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A Kagome Map of Spin Liquids:
from XXZ to Dzyaloshinskii-Moriya Ferromagnet

Karim Essafi,∗ Owen Benton,† and L. D. C. Jaubert‡

Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
(Dated: August 1, 2015)

Motivated by a growing number of materials, the kagome lattice sits at the crossroad of modern
research efforts in quantum spin liquids, chiral phases, emergent skyrmion excitations and anomalous
Hall effect to name but a few. In light of this diversity, our goal in this paper is to build a unifying
picture of the underlying magnetic degrees-of-freedom. We present a three-fold mapping on the
kagome lattice which transforms the celebrated Heisenberg antiferromagnet and XXZ model onto two
lines of time-invariant Hamiltonians. These two lines have anisotropic nearest-neighbour couplings
and opposed Dzyaloshinskii-Moriya interactions. The mapping is exact for classical and quantum
spins alike, i.e. it preserves the energy spectrum of the original Heisenberg and XXZ models. As
a consequence, at the classical level, all phases have an extensive ground-state degeneracy. These
ground states support a variety of phenomena such as ferromagnetically induced pinch points in the
structure factor and the possibility for spontaneous scalar chirality. For quantum spin−1/2, the XXZ
model has been recently shown to be a quantum spin liquid. Applying our three-fold mapping to the
XXZ model gives rise to a connected network of quantum spin liquids, centered around a paragon of
quantum disorder, namely the Ising antiferromagnet. We show that this quantum disorder spreads
over an extended region of the phase diagram at linear order in spin wave theory, which overlaps with
the parameter region of Herbertsmithite ZnCu3(OH)6Cl2. We conclude this work by discussing the
consequences of our results in light of the chiral spin liquids found on kagome with further nearest-
neighbour interactions, and of the recently synthesized ternary intermetallic materials.

Competing interactions have proven able to stabilize
extended phases where chirality could be encoded in the
spin texture, i.e. coming from the collective behaviour of
spins. This spin-chirality is responsible for phenomena
as varied as the anomalous Hall effect1–4, multiferroicity5

and possibly high-Tc superconductivity6. In this context,
kagome systems are fertile soil for exotic spin textures.
Motivated by a growing number of materials7–12, the
kagome lattice, whose name comes from a traditional
Japanese woven bamboo pattern13, has attracted the
attention of chemists, experimentalists and theorists
alike. The classical kagome antiferromagnet is a canoni-
cal example of order-by-disorder14, a counter-intuitive
mechanism where order is induced by fluctuations15. As
for its quantum counterpart, it is one of the few models
that has been confirmed to be a quantum spin liquid by
a gamut of complementary approaches16–20. Recently,
the kagome lattice has also been shown to support
examples of the long-sought Kalmeyer-Laughlin chiral
spin liquid21–24, a bosonic analogue of the fractional
quantum Hall effect with anyonic excitations25,26.

Our present work sits at the frontier of these ideas
of unconventional phenomena, spin liquids and chiral
phases. We unveil a three-fold mapping between kagome
spin liquids, summarized in Figs. 1 and 4, which is
exact both at the classical and quantum level. This
mapping brings into a general framework the famous
Heisenberg antiferromagnet and XXZ models, together
with a continuously connected network of systems with
Dzyaloshinskii-Moriya and anisotropic ferromagnetic
couplings. All interactions are time-invariant and be-
tween nearest neighbours (see Hamiltonian (1)). For the

end points of this connected network, time-reversal (T )
symmetry can be spontaneously broken in the classical
ground state, giving rise to finite scalar chirality. The
Heisenberg antiferromagnet maps onto a pair of systems
characterized by ferromagnetic pinch points in their
structure factor, signatures of algebraic correlations
constrained by an effective local flux conservation.
Interestingly for quantum spin−1/2, our work puts the
Ising antiferromagnet at the centre of this connected
network of quantum spin liquids, shedding a new light
on the reluctance of this model to order28. On the
experimental front, our phase diagram includes the
Herbertsmithite compound ZnCu3(OH)6Cl2 which sits
at the tip of an extended region of quantum disorder
at linear order in spin wave theory. Our work is also
motivated by the experimental possibility to explore a
broad range of anisotropic interactions in the recently
synthesized rare-earth kagome materials Dy3Ru4Al12

11

and Yb3Ru4Al12
12 and in optical lattices29,30.

I. PRESENTATION

A. Model

We focus on the nearest-neighbour Hamiltonian with
anisotropic XXZ and Dzyaloshinskii-Moriya interactions:

H =
∑
〈ij〉

J⊥ ~S
⊥
i · ~S⊥j + Jz S

z
i S

z
j +D~z ·

(
~Si × ~Sj

)
. (1)

We shall first consider classical Heisenberg spins of unit

length |~Si| = 1 with in-plane components ~S⊥i = (Sxi , S
y
i )
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FIG. 1. Three-fold mapping between kagome spin
liquids – Top: We show the existence of an exact one-to-
one mapping, made of local proper spin rotations (bottom
panels), between the celebrated Heisenberg antiferromagnet
(HAF) and two novel spin liquids X± with opposite vector
chirality. By tuning the anisotropy coupling δ of Eqs. (5)
and (6), our mapping directly extends onto the anisotropic
XXZ model. Its chiral counterparts (named XXZ±) share the
same extensive ground-state degeneracy as the XXZ model,
until the end point δ = −1/2 (FDM±), which belongs to the
ferromagnetic model with Dzyaloshinskii-Moriya interactions,
and where chirality becomes scalar. Bottom: The local bases
are rotated by ∓ 2π

3
around the z−axis when moving from

B±0 → B±1 → B±2 . The z−axis are the same for all bases,
which are right-oriented.

for a system of N spins. The sublattice indices and
Cartesian bases are given in Fig. 1. For perfect kagome
symmetry, the Dzyaloshinskii-Moriya vector is restricted
along the unit vector ~z, orthogonal to the kagome
plane31,32, using the clockwise convention for choosing
the pairs of spins around the triangles.

B. Heisenberg antiferromagnet (HAF)

Parametrized by J⊥ = Jz = J > 0 and D = 0, the ex-
tensively degenerate ground-state manifold of the HAF
is locally constrained by a magnetization flux conserva-
tion. This constraint appears clearly if the Hamiltonian

is rewritten as

HHAF = J
∑
〈ij〉

~Si · ~Sj =
J

2

∑
∆

(
2∑
i=0

~Si

)2

− NJ, (2)

where the flux conservation takes the form of a null
magnetization on all triangles ∆:

∑2
i=0

~Si = 0.

II. THREE-FOLD MAPPING

The peculiarity of the HAF lies in the form of its
Hamiltonian (2). The idea of this paper is to find a one-
to-one mapping (automorphism) of the spin degrees-of-
freedom which gives a Hamiltonian that can be re-written
in the same form, while conserving the kagome symmetry
and the spin unit-length, without imposing any spurious
constraints.

To ensure the spin unit length |~Si| = 1, we consider lo-
cal transformations Γ acting on each spin independently,
i.e. transformations from the global basis to a local one,

Bi: ~S
Bi
i = ΓBi ~Si with |~S Bi

i | = 1. Then for the transfor-
mation to be non-trivial – i.e. for Bi to be non-uniform
– and to respect translation invariance, we attach one
basis Bi to each kagome sublattice. As a result, there
are only two transformations respecting the space group
symmetry of the kagome lattice. They are made of local
proper rotations as illustrated in Fig. 1. They transform
the HAF into the following models which we name X±

HX± =
J

2

∑
∆

(
2∑
i=0

~S
B±

i
i

)2

− NJ (3)

= −J
2

∑
〈i,j〉

[
~S⊥i · ~S⊥j − 2Szi S

z
j ±
√

3~z · (~Si × ~Sj)
]
(4)

where J = Jz = −2J⊥ = ∓2D/
√

3 > 0. Since HHAF

and HX± have the same form (see Eqs. (2) and (3)),
spin configurations connected by the one-to-one map-

pings ΓB±
i necessarily have the same energy in their re-

spective Hamiltonians. Hence, the HAF, X− and X+

models have the same energy spectrum and thus the same
extensive ground-state degeneracy. But the spin rotation
confer them very peculiar signatures when probed mag-
netically.

The ground state manifold of the Heisenberg antifer-
romagnet supports algebraic spin correlations33. In neu-
tron scattering measurements, these correlations take the
form of anisotropic diffuse scattering known as “pinch
points” (see Ref. [34] for a review). As depicted in Fig. 2,
pinch-point singularities are clearly visible in the struc-
ture factors of the X± models. The striking similar-
ity of the HAF and X± structure factors is actually a
quantitative illustration of their underlying equivalence.
But because the planar spin components are respectively
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(a) 〈~S⊥(q) · ~S⊥(−q)〉HAF (b) 〈~S⊥(q) · ~S⊥(−q)〉X±

FIG. 2. Structure factor of the HAF (a) and X± (b) spin liquids – The Fourier transforms of the spin correlations have
been computed using the method developed by Henley36 for Coulomb spin liquids in which the local constraints are enforced by
a projection operator in reciprocal space. We have considered the planar spin components ~S⊥ where “pinch point” structures
are formed in the centre of the Brillouin zones, characteristic of the local flux conservation. The structure factors clearly
illustrate the underlying equivalence of the models, and the difference of their in-plane fluctuations; antiferromagnetic in the
HAF and ferromagnetic in the X± models. Only one figure is shown for the X± phases because they cannot be distinguished
by the structure factor of the planar spin components. The colour scales are fixed by the maximum of intensity on each figure.

antiferromagnetically and ferromagnetically coupled in
HHAF and HX± , their collective fluctuations induce re-
versed spin correlations. This provides a noticeable ex-
ample of pinch points induced by continuous ferromag-
netic fluctuations.

As T → 0+, the X± models are expected to undergo
the same thermal order-by-disorder selection as the
Heisenberg antiferromagnet14, with the additional
flavour that the octupolar order35 now bears a finite
vector chirality.

III. A CONNECTED FAMILY OF SPIN LIQUIDS

Spin chirality takes multiple forms. The intrinsic non-
collinearity of the spins is directly measured by the vector

chirality ~χij = ~Si× ~Sj . For triangular units, one can fur-

ther define a scalar chirality χijk = ~Si ·
(
~Sj × ~Sk

)
which

is a measure of the solid angle formed by the three spins.
Vector chirality comes from the spin current involved in
the strong magneto-electric coupling of some multifer-
roics5 and the emergence of skyrmion excitations37. As
for scalar chirality, it is often associated with the possi-
bility for anomalous Hall effect when coupled to itinerant
electrons1–4.

While vector-chirality is intrinsically induced by the

Dzyaloshinskii-Moriya term, we do not expect any long-
range scalar-chiral order in the X± models since the HAF
spin liquid does not break T symmetry. It is thus tanta-
lizing to see if, by taking advantage of the present three-
fold mapping, it were possible to tune the Hamiltonians
and induce scalar chirality spontaneously.

Since our three-fold mapping does not affect the z−axis
(see Fig. 1), decreasing Jz has the same influence on the
HAF and X± Hamiltonians: it tunes the HAF into the
XXZ model

HXXZ = J
∑
〈i,j〉

[
~S⊥i · ~S⊥j + δ Szi S

z
j

]
(5)

which is mapped onto what we name the XXZ± models

HXXZ± = −J
2

∑
〈i,j〉

[
~S⊥i · ~S⊥j − 2δ Szi S

z
j ±
√

3~z · (~Si × ~Sj)
]

(6)

with J > 0. This mapping is valid for all δ but for
−1/2 < δ < 1, the XXZ ground state remains a
sub-ensemble of the HAF one (δ = 1) where all spins
lie in plane (χijk = 0). This model is equivalent to the
three-coloring problem up to a global O(2) symmetry38,
whose degeneracy is countable and extensive39. As
illustrated in Fig. 3, the system is entirely paved with
only two kinds of triangular configurations, A and
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Ā, with opposite vector-chirality38. The noticeable
consequence of our mapping is that in the XXZ− and
XXZ+ ground states, the A and Ā configurations are
respectively replaced by a collinear state F with zero
chirality; the resulting imbalance ensures finite and
opposite vector-chirality between the two XXZ± ground
states, while preserving their extensive degeneracy.
From this point of view, it is interesting to think of the
XXZ ground state as coming from the cancelation of
positive and negative Dzyaloshinskii-Moriya terms, once
ferromagnetism has been taken out.

IV. CHIRAL SPIN LIQUIDS

On the other hand, for δ = −1/2 Dzyaloshinskii-
Moriya interactions become perfectly balanced by
isotropic ferromagnetic coupling

HFDM± = −J
2

∑
〈i,j〉

[
~Si · ~Sj ±

√
3~z · (~Si × ~Sj)

]
. (7)

As a consequence, for each triangle, both the
Dzyaloshinskii-Moriya (DM) induced32 and ferromag-
netic (FM) ground-state configurations minimize the
classical energy

~S`={0,1,2} = (sin θ cosφ±` , sin θ sinφ±` , cos θ), (8){
DM : φ±` = φ ± 2π

3 ` ⇒ χ012 = ± 3
√

3
2 cos θ sin θ2

FM : φ±` = φ ⇒ χ012 = 0

where the ± index distinguishes the two FDM± mod-
els. With respect to the XXZ± models where θ was im-
posed to be zero, the global degeneracy of the FDM±

ground states is enhanced to O(3). Thus, while the ~S⊥

degrees-of-freedom conserves the character of a classical
spin liquid, with the extensive degeneracy and algebraic
correlations of the three-coloring problem, Sz = cos θ
can now take a finite uniform value, conferring a finite
scalar chirality to any ground-state configuration with
θ 6= {0, π/2, π} (see Eq. (8)).

The three-fold mapping transforms the FDM± mod-
els back into the XXZ0 Hamiltonian of Eq. (5) with
δ = −1/2, where the scalar chirality has vanished but
the enhanced global O(3) degeneracy remains. It is
noteworthy that the end point value δ = −1/2 takes
an elegant meaning along the XXZ± lines, namely that
the ferromagnetic coupling becomes isotropic, which is
hidden if only considering the XXZ model.

The emergence of scalar chirality in what is essentially
a “simple” ferromagnet with Dzyaloshinskii-Moriya in-
teractions is quite remarkable, with a rich potential for
unconventional phenomena. For example the interplay
between a chiral spin liquid and itinerant electrons is
an up-and-coming topic22,40. Indeed, the FDM± ground

(d)
XXZ

XXZ0

Ā

A

A

Ā Ā

A

(a)

XXZ−

FDM−

Ā

F

F

Ā Ā

F

(b)

XXZ+

FDM+

A

F

F

A A

F

(c)

FIG. 3. Three-coloring ground states – The classical
ground-state ensembles of the XXZ model and its chiral coun-
terparts XXZ± are equivalent to the three-coloring problem,
up to a global O(2) symmetry. (a) The equivalence is trans-
parent for the XXZ ground state38, where each triangle pos-
sesses the three possible spin orientations rotated by 2π/3
from each other, and Sz = 0. The color code of the spin
orientations is given in the top-left legend. The two antifer-
romagnetic permutations A= {•, •, •} and Ā = {•, •, •} are
possible, giving a zero vector-chirality on average. (b − c) In
this context, the apparition of vector-chirality in the XXZ±

ground states is understood as the suppression of either the
A or Ā configurations in favor of a collinear state (F). The
same scenario holds for the XXZ0 and FDM± ground states
where the finite out-of-plane magnetization makes the chiral-
ity scalar. An example of spin configuration with finite scalar
chirality is given in panel (d): the planar projection of the
spins corresponds to configuration A.

state is neither fully ordered like a solid, or paramag-
netic like a gas. In a pictorial way it is a magnetic liq-
uid where strong correlations and fluctuations co-exist,
which can then couple via double-exchange to another
“fluid” made of itinerant electrons. While hopping on
the scalar-chiral spin texture, the itinerant electrons pick
up a Berry phase that might not only induce anomalous
Hall conductivity1,22,41,42, but at the same time feed back
into the strongly correlated spin texture to induce exotic
magnetic order22,43–45. This feedback actually does not
require scalar chirality and would also be pertinent to the
XXZ± lines.

It should be noted that given the large value of D =√
3J , an experimental realization of the FDM± models

per se would arguably be difficult in solid state physics,
but on the other hand, particularly motivating in op-
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tical lattices. Indeed, the kagome geometry29 and spin
anisotropy30 have been experimentally realized with ul-
tracold atoms. There is also good hope that the active
research on synthetic gauge fields might be able to pro-
duce synthetic Dzyaloshinskii-Moriya interactions46–48,
with the caveat that the Dzyaloshinskii-Moriya vector
should be out-of-plane here.

Last but not least, ferromagnetic insulators with
Dzyaloshinskii-Moriya coupling have been studied in the
context of magnon Hall effect, i.e. where a transverse
heat current is induced by a temperature gradient. It is
intriguing to notice that the FDM± sits at the frontier
between two different topological phases, indicating the
closing of a gap between two magnon bands49. In light
of our present work, and since the topological phase for
D <

√
3J is the same down to D = 049, it would be of

great interest for future work to study the finite temper-
ature physics of the Dzyaloshinskii-Moriya ferromagnet.
This is especially true since chiral magnonic edge states
and topological skyrmion excitations have been observed
in simulations for D/J ∼ 0.450.

V. QUANTUM FLUCTUATIONS

Our analysis has been so far focused on classical spins
in order to precisely determine the nature of their clas-
sical ground states. However, it is important to keep
in mind that our present three-fold mapping is also ex-
act with quantum spins, since the local transformations
are proper rotations, i.e. unitary matrices, and therefore
preserve the commutation relations of the spin compo-
nents.

We have investigated the consequences of quantum
fluctuations for these spin liquids in the framework
of linear spin wave theory within the parameters of
Hamiltonian (1). These results are illustrated in Fig. 4.
Approaching any of the HAF or X± models (marked
by dots), the linear spin wave Hamiltonian takes the
same form, which simply confirms the equivalence of
these three spin liquids in the presence of quantum
fluctuations. The linear spin wave calculation also
indicates the likelihood of quantum disorder around the
center of Fig. 4. Approaching the white-triangle region,
a flat band of excitations collapses to zero energy leading
to a divergence in the quantum correction to the order
parameter.

Within the phase diagram of Fig. 4, the J⊥ = Jz = J >
0 line has drawn substantial interest for its relevance to
Herbertsmithite ZnCu3(OH)6Cl2 where Dzyaloshinskii-
Moriya interactions are not negligible (D/J ∼ 0.044 −
0.08)51,53–55. We reproduce the results of Refs. [32,56]
done on this line of parameters, namely that classically32

and up to linear order in spin wave theory56, magnetic or-
der is stabilized for any finite value of D. However, higher
order terms in quantum fluctuations studied by Exact

FIG. 4. Phase diagram of Hamiltonian (1) obtained
from linear spin wave theory for Jz > 0 – The HAF and
X± spin liquids are marked by dots and the yellow, orange
and purple regions are long-range ordered phases. The white
triangle delimits a regime where quantum corrections to the
order parameters diverge, indicating a possible extended re-
gion of quantum disorder. In particular, DMRG has shown
that the entire XXZ model (solid and dashed red lines) is
a quantum spin liquid. Our three-fold transformation maps
this quantum spin liquid onto the XXZ± models of Hamil-
tonian (6) (green and blue lines) for 0 < δ < 1 (solid) and
δ > 1 (dashed), which are thus also quantum spin liquids. Ex-
perimentally, independent parametrizations of the Herbert-
smithite compound51,52 put it at the tip of the white-triangle
region (black rectangle).

Diagonalization57,58, Schwinger-boson59,60 and perturba-
tive methods61 have shown that quantum disorder ac-
tually persists over a finite region up to D/J ∼ 0.1,
which includes Herbertsmithite. Our goal here is not
to claim explaining the spin liquid nature of Herbert-
smithite which has been extensively studied, but rather
to set our theory on an experimental footing. In partic-
ular, it should be noted that at linear order in quantum
fluctuations, the small XXZ anisotropy observed in Her-
bertsmithite52,54 (J⊥/Jz ≈ 0.9) brings this compound at
the tip of the white-triangle region with quantum disor-
der.

Over the past year, the XXZ line (D = 0 and
0 < Jz < J⊥) has also received significant attention
for the spin-liquid nature of its ground state for spins
S = 1/262–65, and the complex quantum order-by-
disorder mechanism that takes place for S > 1/262,66.
Noticeably for spin−1/2, the density matrix renor-
malization group (DMRG) approach indicates that
the quantum spin liquid persists for 0 < J⊥/Jz < 1
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and D = 063. The consequences on our work are
multiple. First of all, our three-fold mapping makes
the XXZ± lines, as well as their continuations along
J⊥ = ±D/

√
3 < 0, quantum spin liquids for spin−1/2

(see green and blue dashed lines in Fig. 4). Furthermore,
the central point of our phase diagram D = J⊥ = 0
has Ising anisotropy and is known for remaining a
quantum paramagnet even for arbitrarily small trans-
verse fields28,67–69. As such, it has been described as
a rare example of “disorder-by-disorder”, a mechanism
proposed by Fazekas and Anderson70 where quantum
fluctuations select a disordered sub-manifold of the clas-
sically degenerate ground state. Within the framework
of our three-fold mapping, this remarkable resistance
to order can be understood as the consequence of
being at the intersection of three (dashed) lines of spin
liquids, in a way reminiscent of what has been observed
in pyrochlore systems71. However, please note that
the spin−1/2 phase diagram is expected to be highly
anisotropic around this central point, since it has been
shown to order into a superfluid phase for D = 0 and
J⊥ < 063,72, and thus also along the symmetric lines
J⊥ = ±D/

√
3 > 0 around the origin according to our

three-fold mapping.

VI. CONCLUSION

We have discovered a connected network of quan-
tum spin liquids on the kagome lattice, which can be
mapped onto each other via a three-fold transformation.
One of the branches of this network is the anisotropic
XXZ model, known to be a quantum spin liquid for
spin−1/262–65 (see the red lines in Figs. 1 and 4), which
includes the famous Heisenberg antiferromagnet. While
every triad of Hamiltonians connected by this mapping
have exactly the same energy spectrum at the classical
and quantum level, their spin configurations are trans-
formed. As a consequence, the three-fold mapping of
the XXZ line gives rise to new spin liquids with intrinsic
vector chirality because of Dzyaloshinskii-Moriya interac-
tions. The Ising antiferromagnet sits at the centre of this
map (see Fig. 4), which sheds a new light on the unique
propensity of this model to remain disordered28,67–69.

Beyond these three branches of quantum spin liquids,
we have studied the stability of Hamiltonian (1) for Jz >
0, up to linear order in spin wave theory. We have found
an extended region of the phase diagram in Fig. 4 where
quantum disorder prevails. The small XXZ anisotropy
observed in Herbertsmithite52,54 (J⊥/Jz ≈ 0.9) brings
this compound within the tip of this extended region.

At the classical level, the Heisenberg antiferromagnet
maps onto two models where algebraic correlations take
the form of ferromagnetic pinch points visible in the
structure factor of Fig. 2. Keeping the Dzyaloshinskii-
Moriya term constant, if one tunes the Jz coupling of
these models until they become isotropically ferromag-

netic, the chirality can spontaneously become scalar.

Our work opens a wide range of exciting directions to
follow, both by theorists and experimentalists. In light
of the intense research on the Heisenberg antiferromag-
net and XXZ models, here we propose two lines of sys-
tems with the same energy spectra, but different (chiral)
magnetic signatures. With this new probe at hand and
Figs. 1 and 4 in mind, it would be of great interest to
look for new insights as one approaches these models and
their chiral counterparts from different angles in param-
eter space (J⊥, Jz, D). In particular, the spreading of
quantum disorder within the white triangle of Fig. 4 and
in its vicinity shall conserve the three-fold symmetry, and
be mediated by quantum order-by-disorder mechanisms
as we vary the spin length S62,66.

The inclusion of 2nd and 3rd nearest-neighbour in-
teractions J2 = J3 = JNNN is known to stabilize a
chiral spin liquid at finite value JcNNN

22–24,27,63,65. This
value JcNNN has been shown by DMRG to decrease
as the antiferromagnetic Jz coupling vanishes. This
means that the chiral spin liquid is getting closer to
the nearest-neighbour XXZ model as Jz goes from 1 to
0. It would thus be very tempting to extend this work
to ferromagnetic coupling (Jz < 0) towards the XXZ0

and equivalent FDM± points. Since the classical ground
states of the FDM± models can support spontaneous
scalar chirality, the possible connection with the chiral
spin liquids at finite JNNN is a particularly attractive
open question.

Beyond kagome physics, our results suggests that
systems supporting the “disorder-by-disorder” mech-
anism70, such as the Ising antiferromagnet here28,
are good places to look for hidden spin liquids in the
neighbouring parameter space.

On the experimental front, our work fits within the
on-going effort for the experimental realization of frus-
trated systems in optical lattices29,30, and especially to
produce tunable synthetic Dzyaloshinskii-Moriya inter-
actions46–48.

We hope that our results will motivate experimental
efforts for the synthesis and characterization of kagome
materials with anisotropic nearest-neighbour interac-
tions. The recently synthesized ternary intermetallic
compounds Dy3Ru4Al12

11 and Yb3Ru4Al12
12 are very

promising materials to start with, since the 4f orbitals of
rare-earth ions are known to induce very anisotropic and
short-range interactions. Furthermore the presence of
itinerant electrons make them natural materials to probe
the chirality of the underlying spin texture. Their crys-
tal structure, however, corresponds to a distorted kagome
lattice. To impose kagome symmetry is a chemistry chal-
lenge, but so was the case for Volborthite Cu3V2O7(OH)2

• 2H2O, 14 years ago7, which nucleated the synthesis
of a growing number of materials with essentially per-
fect kagome symmetry8–10. According to our three-fold
mapping, the places to look for would be large antifer-
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romagnetic Jz, as well as around the XXZ0 point where
only small Dzyaloshinskii-Moriya terms are required. In
light of Refs. [50,49], the region neighbouring the FDM±

models is also very promising, even for smaller values of
D and anisotropic Jz. At the proximity of these high-
symmetry points, especially the one at the centre of the
white triangle, chemical, hydrostatic and uni-axial pres-
sure might help the exploration of the phase diagram, as
observed in rare-earth pyrochlore oxides73.
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55 S. El Shawish, O. Cépas, and S. Miyashita, Phys. Rev. B
81, 224421 (2010).

56 R. Ballou, B. Canals, M. Elhajal, C. Lacroix, and A. S.
Wills, Journal of Magnetism and Magnetic Materials 262,
465 (2003).
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