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From pinch points to pinch lines: a new spin liquid on the pyrochlore lattice

Owen Benton,1 L. D. C. Jaubert,1 Han Yan,1 and Nic Shannon1

1Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan

The mathematics of gauge theories lies behind many
of the most profound advances in physics in the last 200
years, from Maxwell’s theory of electromagnetism to Ein-
stein’s theory of general relativity. More recently it has be-
come clear that gauge theories also emerge in condensed
matter, a prime example being the “spin ice” materials
which host an emergent “electromagnetic” gauge field.
In spin ice, the underlying gauge structure is revealed
by the presence of “pinch-point” singularities in neutron-
scattering measurements. Here we report the discovery
of a new spin liquid where the low-temperature physics
is naturally described by the fluctuations of a tensor field
with a continuous gauge freedom. This gauge structure
underpins a novel form of spin correlations, giving rise
to “pinch-line” singularities — line-like analogues of the
pinch-points observed in spin ice. Remarkably, these fea-
tures may already have been observed in the pyrochlore
material Tb2Ti2O7.

Gauge symmetries are paramount in the understanding of
many of the most fundamental theories of physics. Recent
decades have seen an increasing appreciation of the role of
gauge theories in condensed matter physics, emerging from
the long-wavelength description of the collective behaviour of
electrons. Emergent gauge theories have proved particularly
important in the study of spin liquids – strongly fluctuating,
disordered magnetic states, the description of which lies be-
yond the familiar territory of Landau theory [1–5].

The use of a gauge theory to describe the fluctuations of
a spin liquid is exemplified by the case of the spin ice ma-
terials R2M2O7 (R=Ho, Dy, M=Ti, Sn) [6, 7]. At low tem-
peratures, the spin configurations in a spin ice are subject
to a constraint directly analogous to Gauss’ law for a mag-
netic field and consequently may be described in terms of a
gauge theory. Among the many striking consequences of this
is the observation of pinch-point singularities [Fig. 1(a), left
panel] in the magnetic neutron scattering structure factor [8],
as observed in Ho2Ti2O7 [9]. Pinch-point scattering has also
been observed in the putative quantum spin ice Tb2Ti2O7 [10–
12]. However, in this case the experimental scattering shows
pronounced butterfly-like features in the non spin-flip (NSF)
channel and the scattering in the spin-flip (SF) channel shows
narrow arm-like features extending along the h111i directions
of reciprocal space, neither of which features are predicted for
a spin ice. This raises the question of whether other types of
spin liquid may be found amongst rare-earth pyrochlore mag-
nets.

In this Article we introduce a new type of spin liquid on
the pyrochlore lattice. This spin liquid arises on the phase
diagram of a realistic model for pyrochlore magnets. As with
spin ice, the theory of this spin liquid contains a gauge sym-

(a) SF scattering (b) NSF scattering

FIG. 1: Comparison of correlations in spin ice (left half of panels)
with those of the new spin liquid (right half of panels). Predic-
tions for polarised neutron scattering experiments are shown in the
(a) spin–flip (SF) and (b) non spin–flip (NSF) channels, as measured
by Fennell et al. [9, 10]. The prediction for spin ice exhibits pinch–
point singularities in the SF channel. The NSF channel is completely
featureless in a nearest neighbour model for spin ice–as shown here–
and develops smooth maxima at the zone boundaries in the presence
of long range dipole interactions [9]. In contrast, the new spin liquid
exhibits singular features in both SF and NSF scattering. Results are
taken from classical Monte Carlo simulation of the nearest neighbour
model H

ex

[Eq. (1)], as described in the text.

metry. The nature of this theory is fundamentally different
to the Maxwellian theory which describes spin ice, but just
as the emergent gauge structure of spin ice reveals itself in
pinch-point scattering, so the gauge structure of this new spin
liquid has striking consequences for scattering experiments.
We will show that at low temperatures, this gauge structure
leads to line-like singularities along the h111i directions
of reciprocal space, which we dub “pinch lines” since they
are extended versions of the pinch points exhibited in spin
ice. This is particularly interesting in the light of neutron
scattering results on the pyrochlore magnets Tb2Ti2O7 and
Yb2Ti2O7 which show strong, sharpening features along the
h111i directions of reciprocal space. Indeed, our theory is
able to account for several features of the diffuse scattering
observed in Tb2Ti2O7 [10–12], which are unaccounted for by
a theory based on a spin ice model — as shown in the right
panels of Fig. 1.

Results

We begin with the most general, symmetry-allowed, Hamil-
tonian for nearest neighbour anisotropic exchange on the py-
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FIG. 2: Evidence of spin–liquid behaviour from Monte Carlo
simulation. (a) Classical ground state phase diagram of H

ex

[Eq. (1)]
for J3<0, in the plane J4=0, showing how ordered phases with
symmetry T

1

,E and T
2

meet at the point J1=J2=0 [15]. (b)
Order–parameter susceptibilities and (c) heat capacity calculated in
classical Monte Carlo simulation of H

ex

[Eq. (1)], for parameters
J1=J2=J4=0, J3 < 0. No phase transition is observed down
to T = 0.001|J3|. Instead, the order parameter susceptibilities of
neighbouring ordered phases exhibit a Curie–law crossover, charac-
teristic of a Coulombic spin liquid [18]. The symbols used for differ-
ent symmetry channels are shown in an inset.

rochlore lattice [13–15]:

H
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where the exchange matrix J̄01 couples nearest neighbours
along the r01 = (0, 1, 1) direction and the other exchange
matrices can be generated from J̄01 using point group oper-
ations. As shown in [15, 16], it is possible to map out the
entire classical ground state phase diagram of Eq. (1) by an
exact transcription of the Hamiltonian in terms of local fields
defined on each tetrahedron [15–17]:
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where all the coefficients �
↵

� 0, E0 is the ground state
energy and the sum runs over all tetrahedra in the lattice.

The five fields m
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+ appearing in
Eq. (2) are defined in the supplemental material. They
transform according to the A
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1

irreducible repre-
sentations of the point group and have respective dimension
1, 2, 3, 3 and 3. Along a line of points in parameter space the
three ordered phases which respectively maximise the fields
m

T
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�,mT
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,m
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become degenerate. This line includes the
point J1 = J2 = J4 = 0, J3 < 0 [cf. Fig. 2(a)]. For pa-
rameter sets along this line of points we have �
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In a classical ground state of Eq. (3) it must be the case that

m
A

2

= 0, m
T

1

+ = 0 (4)

for every tetrahedron in the lattice. All of the results de-
rived in this paper flow from the implementation of these
constraints. These provide an exact description of the classi-
cal ground states along the line in parameter space where the
three phases in Fig. 2(a) are degenerate. Observing the conse-
quences of these constraints does not, however, require precise
fine tuning of the Hamiltonian to Eq. (3). These constraints
will also dominate the physics at finite temperatures for any
choice of parameters where �
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such that energy cost of having a finite value of the fields
m
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is much lower than the cost to have a finite
value of m

A

2

,m
T

1

+.
The constraints in Eq. 4 are insufficient to select an ordered

ground state in themselves. In such circumstances, fluctua-
tions may select a preferred ordered state via the order–by–
disorder mechanism, but Monte Carlo simulations indicate
that they fail to do so, down to temperatures 3 orders of mag-
nitude below the scale of the bare coupling [see Fig. 2(b)].
The system thus remains in a disordered but highly-correlated
state down to low temperature.

We can understand the correlations of the spin liquid from
Eq. (4). The demand that the fields m

A

2

and m
T

1

+ vanish
everywhere leaves the fields {m

E

,m
T

2

,m
T

1

�} with freedom
to fluctuate in the ground state. The spatial variation of these
fluctuations is constrained by the fact that neighbouring tetra-
hedra share a spin, therefore a fluctuation of the local fields
on one tetrahedron affects the values of the local fields on
the neighbouring tetrahedra. The fields m

E

,m
T

2

,m
T

1

� must
therefore fluctuate in a correlated manner in order to avoid in-
ducing violations of Eq. (4). In what follows we show how
these correlated fluctuations can be understood in terms of the
fluctuations of a tensor field with a continuous gauge freedom.

The constraints on the spatial variation of m
E

,m
T

2

,m
T

1

�
may be obtained from the continuity of fields between A and
B sublattice tetrahedra. The ground state constraints [Eq. (4)]
in fact imply a set of local conservation laws, on the lattice.
These conservation laws in turn suggest that a coarse-graining
approach can be successful in describing the fluctuations of
m

E

,m
T

2

,m
T

1

�. And, unlike the global conservation laws
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which underpin hydrodynamic theories, these fully local con-
servation laws can have consequences even for short wave-
length fluctuations, as we shall see. Expanding the local con-
straints to leading order in a gradient expansion we find

r ·m
T

1

� = 0 (5)
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where the angle �0
T

1

is a function of the exchange parameters,
defined in the supplemental materials.

We wish to resolve the constraints (5)-(6) naturally using a
gauge-theoretic approach. Note that since m
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� appears in
both constraints, we cannot simply introduce separate gauge
fields to resolve Eqs. (5)-(6). Instead, we incorporate the eight
components of {m
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Satisfaction of Eq. (6), along with the condition Tr[B] = 0
is guaranteed by the introduction of a symmetric, tensor field
Y and writing

B = D · Y, D ⌘
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The form of the matrix gauge field Y is then constrained by
Eq. (5) which is satisfied if we take Y of the form
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We can generate alternative forms of Y by applying Abelian
gauge transformations to Eq. (9) of the form

Y
µ⌫

! Y
µ⌫

+ @
µ

@
⌫

⇣ (10)

The transformations of Eq. (10) leave the flux matrix B, and
therefore the physical spin system, unchanged. The form of Y
in Eq. (9) thus corresponds to a specific choice of gauge. The
theory of our spin liquid is therefore invariant under a group
of gauge transformations ⇣ 2 R. Abelian gauge transforma-
tions of a similar form to Eq. (10), acting on tensor fields also
appear in the linearized theory of general relativity [19] and
the theory of S = 2 gauge fields [20].

At low temperatures, where there are only fluctuations of
the local fields m

E

,m
T

2

,m
T

1

�, the free energy will be con-
trolled by the entropy of these fluctuations. Coarse grain-
ing over some volume much larger than a unit cell but much
smaller than the whole system, there will be more states
available (and therefore more entropy) with small values of
m

E

,m
T

2

,m
T

1

� [4]. The most general symmetry-allowed

Gaussian free energy describing small fluctuations of these
fields, when written in terms of the tensor field Y , takes the
form
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which is invariant under the gauge transformations of Eq.
(10).

The distinctive nature of this spin liquid, and of the the-
ory which describes it [Eq. (11)], can be revealed by neu-
tron scattering experiments. This can be seen by calculating
the correlation functions of the local fields m

E

,m
T

2

,m
T

1

� in
momentum space. In addition to displaying pinch point singu-
larities at zone centres, these correlation functions are singu-
lar approaching any momentum q which is along the (h, h, h)
directions of reciprocal space, or along any direction related
by the lattice symmetry to (h, h, h). This contrasts with the
case of the Coulombic spin liquid which occurs in the case
of spin ice, where the correlation functions are only singular
at the Brillouin zone centre. Since the fields m

E

,m
T

2

,m
T

1

�
are simply linear combinations of the spins, this singular be-
haviour will also show up in the spin structure factor S(q),
measurable in neutron scattering experiments.

In the vicinity of one of these singularities, at T = 0, the
scattering is approximated by

S(K+ qk + q?) ⇡
X

↵�

�
↵�

(K,qk)
q↵?q

�

?
q2
?

(12)

where K is a reciprocal lattice vector, qk is parallel to a h111i
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(a) Location of pinch-line
singularities in the Brillouin

zone

(b) S (q = (3, 3, 1) + (h, k, 0.2))
(Continuum Theory)

(c) S (q = (3, 3, 1) + (h, k, 0.2))
(Simulation)

(d) S (q = (3, 3, 1) + (h, k, 0.2))
(Lattice Theory)

(e) S (q = (3, 3, 1) + (h, k, 0.4))
(Continuum Theory)

(f) S (q = (3, 3, 1) + (h, k, 0.4))
(Simulation)

(g) S (q = (3, 3, 1) + (h, k, 0.4))
(Lattice Theory)

FIG. 3: Gauge structure of the new spin liquid, as revealed through “pinch–line” singularities. (a) Location of pinch–line singularities
in reciprocal space. (b), (e) spin structure–factor S(q) in parallel planes in reciprocal space in the Brillouin zone centred on K = (3, 3, 1),
as calculated from the continuum theory [Eq. (11)]. Singular features are visible where these planes intersect h111i directions, as indicated
by the black circles in each panel. These “pinch–line” singularities, Eq. (12), are characteristic of the gauge structure of the new spin liquid.
(c), (f) spin structure factor calculated in finite temperature Monte Carlo simulation, in the same regions of reciprocal space. The pinch lines
appear in the simulation results as sharp features around the point where h111i directions intersect the plane. (d), (g) a calculation of the
structure factor made with a lattice based 1/N theory, described in the supplemental material, also exhibiting pinch-line singularities. The
simulations were performed at a temperature T = 0.001 K for a cluster of N = 256000 sites and dimensions 40a0 ⇥ 40a0 ⇥ 10a0 where
a0 is the linear size of a cubic unit cell. Results were calculated for parameters J1=0.042, J2=0.122, J3=�0.118, J4=�0.04 meV, with
anisotropic g–tensor g?/gk=1/3, in approximate correspondence to Tb2Ti2O7 [25]. Since the crystal field ground state in Tb2Ti2O7 is a
non-Kramers doublet, the finite value of g? should be thought of as coming from mixing with the low lying crystal field excitation.

direction and q? is orthogonal to that direction. The coef-
ficients �

↵�

determine the “orientation” of the singularity in
q-space. Their dependence on the Brillouin zone K may be
thought of as a form factor determining the contribution of the
fluctuations of each field m

�

to the scattering in each Bril-
louin zone. The dependence on qk is smooth and near a zone
center K one may write �

↵�

(K,qk) ⇡ �
↵�

(K,0) +O(q2k).
For �

↵� ⇢/ �
↵�

the structure factor in the limit q? ! 0 will
depend on the direction of approach and we have a singularity,
along the entire h111i direction. Eq. (12) has the form of a
pinch-point singularity extended into a line. We therefore will
refer to it as a “pinch-line” singularity.

These “pinch lines” can be observed by taking planar cuts
through scattering, which intersect these lines away from re-
ciprocal lattice vectors [Fig. 3(a)]. This is illustrated using a
T = 0 calculation of S(q) from the gauge theory [Eq. (11)] ]
in Fig. 3(b), (e). For comparison, we show in Fig. 3(c), (f), the
same quantity calculated at finite temperature within classical
Monte Carlo simulation.

The simulation results show sharp features in the structure
factor approaching the h111i directions, as predicted by the
theory [Eq. (10)]. There is a small broadening of these sin-
gularities, coming from the finite temperature thermal fluctu-
ations present in the Monte Carlo simulation. These features
are even more clearly visible in the correlation functions of
the local fields {m

E

,m
T

2

,m
T

1

�}, shown in the supplemental
materials. The presence of the pinch lines in the simulation
results is a strong validation of our theory of the spin liquid
regime.

The continuum theory [Eq. (10)] was derived from local
constraints, with associated local conservation laws, and the
structure of the theory is inherited from the structure of those
local constraints. This leads us to expect that the pinch-line
singularities will be robust features of the spin liquid, even
at short wavelengths. We have confirmed this expectation
using two independent, lattice-based calculations. Firstly, the
sharpening of the scattering around the h111i directions is
clearly seen in the Monte Carlo simulations in Fig. 3(c), (f).
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Secondly, we have also performed a 1/N calculation of
the spin correlations along the lines of that performed for
the Heisenberg model in Ref. [21]. This calculation also
predicts pinch-line singularities along the h111i directions of
reciprocal space, as shown in Fig. 3(d), (g). It is therefore
apparent that these singularities are a robust feature of the
spin liquid, arising from the structure of its ground-state
constraints, which is captured by the continuum theory
derived in this Article.

Discussion
Thus far we have uncovered a spin liquid described by a

tensor field carrying a continuous gauge symmetry, arising in
a particular limit of a realistic model for magnetism on the
pyrochlore lattice [Eq. (1)]. The signal feature of this spin
liquid is sharp line-like singularities along h111i directions
of reciprocal space, which occur in addition to pinch point
singularities at zone centers. These “pinch-line” singularities
are unique to the spin liquid discussed in this paper and as
such provide a very discriminating “smoking gun” signature
of this novel magnetic state. In the light of this discovery
it is interesting to consider two known pyrochlore materials,
which are often discussed in the context of spin liquid physics:
Tb2Ti2O7 and Yb2Ti2O7.

Tb2Ti2O7 has long been a focal point for discussion of
3-dimensional spin liquid physics [22–24]. While Eq. (1)
alone may not constitute a complete quantitative model for
the physics of Tb2Ti2O7 it is interesting to compare observa-
tions on Tb2Ti2O7 with the phenomenology of the spin liquid.
Polarized neutron scattering experiments on Tb2Ti2O7 have
shown evidence of singular scattering at Brilllouin zone cen-
ters, but the form of this scattering looks rather different to a
typical spin ice, especially in the non-spin flip (NSF) channel.
At the same time, the data presented in Ref. 10, shows bright,
narrow features extending along the h111i directions.

As a point of comparison to these experiments, the be-
haviour of the structure factor S(q) in the spin flip (SF)
and non spin flip (NSF) channels, appropriate to a po-
larised neutron scattering experiment with initial polarisation
n||(1,�1, 0), is shown in Fig. 1, for the same set of exchange
parameters as in Fig. 3. Narrow prominences are visible in the
SF channel along the h111i directions [Fig. 1(a)]. There are
also pinch points in both channels at Brillouin zone centers.
The distribution, orientation and polarisation dependence of
the pinch points observed in [10] is the same as that in Fig. 1.
In particular, we are able to reproduce the shape of the features
in the NSF channel, something which cannot be done with a
spin ice based description. The possibility that the theory de-
scribed in this Article could apply to Tb2Ti2O7 is lent weight
by a recent attempt at parameterizing a pseudo-spin Hamil-
tonian for Tb2+x

Ti2�x

O7+y

[26] which places it close to the
three-way phase boundary at which this spin liquid emerges
in our classical treatment.

Spin liquid behaviour at finite temperature does not rule
out the possibility of an magnetic order at lower tempera-
ture. Indeed, recent experiments have demonstrated the pres-

ence of competing ordering phenomena in Tb2Ti2O7, with
quadrupolar [27, 28] and short range ordered antiferromag-
netic states [11, 29, 30] being observed depending on the sam-
ple stoichiometry and experimental cooling protocol. This
is consistent with the nature of the spin liquid considered in
our manuscript, which sits at the confluence of many com-
peting orders. In particular, we note that the ground-state
manifold of the spin liquid contains states consistent with the
q⇤ = (±1/2,±1/2,±1/2) order observed under field cooled
conditions [11, 29]. These states can only be connected to the
other states of the spin liquid by rotation of an O(L) number
of spins, where L is the linear size of the system. This may
suggest an explanation for the sensitivity to how the system
is cooled — namely that field cooling may drive the system
into a state from which it is hard to reach the other parts of the
ground state manifold.

The combination of spin liquid physics and prominent fea-
tures in the scattering along q k (1, 1, 1) is also strongly
reminiscent of the discussion surrounding another pyrochlore:
Yb2Ti2O7 [31–35]. Indeed, it has recently been argued that
the unusual physics of this material springs from competition
between the E and T

1

regions of the phase diagram in Fig.
2(a) [15, 36]. In this context it is not unreasonable to imagine
that the physics of the paramagnetic phase of Yb2Ti2O7 may
be influenced by a nearby spin liquid phase of the form de-
scribed here. This provides an interesting alternative scenario
to “quantum spin ice” physics in that material.

The theory presented in this Article provides a fundamen-
tally different paradigm to the “emergent electromagnetism”
known from spin ice and possesses a gauge freedom bear-
ing an intriguing similarity to that appearing in the linearized
theory of general relativity. This leads to the possibility of a
unified theory of classical spin liquids on the pyrochlore lat-
tice, and a classification of the above based on their associ-
ated gauge freedoms and the consequent singularities in their
correlation functions. These issues will be explored further
elsewhere.

The discovery of a new classical spin liquid is also a
promising starting point for the discovery of new quantum
spin liquid states [37, 38]. This possibility is exemplified by
the quantum spin ice problem, in which introducing quantum
fluctuations amongst the manifold of classical spin ice ground
states leads to a quantum spin liquid with dynamic U(1) gauge
fields and fractionalized charges as excitations [38]. Indeed,
the limit of perturbative quantum fluctuations around a classi-
cal spin ice is currently the only limit in which a quantum spin
liquid is reliably predicted by a variety of theoretical methods
in a realistic model for a pyrochlore magnet [39–44]. In the
quantum spin ice case the classical and quantum limits of the
problem are linked by a smooth thermal crossover [40, 44].
Similarly, studies of the quantum S = 1/2 Heisenberg model
on the pyrochlore lattice find similar spin correlations [45–47]
to those predicted by the gauge theoretic description of the
classical problem [21]. We therefore expect that the classical
results presented for the spin liquid discussed here are likely
to remain relevant upon the inclusion of quantum fluctuations.



6

In conclusion, we have demonstrated the existence of a new
classical spin liquid phase on the pyrochlore lattice, described
by the fluctuations of a tensor field with a continuous gauge
freedom. The unusual gauge structure is revealed by “pinch-
line” singularities in correlations which could be observed in
neutron scattering experiments.
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DEFINITION OF LOCAL FIELDS AND SUSCEPTIBILITIES

It was shown in [1] that the generalized model for nearest neighbour exchange on the pyrochlore lattice [Eq. (1) of the main
text] may be exactly rewritten in terms of local fields, defined on the pyrchlore tetrahedra

H
ex

=

1

2

X

tet

�
�

A

2

m2
A

2

+�

E

m2
E

+�

T

2

m2
T

2

+�

T

1

+m
2
T

1

+ +�

T

1

�m
2
T

1

�
�
+ constant. (1)

The fields are labelled by the irreducible representations of the point group according to which they transform. These fields are
defined in Table I.
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TABLE I: Definition of the local fields m
�

appearing in Eq. (1). The exchange Hamiltonian H
ex

[Eq. (1) of the main text] reduces to a sum
of quadratic forms when written in terms of these fields [1]. The labels A
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Note that this convention for the definition of the T
1

symmetric fields is dfifferent to that chosen in Ref. [1].
Following common practice in Monte Carlo simulations, the order parameter susceptibilities appearing in Fig. 2 of the main

text are calculated in according to the following formula:
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where N is the number of spins in the system, T is the temperature and m� are the local fields given in Table I.
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FIG. 1: Comparison of the correlation functions hm1
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(�q)i as calculated in the continuum field theory (left half
of panels) and Monte Carlo simulation (right half of panels) of a cluster of N = 256000 spins at temperature T = 0.001 K. The field theory
calculation is shown on a discrete grid in momentum space for the sake of comparison with the simulations which are carried out on a finite
lattice with linear dimensions L
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= 40 ⇥ 40 ⇥ 10 a3
0 with periodic boundary conditions, where a0 is the linear dimension of

a cubic unit cell. The singular features found in simulation are exactly reproduced by the continuum theory [Eq. (11) of main text], with
pinch-line singularities visible in both calculations where the planes of scattering cut the h111i directions. Calculations are carried out for the
set of exchange parameters J1=0.042, J2=0.122, J3=�0.118, J4=�0.04 meV, as in Fig. 3 of the mauscript.

CORRELATION FUNCTIONS OF THE FIELDS m
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In Figs. 1 we show examples of the momentum space correlation functions of the local fields {m
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�}, as calculated
from the continuum theory developed in the manuscript (left half of panels) and from Monte Carlo simulation (right half of
panels). Specifically, we show the correlation functions
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in each case we see singular features wherever the planes cut the h111i directions.
The Fourier transforms of the local fields are defined as
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where N
u.c. is the number of unit cells, the sum runs over only the ‘A’ sublattice of tetrahedra and r

tet

are the positions of the
centers of those tetrahedra.

The correlation functions agree well between the continuum theory and simulation. The qualitative structure of the correlations
is in agreement for all cases, although some quantitative differences are visible at shorter wavelengths. Most importantly, the
Monte Carlo simulations clearly show the sharpening of the correlation functions approaching the h111i directions, as predicted
by the field theory, demonstrating that the pinch lines are a robust feature of the spin liquid regime.

LATTICE BASED CALCULATION OF THE CORRELATIONS IN THE SPIN-LIQUID REGIME

For the purposes of comparison with the continuum, we have also performed some fully lattice based calculations of the
correlations in the spin liquid regime.

These calculations follow a method which has been previously been shown successful in understanding the correlations of
disordered phases of the Heisenberg model on the pyrochlore lattice [2], spin ice [3] and protons in water ice [4].

In this approach the constraints on the lengths of the spins

S2
i = S2 (5)

are only enforced on average

hS2
i i = S2. (6)

Eq. (6) is enforced by means of a Lagrange multiplier � added to the Hamiltonian. We write

�H ! �H� = �H + �
X
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i (7)

where � is the inverse temperature.
Using a Fourier transformation �H� may be written as

�H� =

1

2

˜S(�q) · M(q) · ˜S(q) (8)

where is ˜S(q) is a 12-component vector formed from the Fourier transforms of the 3 spin components on each of the 4 sublattices.
The correlations of ˜S(q) are then

h ˜Si(�q) ˜Sj(q)i = (M�1
(q))ij (9)

and � can be chosen such that Eq. (6) is obeyed.
Where M(q) possesses flat bands of eigenvalues at the bottom of its spectrum- as is the case in the spin liquid regime- the

limit T ! 0 of the correlation function becomes a projection matrix, projecting into the subspace described by the associated
eigenvectors [4]. This projection operator can be thought of as enforcing the local ground state constraints [3].

It is this, zero temperature limit of the correlation function which is plotted in Figs. 3(d) and 3(g) of the main text.
The approach outlined here can be constructed as a pertubative expansion in powers of 1/N , where N is a number of copies

of the system and the spin length constraint [Eq. (6)] becomes

1

N
NX

↵=1

S2
i,↵ = S2 (10)

This method is described in more detail in Ref. [5].
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