Carlo average with Ewald summation gives
8.67D, i.e. a difference of 4% with the numerical term of
Eq. (14).
When created alone, a pair of “4 in / 4 out” defects

only carries ±1 single charges (see Fig. 5.b) as opposed to
the ±2 double charges in spin ice. In the Helmholtz de-
composition, this is because half of the zero-divergence
has already been broken in the FCSL. However, when
several topological defects are created, higher values of
charges are possible. In the spin-ice model, the allowed
magnetic charges are {−2,−1, 0,+1,+2}. Out of the
FCSL, they are {−3,−2,−1, 0,+1,+2,+3}. If the long-
range charge order of the FCSL imposes all up tetrahe-
dra to be in a “3 out - 1 in” spin configuration, then a
“4 in” defect would carry a +3 magnetic charge on up
tetrahedra. This means that, as opposed to spin ice, the
magnetic charge carried by a topological defect is now
defined in the context of its environment, and in particu-
lar by the charge-order symmetry breaking of the FCSL.
The consequence is that even if “4 in / 4 out” defects al-
ways have the same sign – negative for 4 out, positive for
4 in – the value of their charge is not uniquely defined.
As for a 2 in - 2 out defect, even the sign of its charge

is unknown if considered alone. This is because a 2 in - 2
out defect breaks the local divergence-full condition (see
Fig. 2) and its sign is thus defined by the nature of the
charge order that has been broken. If the charge order
(i.e. divergence-full condition) covers the entire system
apart from some dilute topological defects, then the sign
of the defect is rather trivially given by the up/down na-
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FIG. 6. Schematic representation of the semiconductor anal-
ogy with the FCSL. The pseudo-magnetization ρ of Eq. (6) de-
limits the fraction of degrees of freedom respectively involved
in the long-range ordered phase with divergence-full field
(fully occupied valence band in yellow) and the Coulomb spin
liquid with divergence-free field (empty conducting band).
The divergence-free/full fields are explained in Fig. 2. A
double-spin flip creates a gapped excitation (see Eq. (14) and
inset of Fig. 5.c) taking the form of a pair of monopole and
monopole hole which respectively break the local divergence-
free and divergence-full fields. The gap is not visible in the
figure because the monopole / monopole hole excitation con-
serves ρ. Further double-spin motions propagate these two
quasi-particles within their respective conducting and valence
bands, interacting only via an effective magnetic Coulomb
potential (see Fig. 5.c). In 3 dimensions, this potential is
non-confining and gives rise to fractionalization as in semi-
conductors. As for the “all in / all out” phase, the pseudo-
magnetization is saturated at ρ = 1. Topological defects thus
necessarily take the form of monopole holes and are strongly
confined since their diffusion requires the creation of further
topological defects. In that sense, it is tempting to compare
the pseudo-magnetization with the level of band filling: the
hatched region represents an infinite gap because ρ cannot be
higher than 1, and the “all in / all out” phase is analogue to
an insulator of magnetic charges.

ture of the tetrahedron. However, if the system is covered
by different domains of charge order – i.e. with different
time-reversal symmetry breaking – then the immediate
vicinity of a given 2 in - 2 out defect is necessary to
define the sign of its charge. The dynamics of the re-
sulting domain walls, mediated by the co-existence with
a Coulomb spin liquid and the emergence of topological
magnetic charges would be a very interesting question to
consider in the future.

V. SEMICONDUCTOR ANALOGY

A. Monopole holes

As a summary, a pair of defects created out of the
FCSL by a double-spin motion, or dimer move, is made
of a “2 in - 2 out” defect breaking the local divergence-full
field, and a “4 in” or “4 out” defect breaking the local
divergence-free field (see Fig. 2 and inset of Fig. 5.c).
These defects carry a magnetic charge and interact via
an emergent Coulomb potential (see Fig. 5.c). The frac-
tionalization of topological defects in spin ice has already
been noticed to carry some analogy with semiconduc-
tors13,60. In the FCSL phase, we can go one step fur-
ther. In semiconductors, an electron hole is defined by
the lack of an electron from what should have been a
fully-occupied valence band. From the Helmholtz de-
composition, a “2 in - 2 out” defect can be understood as
a monopole hole in the otherwise charge-ordered phase,
while the “4 in / 4 out” defect is a monopole in the same
sense as in spin ice, breaking the local divergence-free
condition. Please note that each defect may carry either
a positive or negative magnetic charge. In absence of
defects, the long-range order (full-divergence) and spin
liquid (zero-divergence) respectively play the role of the
fully occupied valence band and empty conducting band
of semiconductors, with gapped excitations to create a
pair of “monopole / monopole hole” (see Eq. (14)). The
1/R potential ensures deconfinement of the topological
defects and thus fractionalization of the excitations, even
for monopole holes which break long-range order.
We should emphasize the importance of the double-

spin motion in this analogy. Because of the time-reversal
symmetry breaking of the long-range order, the
divergence-full field of the FCSL is alternatively a
source and a sink of fluxes on the bipartite diamond
lattice. It means that if a negative magnetic charge
is a monopole hole on up tetrahedra, it would be a
monopole on down tetrahedra. Thus even if for a
snapshot of the system at a given time t, the monopoles
and monopole holes are properly defined, the nature
of these defects is dynamically conserved only when
hopping on the same diamond sublattice via double-spin
motion. This is a direct consequence of the underlying
dimer-model mapping. Of course here we are talking
about Monte-Carlo dynamics. Real dynamics would be
material dependent, but the system would likely take
the form of a fluctuating ensemble of monopoles and
monopole holes whose ratio would be determined by the
temperature and the chemical potentials pi={h,m}, as if
the doping was intrinsic rather than extrinsic.

An insightful way to appreciate the properties of the
FCSL is to understand how it differs from the fully
disordered (“2 in - 2 out”) and fully ordered (“all in /
all out”) phases. To do so, the pseudo-magnetization
ρ is a useful observable, both globally for the entire
system as defined in Eq. (6) and locally at the level
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of each tetrahedron (ρtet =
∣

∣

∑

i∈tet σi

∣

∣ /4). In the
“2 in - 2 out” spin-ice ground state, the absence of
magnetic order with ρtet = 0 everywhere simply prevents
the creation of monopole holes. This is why spin ice
has often been discussed as a magnetic equivalent of
an electrolyte61,68. Please note that both for spin
ice35,68,69 and the FCSL, only alternating currents of
magnetic charges can subsist on long time scales. As
for the “all in / all out” long-range order (ρtet = 1
everywhere), this phase has recently raised much interest
in the context of pyrochlore Iridates Nd2Ir2O7

70 and
Tb2Ir2O7

71. In comparison with the FCSL, “all in / all
out” order means that the conducting band has been
fully filled by divergence-full monopoles, making the
pseudo-magnetization an effective measure of the level
of band filling, as illustrated in Fig. 6. Interestingly,
defects out of the “all in / all out” phase are necessarily
confined monopole holes with no empty band available
since ρ cannot be higher than 1. In that sense, the “all
in / all out” phase is similar to an insulator of magnetic
charges with an infinite gap. A possible follow-up of
this analogy would be to study how this “insulator”
could couple with a nearby Coulomb phase, such as for
example in FeF3

72 or possibly with the presence of two
interpenetrating magnetic pyrochlore lattices such as in
pyrochlore Iridates.

The framework we have developed here provides a
working example of the kind of emergent phenomena
arising from the co-existence of magnetic order and spin
liquids. The semiconductor analogy is able to catch a
surprising number of characteristic features of the FCSL.
There are of course limitations to this analogy, which we
believe are good places to look for exotic physics, such as
the possibility of domain walls separating domains with
opposite time-reversal symmetry or the inherent topo-
logical nature of the FCSL which would probably lead to
phase transitions beyond the standard Landau-Ginzburg-
Wilson paradigm73–77.

B. Beyond pyrochlores

So far, we have focused on the pyrochlore lattice in
order to develop a comprehensive background for our
theory. But the present analogy between semiconductor
physics and a partially ordered Coulomb phase is not
restricted to the pyrochlore symmetry. The microscopic
mechanism able to stabilize a FCSL would always remain
a model-dependent issue, but conceptually, our theory
can be easily extended to most vertex models supporting
a Coulomb phase. A straightforward ramification would
be the bipartite hexagonal (Ih) ice lattice, which is the
standard form of water ice at ambient pressure48 and
of recent interest for quantum proton dynamics78–81.
At lower dimensions, the same analogy can be made
on the checkerboard lattice but with the caveats that
entropic correlations are logarithmic in two dimensions,

FIG. 7. Vertices on the cubic lattice have 6-fold connectivity
as opposed to the tetragonal geometry of the diamond lattice.
This higher connectivity gives rise to two kinds of FCSL, i.e.
with co-existence of long-range order (ρ > 0) and Coulomb
phase: the hard-core dimer model at ρ = 2/3 (dimers are in
green) and the fully packed loop model at ρ = 1/3 (the loop is
a thick red line). Upon monopoles doping (i.e. increasing ρ),
it is thus possible to visit two phases similar to semiconductors
before encountering the “insulating” all in / all out long-range
order at ρ = 1.

while magnetic dipolar interactions are known to lift
the “2 in - 2 out” degeneracy at the vertex level, a
common problem in artificial spin ice82,83. The latter
issue is absent in kagome ice, and so is the equivalent
“2 in - 2 out” phase since a proper definition of the
divergence-free field on kagome requires time-reversal
symmetry breaking. Interestingly, a FCSL is known to
be stable over a finite temperature window in presence
of dipolar interactions on kagome17,18, or equivalently on
the [111] magnetization plateau of spin ice materials7,84.

As illustrated by kagome, the connectivity of the ver-
tex does not need to be tetragonal. Let us thus consider
the bipartite cubic lattice which has been recently stud-
ied in the context of unconventional phase transitions
in dimer/monomer and loop models85,86 and emergent
loop models in perovskite oxynitrides87.We do not con-
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sider long-range dipolar interactions here, and thus the
defects do not carry any effective magnetic charges. We
impose that each bond of the cubic lattice carries a mag-
netic flux represented by an arrow towards one of the two
neighbouring vertices. As opposed to the diamond lat-
tice, each vertex has 6 legs (or arrows). By imposing all
vertices of a given sublattice to have the same number of
entering fluxes (inwards arrows), one can define various
Coulomb phases as depicted in Fig. 7:

• 3 entering fluxes: there is no long-range order (ρ =
0).

• 2 entering fluxes: there is partial order (ρ = 1/3)
and the phase is mapped onto the fully packed
loop model without loop crossing. Fluctuations of
the loops represent fluctuations of the co-existing
Coulomb spin liquid.

• 1 entering flux: there is partial order (ρ = 2/3)
and the phase is mapped onto the hard-core dimer
model.

• 0 entering flux: the system is fully ordered (ρ = 1).

On the pyrochlore lattice, when starting from the
FCSL (ρ = 1/2) and filling the conducting band with
“standard” monopoles, one would immediately reach the
insulating “all in / all out” order (ρ = 1). On the cubic
lattice on the other hand, starting from ρ = 1/3 and fill-
ing the conducting band, one would first reach another
FCSL with ρ = 2/3, offering the tempting analogy with
multi-band physics.

VI. GROUND STATE OF THE DIPOLAR FCSL:

MAXIMIZATION OF FLIPPABLE PLAQUETTES

Even if the potential energy between a pair of defects
obeys the Coulomb law on average (see Fig. 5), the
ensemble of configurations of the FCSL remains quasi-
degenerate. It means that at low enough temperature,
the system should ultimately order.

As shown in Fig. 8, Monte Carlo simulations within
the FCSL ensemble (without any topological defect) con-
firm the nature of the ground state found in Ref. [21],
which we identify as the so-called R-states depicted in
Fig. 9. The phase transition is of first order and occurs
at Tc/D = 0.166±0.003. Coming from high temperature,
the build up of correlations due to the R-states is clearly
visible in the Non-Spin-Flip channel of the structure fac-
tor (see Fig. 10), while the inherent divergence-full long-
range order of the FCSL is signaled by well-defined Bragg
peaks (black dots) in the Spin-Flip channel22. Remark-
ably, the pinch points due to the divergence-free Coulomb
phase persist even just above the transition temperature.
To find the R-state here is quite interesting. Indeed,

the R-state has been first studied to explain the magneti-
sation plateau of HgCr2O4 and CdCr2O4

50,52 and has
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FIG. 8. At very low energy scale, dipolar interactions ulti-
mately lift the FCSL degeneracy at Tc/D = 0.166 ± 0.003.
a) The first-order nature of the transition is clearly visible
in the specific heat Ch (•) and in the discontinuity of the
R-state order parameter (N). The data are obtained from
Monte Carlo (MC) simulations within the FCSL ensemble,
averaged over 107 worm updates and 10 independent initial
configurations, for a system size of 3456 pyrochlore sites. b)
The hysteresis of the transition makes it difficult to precisely
estimate the transition temperature. This is why in order to
show convergence of the simulations, two kinds of equilibra-
tion processes were used. The system was either quenched

into one of the the R-states (◦) or slowly annealed from
high temperature (△), which respectively over- and under-
estimate the transition temperature. The MC time tMC of
the x−axis represents the number of worm updates which are
accepted/rejected based on a Metropolis argument accounting
for the dipolar interactions. For both equilibration processes,
the simulations were equilibrated at the temperature of mea-
surements during tMC/10. The results are given for different
system sizes, showing convergence of the simulations towards
Tc/D = 0.166 ± 0.003.

been shown to be the eight-fold degenerate ground state
of the quantum dimer model on the diamond lattice
in the limit of large negative potential energy24–26.
In the quantum dimer language, a negative potential
energy favor configurations with flippable plaquettes,
i.e. where rings of 3 dimers can dynamically resonate
around a hexagon of 6 sites on the diamond lattice. As
explained in Fig. 1, the FCSL is the classical counterpart
of this quantum dimer model (modulo time-reversal
symmetry), where the minority spins are the dimers. In
our spin language, a flippable plaquette is represented
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FIG. 9. Unit cell of the eight-fold degenerate ground state of
the FCSL with dipolar interactions, as observed in Ref. [21],
which we identify as the R-states. Within a unit cell, the
magnetization of the four down tetrahedra point in all four
different local (111) directions. The R-state is known for max-
imizing the number of flippable plaquettes within the FCSL.
The minority spins are colored in green and the flippable pla-
quette is shown by thick lines.

by thick lines in Fig. 9; flipping the 6 spins around this
hexagon is the smallest fluctuation of the Coulomb spin
liquid keeping the long-range charge order intact, and is
an excitation out of the R-states.

Our physical understanding of this analogy is that
dipolar interactions, by definition, enforce the closing of
magnetic flux lines. As a textbook example, dipolar in-
teractions are the reason for Weiss domains in standard
ferromagnets. Since these “flippable plaquettes” are the
smallest ensemble of spins able to close a magnetic flux
line, it is understandable that dipolar interactions may
want to maximize the number of such plaquettes. At
the classical level, this is similar to a negative potential
energy in the quantum dimer model, which is why the
R-states are found as the ground states of both models.

But this result raises a new question. The ground state
of spin ice also has a quantum counterpart, which has
been studied in terms of potential and kinetic energies
of flippable plaquettes1–4. But while dipolar spin ice or-
ders in a q = (001) antiferromagnetic ground state38, its
quantum counterpart orders into the so-called “squiggle”
state88 for large negative potential energy. We propose
that the reason of this difference comes from the long-
range nature of the dipolar interactions, which favor the
closing of the flux lines for all length scales. In partic-
ular, a finite macroscopic magnetization is strongly hin-
dered by dipolar interactions. This is not the case for

the potential term of the quantum model which is local.
Hence the finite magnetization of the squiggle state along
the (001) axis88 is forbidden by dipolar interactions, but
not in the quantum model. Since the R-states are anti-
ferromagnetic, we do not encounter this problem in the
ordering of the FCSL.

VII. CONCLUSION

The co-existence of partial magnetic order and spin
fluctuations has been a recurrent experimental and often
controversial observation over the past years, especially
in rare-earth pyrochlores Yb2Ti2O7

89–92, Tb2Ti2O7
93,94,

Er2Sn2O7
95–98 and Vesignieite kagome99–101. Here we

have developed a theoretical framework to characterize
the co-existence of long-range order and a Coulomb gauge
field which we have named a Fragmented Coulomb Spin
Liquid.
As for excitations out of the spin-ice ground state,

topological defects of the FCSL interact via effective en-
tropic and energetic Coulomb interactions, the latter one
being due to magnetic dipolar interactions between spins.
Following the Helmholtz decomposition, topological de-
fects can be categorized into two kinds: monopoles which
break the local divergence-free field as in spin ice, and
monopole holes which break the divergence-full field and
are thus directly related to the co-existence with long-
range order. Our work i) shows that partial long-range
order does not necessarily prevent deconfinement of frac-
tionalized excitations, which would be consistent with
persistent dynamics, and ii) shed a new light on the
monopole picture in analogy with semiconductors, as a
direct consequence of the underlying long-range order.
Being based on the simple decomposition of degrees of
freedom between an ordered contribution and a fluctu-
ating one, we expect this framework to be relevant to a
wide range of systems (artificial spin ice, magnetisation
plateaux...).
Finally, we have identified that dipolar interactions

on the classical FCSL support the same ground state
as large negative potential energy on the equivalent
quantum dimer model21,24–26. This offers a natural
classical mechanism to maximize the number of flippable
plaquettes, which can be expected to be a general
tendency of dipolar interactions, but not a systematic
outcome; among other points, it depends on the long-
distance geometric constraints.

Future directions of work would be to consider Heisen-
berg spins instead of Ising, which would for example allow
for gapless excitations. At the classical level, the decom-
position of degrees of freedom would be straightforward
in terms of irreducible representations98: the divergence-
full and divergence-free contributions would respectively
correspond to A2 and T1 symmetries. Also, instead of
one long-range antiferromagnetic phase, we could con-
sider the influence of frozen disorder102–104, or nematic
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FIG. 10. Structure factor of the FCSL with dipolar interactions obtained from Monte Carlo simulations at T/D = 2 (top)
and T/D = 0.225 (bottom), showing the Spin-Flip (left), Non-Spin-Flip (middle) and total (right) scattering. The NSF and
SF channels measure the spin components along the ~eNSF = (11̄0) and ~eSF vectors respectively. ~eSF is defined by forming an
orthogonal basis with ~eNSF and the wave-vector ~q. Both temperatures are above the transition temperature of Tc/D = 0.166.
Black dots in the left panels are Bragg peaks signaling the long-range charge order of the FCSL22. Despite the build-up of
R-states correlations in the NSF channel, pinch points are still visible in the total scattering.

phases where quadrupolar decomposition might be nec-
essary.

ACKNOWLEDGMENTS

The author is thankful to Marion Brooks-Bartlett,
Simon Banks, Laurent de Forges de Parny and Peter

Holdsworth for collaborations on related topics and to
Owen Benton, Andrew Smerald and Roderich Moessner
for insightful comments on the manuscript. This work
was supported by the Okinawa Institute of Science and
Technology Graduate University.

1 M. Hermele, M. P. A. Fisher, and L. Balents,
Phys. Rev. B 69, 064404 (2004).

2 A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim,
Phys. Rev. Lett. 100, 047208 (2008).

3 O. Benton, O. Sikora, and N. Shannon,
Phys. Rev. B 86, 075154 (2012).

4 Y. Kato and S. Onoda,
Phys. Rev. Lett. 115, 077202 (2015).

5 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard,
E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Science 336, 1003 (2012).

6 C. Castelnovo, R. Moessner, and S. L. Sondhi,
Nature 451, 42 (2008).

7 R. Moessner and S. L. Sondhi,
Phys. Rev. B 68, 064411 (2003).

8 L. D. C. Jaubert, M. Haque, and R. Moessner, Phys.

http://dx.doi.org/ARTN 064404
http://dx.doi.org/10.1103/PhysRevLett.100.047208
http://dx.doi.org/10.1103/PhysRevB.86.075154
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/DOI 10.1038/nature06433
http://dx.doi.org/ARTN 064411


13

Rev. Lett. 107, 177202 (2011).
9 P. Fulde, K. Penc, and N. Shannon,
Annalen der Physik 11, 892 (2002).

10 P. A. McClarty, A. O’Brien, and F. Pollmann,
Phys. Rev. B 89, 195123 (2014).

11 G. Chen, H.-Y. Kee, and Y. B. Kim,
Phys. Rev. Lett. 113, 197202 (2014).

12 S. T. Banks and S. T. Bramwell, Europhysics Letters 97,
27005 (2012).

13 C. L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010).
14 L. Savary and L. Balents,

Phys. Rev. Lett. 108, 037202 (2012).
15 Z. Hao, A. G. R. Day, and M. J. P. Gingras,

Phys. Rev. B 90, 214430 (2014).
16 S. Powell, Phys. Rev. B 91, 094431 (2015).
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