
HAL Id: hal-01542075
https://hal.science/hal-01542075

Submitted on 19 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Are Multiphase Competition and Order by Disorder the
Keys to Understanding Yb 2 Ti 2 O 7 ?

L.D.C. Jaubert, Owen Benton, Jeffrey G. Rau, J. Oitmaa, R.R.P. Singh, Nic
Shannon, Michel J.P. Gingras

To cite this version:
L.D.C. Jaubert, Owen Benton, Jeffrey G. Rau, J. Oitmaa, R.R.P. Singh, et al.. Are Multiphase
Competition and Order by Disorder the Keys to Understanding Yb 2 Ti 2 O 7 ?. Physical Review
Letters, 2015, 115, pp.267208. �10.1103/PhysRevLett.115.267208�. �hal-01542075�

https://hal.science/hal-01542075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
5.

05
49

9v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

0 
M

ay
 2

01
5

Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?

L.D.C. Jaubert,1 Owen Benton,1 Jeffrey G. Rau,2 J. Oitmaa,3

R.R.P. Singh,4 Nic Shannon,1 and Michel J.P. Gingras2, 5, 6

1Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan
2Department of Physics and Astronomy, University of Waterloo,

200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
3School of Physics, The University of New South Wales, Sydney 2052, Australia
4Department of Physics, University of California, Davis, California 95616, USA

5Perimeter Institute for Theoretical Physics, 31 Caroline North, Waterloo, Ontario, N2L 2Y5, Canada
6Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada

(Dated: May 21, 2015)

If magnetic frustration is most commonly known for undermining long-range order, as famously
illustrated by spin liquids, the ability of matter to develop new collective mechanisms in order to
fight frustration is no less fascinating, providing an avenue for the exploration and discovery of
unconventional properties of matter. Here we study an ideal minimal model of such mechanisms
which, incidentally, pertains to the perplexing quantum spin ice candidate Yb2Ti2O7. Specifically,
we explain how thermal and quantum fluctuations, optimized by order-by-disorder selection, conspire
to expand the stability region of an accidentally degenerate continuous symmetry U(1) manifold
against the classical splayed ferromagnetic ground state that is displayed by the sister compound
Yb2Sn2O7. The resulting competition gives rise to multiple phase transitions, in striking similitude
with recent experiments on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering
the effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut of numerical
techniques, compelling evidence that such multiphase competition is the long-sought missing key to
understanding the intrinsic properties of this material. As a corollary, our work offers a pertinent
illustration of the influence of chemical pressure in rare-earth pyrochlores.

The wide interest in magnetic frustration largely
stems from the diversity of unconventional phenomena
it begets, ranging from anomalous Hall effect [1] to mul-
tiferroicity [2], to name only a few. The engine for this
diversity is the inherent indecisiveness of frustrated mag-
nets towards ordering, opening an avenue for new mech-
anisms to control their low-temperature properties. The
understanding of such mechanisms not only enlarges our
broad understanding of the principles via which matter
organizes itself; it is also the necessary first step in order
to ultimately control the exotic properties of frustrated
magnets.

In the context of emergent degeneracies in py-
rochlores [3, 4], we present here a thorough analysis of
the ordering mechanisms of a realistic microscopic model
of multiphase competition. We believe our theory is the
missing key to unlock many of the puzzling features of
Yb2Ti2O7, whose ordering − or absence of − has been
a matter of debate for nearly 15 years [5–9], discussed in
the context of quantum spin liquid [10–12], Higgs mech-
anism [13] and magnetic monopoles [14, 15]. Specifically,
our theory accounts for the multi-step ordering process
and field dependence of Yb2Ti2O7 [16] while providing
a natural setting to understand its sample dependence
issue [8, 17].

Starting from the most general model for anisotropic
nearest-neighbor exchange on the pyrochlore lat-
tice [19, 20], we consider a range of parameters known
to describe Yb2Ti2O7 [10]. We show that a splayed
ferromagnetic (SFM) phase such as the one observed in

FIG. 1. Multiphase competition of the anisotropic
nearest-neighbor pyrochlore model of Eq. (1), as deter-
mined by classical Monte Carlo simulations for {Ji=2,3,4} =
{−0.22,−0.29, 0} meV. The ψ2 and ψ3 phases are selected
by order-by-disorder within the antiferromagnetic U(1) man-
ifold and separated from the splayed ferromagnet (SFM) by
a first-order transition, whose slope agrees with classical low-
temperature expansion (green line, see Appendices). Rotating
all spins of a given ψ2 state by the same angle around their lo-
cal easy-axes produces the entire U(1) manifold, including the
ψ3 states [18]. The “splaying” angle of the spins in the SFM
ground state is uniquely determined by the {Ji} parameters.

the sister compound Yb2Sn2O7 [21, 22] competes against
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a degenerate U(1) manifold for ordering (see Fig. 1). As
in Er2Ti2O7, a strong contender for experimental real-
isation of order-by-disorder (ObD) [23–27], soft modes
of excitations lift the U(1) degeneracy. This degeneracy
lifting creates an additional competition between the
so-called ψ2 and ψ3 states within the U(1) manifold.
Using a wide range of techniques, we find that both
thermal and quantum fluctuations enhance the stability
of the U(1) manifold to the detriment of the SFM phase.
As a consequence, quantum fluctuations bring Yb2Ti2O7

close to the boundary between all three phases where
multiple phase transitions take place. In addition to the
theoretical interest of understanding how multiple ObD
selections take place within a classically energetically
unstable manifold [3, 28, 29], our work offers a natural
explanation of the properties of Yb2Ti2O7, as recently
observed in bulk measurements [16].

Model – We consider the anisotropic Hamiltonian

H =
∑

〈ij〉

~Si J̄ij
~Sj with J̄ =





J2 J4 J4
−J4 J1 J3
−J4 J3 J1



 (1)

where i, j are pyrochlore nearest-neighbors. All coupling
matrices J̄ij can be deduced from J̄ by appropri-
ate symmetry transformations [10], with only four
independent parameters {Ji=1..4} allowed by the sym-
metry of the pyrochlore lattice [19, 20]. Our work
focuses on the parameter line J1 ∈ [−0.09 : 0] meV
and {Ji=2,3,4} = {−0.22,−0.29, 0} meV, relevant to
Yb2Ti2O7 for J1 = −0.09(3)[30] [10] and including
the T = 0 boundary between SFM and U(1) phases
at J1 = −0.029 (see Fig. 1). We consider both quan-
tum spins S = 1/2 and classical Heisenberg spins

(|~S| = 1/2) whose phase diagrams have been studied
in Refs. [11, 12, 26, 31, and 32] and [3], respectively.

Classical thermal fluctuations – Starting at T = 0, the
6-fold degenerate SFM phase persists for J1 < −0.029 be-
fore giving way to the one-dimensional degenerate U(1)
manifold for J1 > −0.029. At the boundary, new contin-
uously degenerate ground states emerge which confer ad-
ditional zero-mode fluctuations to ψ3 configurations [3].
This zero-temperature framework sets the scene for

the phase diagram of Fig. 1 computed by Monte Carlo
(MC) simulations using parallel tempering [33, 34] and
over-relaxation [35]. The U(1) degeneracy does not
survive thermal fluctuations and collapses predomi-
nantly in the ψ2 configurations, with a small ψ3 island
around the boundary due to the above-mentioned soft
modes of excitations. An interesting consequence of this
ObD competition is that the ψ2/ψ3 phases are precisely
selected to optimize the entropy of the U(1) manifold
for a given set of parameters and temperature. At finite
temperature, this optimization puts the energetically
selected SFM phase at a disadvantage and gives rise to

Classical Quantum

MC LSW ED NLC HTE

T > 0 −0.0340(5) n/a n/a −0.070(3) −0.06(3)

T = 0 −0.0289(1) −0.062 −0.064(2) n/a n/a

TABLE I. Critical value of the exchange parameter J1 [meV],
separating the splayed ferromagnet (SFM) from the U(1)
manifold, as estimated from different methods (Monte Carlo,
linear spin-wave, exact diagonalization, numerical linked-
cluster and high-temperature expansion) at zero temperature
and upon cooling from high temperature. Quantum and ther-
mal fluctuations work together to stabilize the U(1) manifold
over the SFM phase. In particular, quantum effects bring the
SFM/U(1) boundary within error bars of Yb2Ti2O7 parame-
ters [10].

multiple phase transitions for J1 ∈ [−0.034 : −0.029].
Since the Hamiltonian of Eq. (1) supports a large variety
of emergent degeneracies and potential ObD transitions
at the boundaries between ordered phases [3, 36], we
expect such a phenomenology to be a common feature
of pyrochlores [29, 37] and frustrated magnetism in
general [28]. But since temperature is not the only
source of fluctuations, how do quantum fluctuations fit
in this picture ?

Quantum fluctuations at zero temperature – Since we
know the competing classical phases (SFM, ψ2 and ψ3), it
is of interest to analyze their stability in the semiclassical
limit using linear spin-wave theory (LSW) [38]. However,
when applied to classically unstable states, LSW usually
becomes rather tedious as it requires higher order terms
in the spin wave expansion. To circumvent this prob-
lem, we used the method developed in Ref. [39], which
provides an upper bound of the semiclassical ψ2/ψ3 en-
ergies for J1 < −0.029 meV (see Appendix). Keeping
in mind that this approach underestimates the stability
of the U(1) manifold, LSW shows that the semiclassical
T = 0 frontier is shifted by quantum zero-point fluctu-
ations from −0.029 meV down to −0.062 meV (see Ta-
ble I).

We now consider the full quantum nature of the spins.
Since frustration is already at play in the constituting
bricks of the pyrochlore lattice, namely the tetrahedra,
exact diagonalization of a finite number of tetrahedra
provides a good indication of the local influence of
quantum effects. To preserve the symmetry of the
pyrochlore lattice, we consider clusters of 4 and 16 spins,
forming respectively 1 and 5 tetrahedra and allowing for
standard ED calculations. Defining the order parameter
M and correlator C = 〈M2〉 − 〈M〉2 of a given phase,
then the quantity ∆C = CU(1) − CSFM is a direct
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measure of the SFM/U(1) competition, bringing the
T = 0 frontier to J1 ≈ −0.052(2) and −0.064(2) for
N = 4 and N = 16 respectively, in agreement with the
semi-classical results (see Table I).

Quantum fluctuations at finite temperature – Even if
the joint analysis of thermal and quantum fluctuations
is particularly challenging for such a frustrated prob-
lem, the build up of correlations when approaching the
phase transition from high temperature remains accessi-
ble thanks to numerical linked-cluster computation [40–
42] and high-temperature expansion [43] (see Appendix
for technical details).
HTE confirms the shifting of the boundary down to

J1 = −0.06(3) meV and with transition temperatures
lower than 500 mK (see inset of Fig. 2), in agreement
with our classical simulations. As for NLC, at high
temperature where quantum effects ultimately disap-
pear, ∆C changes sign at the classical limit J1 ≈ −0.03
meV, which can be understood from β2 terms in high-
temperature expansion. Then, as temperature decreases
for J1 < −0.03, instead of diverging towards SFM order-
ing, ∆C shows a clear upturn towards enhanced U(1)
correlations (see Fig. 2). This upturn is adiabatically
evolving to lower temperature as J1 is decreased. NLC
thus puts the U(1)/SFM frontier at J1 = −0.070(3)
meV and, together with HTE, confirms the quantum
nature of the boundary shift observed in ED and LSW,
but now observed at non-zero temperature (see Table I).

Multiphase competition in Yb2Ti2O7 – The Hamilto-
nian (1) was shown to fit well inelastic neutron scatter-
ing data of Yb2Ti2O7 under large field [10], allowing for
the estimation of the exchange parameters {Ji=1,2,3,4} =
{−0.09(3),−0.22(3),−0.29(2), 0.01(2)} meV. This set of
parameters has been useful to understand the param-
agnetic and high field regimes [3, 10, 12, 13, 41, 44].
But many questions remain open at low temperature
and zero field. For instance, while single crystals show
a broad peak at ≈ 185 mK in specific heat, pow-
der samples typically display a sharp peak at ≈ 265
mK [8, 9, 17], suggesting the influence of structural dis-
order as in Tb2Ti2O7 [45] or in Dy2Ti2O7 [46]. But in-
terestingly, recent bulk measurements have brought to
light new generic features between powder and single
crystals [16].
Based on these latter experiments [16], and thanks

to the present analysis, we believe it is finally possible
to flesh out a common framework for the powder and
single crystals which magnetically order. In Ref. [16],
both samples undergo a double phase transition with a
high-temperature non-ferromagnetic transition followed
by a low-temperature ferromagnetic first-order transi-
tion. Furthermore, the application of a magnetic field
h does not destroy the lower-temperature ferromagnetic
transition, but rather increases its temperature for h > 5

FIG. 2. The difference of correlators ∆C = CU(1) − CSFM

computed with NLC confirms the quantum shifting of the
boundary towards more negative values of J1 than for the clas-
sical system, estimated at J1 = −0.070(3) meV. J1 is given in
the caption while {Ji=2,3,4} = {−0.22,−0.29, 0}. Inset: ∆C
as computed from HTE for J1 = −0.09 (red), −0.06 (cyan)
and −0.03 (black). The breadth of each curve represents the
uncertainty for NLC and HTE at low temperature.

mT; the transition remaining first order up to hc ≈ 20
mT, before becoming continuous or vanishing, which is
experimentally difficult to distinguish. These experimen-
tal results fit perfectly within the framework of our the-
ory. The double transition is a direct consequence of the
SFM/U(1) competition, as shown in Fig. 1 and for a simi-
lar range of temperature as in experiments. Furthermore,
since the U(1) manifold is antiferromagnetic, it does not
couple with h. The magnetic field thus only favors the
SFM phase, and the first-order ferromagnetic transition
is expected to persist until the U(1) phase is destroyed at
hc. Monte Carlo simulations confirm this scenario with
hc ≈ 15 mT, followed by a crossover for h > hc (see
Fig. 3.b). We also mention as a further similarity the
experimental presence of a reversible bump in the sin-
gle crystal magnetisation at ≈ 180 mK, between the two
transitions. According to our MC simulations, such fea-
ture could correspond to a ψ2/ψ3 ObD transition, but
with the caveat that the ψ3 phase does not persist above
50 mK in our classical phase diagram. In that case, struc-
tural disorder may play an important role [17, 45, 46],
since it is known to i) favor ψ3 over ψ2 order [48] and
ii) to be stronger in single crystals than powder samples
where no bump was observed [16].

It should be noted that even if the parametrization
that we used, taken from Ref. [10], was done on samples
different from the ones in Ref. [16], the quantum shift-
ing of the SFM/U(1) boundary would bring this classi-
cal scenario within the experimental uncertainty of the
J1 = −0.09 ± 0.03 meV parametrization range. This
quantum shifting is best illustrated in Fig. 3, where the
structure factor calculated from classical simulations at
J1 = −0.0335 meV is almost identical to quantum (NLC)
results at J1 = −0.06 meV. As for neutron scattering
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FIG. 3. Application to Yb2Ti2O7: a) structure factor as measured by neutron scattering and b) phase diagram in a field. a)
The spin-flip (SF, top panels) and non-spin-flip (NSF, bottom panels) calculated by quantum NLC and classical Monte Carlo are
almost identical when J1 is shifted from −0.0335 meV to −0.06 meV (please note that the temperature has been renormalized
by 5/4 for a better agreement). This agreement confirms the quantum shifting of the boundary at finite temperature. When
approaching the phase transition, the MC structure factor for J1 = −0.0335 meV reproduces the characteristic features of
Yb2Ti2O7 neutron scattering data measured at 300 mK (to be compared with Fig. 2a of Ref. [13]). On the other hand, the
comparison between experiments [13] and classical simulations using the parametrization of Ref. [10] (J1 = −0.09 meV) are
noticeably less successful, especially around (220) [3]. This disagreement is not a criticism of the parametrization by Ross et

al., but rather an emphasis on the importance of quantum fluctuations. The temperature of 0.65 K in the right panels has been
chosen such that the ratio between measurement and transition temperatures is the same as in Ref. [13]. The color scale is fixed
from 0 to the maximum SF intensity, except for the panel at 0.3 K where the color scale was chosen for visual comparison with
experiments [13]. b) When a field is applied along the [001] direction, the antiferromagnetic ψ2 phase gradually disappears in
MC simulations. Our theory thus explains why the first-order transition only persists at low field in Yb2Ti2O7 [16]. We used
J1 = −0.033 meV and the anisotropic g-tensor of Yb2Ti2O7 [47]: g⊥ = 4.18 and g� = 1.77.

measurements of Yb2Ti2O7 (see Fig. 2.a of Ref. [13]),
the comparison is noticeably better with classical simu-
lations for J1 = −0.0335 meV where a double transition
takes place, than for J1 = −0.09 meV, confirming one
more time the relevance of our theory to Yb2Ti2O7.

Last but not least, our work brings Yb2Ti2O7 as
the missing link between Yb2Sn2O7 and Yb2Ge2O7,
whose ground states are respectively splayed fer-
romagnetic [21, 22] and a yet not characterized
antiferromagnet [49], which we tentatively associate
with U(1). On the basis of our work, we anticipate
that a natural path will take this series of compounds
through a transition from SFM to U(1), achieved either
under chemical pressure (Sn→Ti→Ge) or hydrostatic
pressure, in analogy with spin ice [50] and Tb2Ti2O7 [51]
experiments, respectively.

Conclusion – Using a palette of complementary nu-
merical methods, our work sets a theoretical benchmark
common to both powder and single crystals of Yb2Ti2O7.
We have shown how the multi-step ordering recently ob-
served in bulk measurements [16] naturally arises from
the competition between a SFM phase and a U(1) mani-
fold mediated by order-by-disorder selection. On a more
fundamental level, the underlying ordering mechanism

should be understood as the joint consequence of both
quantum and thermal fluctuations. The T = 0 frontier
between the U(1) manifold and the splayed ferromagnet
is shifted by quantum fluctuations, raising the interest-
ing possibility to modulate frustration by tuning quan-
tum fluctuations. In the general context of multiphase
competition, order-by-disorder can be viewed as a free-
energy optimization process which reinforces the stability
of the degenerate phase it acts upon, by naturally se-
lecting the subset of configurations with higher entropy
and/or quantum zero-point fluctuations.

In light of the numerous models and phases supported
by pyrochlores, ranging from spin liquids and spin ices
to (partially) ordered phases [11, 52–56], and subsequent
boundaries between them [3, 29, 37], our present work
is a paradigmatic example of why the properties of frus-
trated magnets should generically be understood as the
sum of competing phases, rather than coming from a sin-
gle controlling state. Some of these properties would in-
deed seem to be “coming from nowhere” in absence of a
global phase diagram. We expect such competition be-
tween neighboring phases to be particularly relevant to
some of the most difficult materials to characterize, such
as Tb2Ti2O7 [45] and Er2Sn2O7 [3, 57, 58], and to exac-
erbate the sample dependence issues [17, 45, 46] by the
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proximity of phase boundaries. In that respect it is in-
teresting to note that Er2Ti2O7, whose coupling param-
eters lie far away from any phase boundary [3, 24, 26], is
one of the most robust rare-earth pyrochlore for repro-
ducibility of experiments, while Yb2Ti2O7 is essentially
the antithesis. Hence, we expect the interplay between
multiphase competition and disorder to become a very
topical question, necessary to account for experiments in
pyrochlores and frustrated magnetism, and promisingly
rich in exotic physics.
The authors would like to thank Han Yan for collabo-

ration on related projects. LDCJ, OB and NS are sup-
ported by the Okinawa Institute of Science and Tech-
nology Graduate University. RRPS is supported in part
by NSF-DMR 1306048. The work at the U. of Waterloo
was supported by the NSERC of Canada, the Canada Re-
search Chair program (M.G., Tier 1) and by the Perime-
ter Institute (PI) for Theoretical Physics. Research at
PI is supported by the Government of Canada through
Industry Canada and by the Province of Ontario through
the Ministry of Economic Development & Innovation.

APPENDIX

Order parameters and correlators

As illustrated in Fig. 1 of the main text, three main
phases are studied in this paper: the U(1) manifold, di-

vided into ψ2 and ψ3 phases, and the splayed ferromag-
net (SFM). Their order parameters can be found in the
literature [3, 24, 25, 29, 37] and are repeated below for
convenience.

In what follows, we adopt the convention of Ref. [10]
regarding the labeling of the spins, defined by their posi-
tions relative to the centre of the tetrahedron

~r0 =

(

1

2
,
1

2
,
1

2

)

, ~r1 =

(

1

2
,−

1

2
,−

1

2

)

,

~r2 =

(

−
1

2
,
1

2
,−

1

2

)

, ~r3 =

(

−
1

2
,−

1

2
,
1

2

)

. (2)

The spins at the four sites are denoted as ~Si=0,1,2,3 =

(Sx
i , S

y
i , S

z
i ) in the cubic coordinates, with |~Si| = 1/2.

For the U(1) manifold, the order parameter, per tetra-
hedron, is a two-dimensional vector.

~mU(1) =









mα
U(1)

mβ

U(1)









=









1
2
√
6
(−2Sx

0 + Sy
0 + Sz

0 − 2Sx
1 − Sy

1 − Sz
1 + 2Sx

2 + Sy
2 − Sz

2 + 2Sx
3 − Sy

3 + Sz
3 )

1
2
√
2
(−Sy

0 + Sz
0 + Sy

1 − Sz
1 − Sy

2 − Sz
2 + Sy

3 + Sz
3 )









(3)

To differentiate between the ψ2 and ψ3 states
within the U(1) manifold, we define the angle

θU(1) = arctan(mβ

U(1)/m
α
U(1)); the function cos(6θU(1))

respectively equals to +1 and −1 for ψ2 and ψ3

states [3, 29, 37].

As for the splayed ferromagnetic phase, it is fully de-
scribed by two three-dimensional order parameters [3]

~mSFM1 =

















mα
SFM1

mβ
SFM1

mγ
SFM1

















=

















1
2 (S

x
0 + Sx

1 + Sx
2 + Sx

3 )

1
2 (S

y
0 + Sy

1 + Sy
2 + Sy

3 )

1
2 (S

z
0 + Sz

1 + Sz
2 + Sz

3)

















(4)

~mSFM2 =

















mα
SFM2

mβ
SFM2

mγ
SFM2

















(5)

=

















−1
2
√
2
(Sy

0 + Sz
0 − Sy

1 − Sz
1 − Sy

2 + Sz
2 + Sy

3 − Sz
3 )

−1
2
√
2
(Sx

0 + Sz
0 − Sx

1 + Sz
1 − Sx

2 − Sz
2 + Sx

3 − Sz
3 )

−1
2
√
2
(Sx

0 + Sy
0 − Sx

1 + Sy
1 + Sx

2 − Sy
2 − Sx

3 − Sy
3 )

















where ~mSFM1 is simply the global magnetization and
~mSFM2 accounts for the splayed nature of the ferromag-
netism, i.e. the fact that the spins are not colinear. For
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a given SFM ground state, both ~mSFM1 and ~mSFM2 are
finite.
In order to compare the growth of correlations between

the two phases, we define the order-parameter correlators

CIJ = 〈mImJ〉 − 〈mI〉〈mJ 〉 (6)

where mI is a given order parameter. For the U(1) man-
ifold, the use of the correlators is rather straightforward.
However, for the SFM phase, since both ~mSFM1 and
~mSFM2 are finite, one needs to compute the matrix of
correlators









CSFM1,SFM1 CSFM1,SFM2

CSFM2,SFM1 CSFM2,SFM2









. (7)

By definition, this matrix is symmetric but a priori non-
diagonal. Upon diagonalization, the maximum eigen-
value is kept as correlator of the SFM phase. Please
note that by symmetry of the lattice, calculations can
be simplified by considering only one component of the
order parameters, say e.g. ~mα

SFM1 and ~mα
SFM2.

Monte Carlo simulations

The Fig. 1 of the main text has been obtained by
classical Monte Carlo simulations of Heisenberg spins on
the pyrochlore lattice. The conventional cubic unit cell
consists of 16 spins and the system size has N = 3456
spins. We used the standard Metropolis algorithm where
a Monte Carlo step (MCs) is defined as N random single-
spin-flip attempts. To improve the quality of the simula-
tions, parallel tempering [33, 34] and over-relaxation [35]
were included in the simulations.
The error bars of Fig. 1 (main text) were obtained by

using two different cooling procedures during the equili-
bration of the simulations. For the first “annealed” pro-
cedure, the initial configuration is chosen randomly; the
system is then gradually cooled down from high temper-
ature (fixed at 10 K) to the temperature of measurement
T during 106 MCs; it is then equilibrated at the temper-
ature T during 106 additional Monte Carlo steps. Since
it is starting from high temperature, the annealed pro-
cedure tends to favor the phase with higher entropy, i.e.
the U(1) manifold, and provides a lower boundary to
the transition temperature. For the second “quenched”
procedure, the initial configuration is fixed in the SFM
phase; the system is then equilibrated at temperature T
during 106 additional Monte Carlo steps. Since it starts
in the ordered SFM phase, the quenched procedure fa-
vors the SFM phase and provides an upper boundary to
the transition temperature. Following these equilibration
procedures, measurements are done every 10 MCs during
107 MCs.

For the phase diagram of Fig. 3 b) (main text), the
system size was 3456 sites with measurements during 106

MCs. For the structure factors of Fig. 3 a) (main text),
no parallel tempering was necessary for simulations above
the transition temperature. The system size was 128000
sites with measurements during 106 MCs.

Classical low-temperature expansion

Classical low-temperature expansion is an expansion
in small fluctuations around an ordered state of classical
spins. It enables calculation of the free energy of a given
ordered phase up to leading term in temperature. We
have used it to determine the low-temperature depen-
dence of the phase boundary between the SFM and ψ3

phases, for comparison with MC simulation as indicated
by the green line in Fig. 1 of the main text. The method
is a standard one, outlined in (e.g.) Ref. [59].

Linear spin wave theory

Linear spin wave theory (LSW) is a semi-classical
method to study the stability of a classical phase in pres-
ence of the quantum zero-point energy. When the phase
is a classical ground state, such as the SFM phase in
the double-transition region of our paper, the method is
rather straightforward. But if the phase is not a classical
ground state, such as the U(1) manifold in the double-
transition region, the inclusion of zero-point energy re-
quires a variation of the LSW theory, as proposed in
Ref. [39] and outlined below.
At first, the approach is similar to standard spin wave

expansion. We rewrite the spin operators ~Si in terms of
Holstein-Primakoff bosons and perform a 1/S expansion
around the local spin configuration of the chosen ordered
state. At the harmonic level, our Hamiltonian takes the

form H ≈ HLSW = H
(0)
LSW

+H
(1)
LSW

+H
(2)
LSW

. H
(0)
LSW

is simply
the classical energy of the ordered state around which we

are expanding, while H
(1)
LSW

and H
(2)
LSW

contain only linear
and quadratic terms in boson operators, respectively.
If the chosen ordered state is a classical ground state,

then H
(1)
LSW

must vanish. As for H
(2)
LSW

, it can be diag-
onalized by Fourier transform followed by a Bogoliubov
transformation which will return real, positive, frequen-
cies and therefore a meaningful excitation spectrum. The
semi-classical energy can then be written

E0
semi−cl = E0

cl

(

1 +
1

S

)

+
1

2

∑

~kλ

ω~kλ, (8)

where E0
cl
is the classical ground state energy, ω~kλ is the

spin wave dispersion of band λ at wave-vector ~k.
However, if the chosen ordered state is not a classi-

cal ground state, then H
(1)
LSW

may still vanish if the spin
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configuration we are expanding around is a saddle point

of the classical energy. As shown in Ref. [24], this is
the case for the ψ2 and ψ3 configurations. The last re-

maining point is the diagonalization of H
(2)
LSW

. Following
the approach developped by Coletta et al. [39], we add to

H
(2)
LSW

the positive definite term V = δ
∑

i a
†
iai, where the

a†i and ai operators are Holstein-Primakoff bosons. This
additional term V does not change the classical energy
and the parameter δ may be adjusted to the minimum
value for which we can obtain a real, positive excitation
spectrum. The energy calculated with the inclusion of V
is

Eδ
semi−cl = Ecl

(

1 +
1

S

)

−N
δ

2
+

1

2

∑

~kλ

ωδ
~kλ

(9)

where Ecl is the classical energy of the saddle-point con-
figuration and ωδ

~kλ
is the spin wave dispersion calculated

including the potential V . Since V is a positive definite
operator, Eδ

semi−cl
is an upper bound on the semiclassical

energy of the saddle-point configuration.

Exact diagonalization

We consider the properties of the exchange Hamilto-
nian shown in Eq. (1) of the main text for a single tetra-
hedron (N = 4) and a single cubic unit cell of the py-
rochlore lattice (N = 16) with periodic boundary con-
ditions. Thanks to the small number of sites the full
spectrum is analytically accessible for N = 4 and the

lowest lying eigenstates can be easily found via standard
Lanczos diagonalization for N = 16.

Numerical linked cluster expansion

At finite temperature, we have also performed a nu-
merical linked cluster expansion (NLC) [40, 42], defined
as

P (L)/N =
∑

C⊂L
L(C)W (C) (10)

where P is some extensive quantity and N is the number
of lattice sites. The sum runs over clusters C of the lat-
tice, L(C) counts the number of clusters of type C per site
and W (C) is the weight evaluated on the cluster. This
weight is computed using inclusion-exclusion rule

W (C) = P (C)−
∑

C′⊂C

W (C′) (11)

where P (C) is the quantity computed on the cluster C and
the sum runs over proper subclusters of C. There is some
freedom in choosing the classes of clusters to sum over in
this expansion. We follow the approach of Ref. [41] and
use tetrahedra as our building block. A linked cluster
with nT tetrahedra will have at most 3nT +1 sites so we
are limited to nT ≤ 4 in the expansion. The properties
P we will compute are defined on the tetrahedron and so
conform well to this expansion.

For convenience, we reproduce in Table II the geomet-
rical clusters used in Ref. [41], with the appropriate em-
bedding constant. These include the 0th order point up to
4th order which includes clusters composed of four tetra-
hedra. Each cluster has an associated Hamiltonian HC
obtained from the exchange Hamiltonian (Eq. (1) of the
main text) which we diagonalize numerically. The largest
nT = 4 clusters we consider have 13 sites and thus Hilbert
spaces of dimension 213 = 8192. These remain amenable
to full diagonalization and thus we can compute arbitrary
thermodynamic quantities at finite temperature.

The series is organized into terms Pn including up to n
tetrahedra. Explicitly carrying out the expansion using

the embedding constants one has

P0 = +P (C0) (12)

P1 = −P (C0) +
1

2
P (C1) (13)

P2 = −
3

2
P (C1) + P (C2) (14)

P3 = +
3

2
P (C1)− 5P (C2) + 3P (C3) (15)

P4 = −
1

2
P (C1) + 10P (C2)− 21P (C3)

+3P (C4a) + 6P (C4b) + 2P (C4c) (16)

Note that P (C0) does not appear directly past first order.
Following Ref. [41] the Euler resummation method is used
on the final two terms to accelerate convergence. If we
define the differences Sn = Pn+1 − Pn then the Euler
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C L(C) C L(C)

C0 1 •

C1
1

2
C2 1

C3 3 C4a 3

C4b 6 C4c 2

TABLE II. Clusters used for the NLC expansion. A graphical representation is shown along with the embedding constant
L(C).

approximants are given by

E2 = P2 (17)

E3 = E2 +
1

2
S3 (18)

E4 = E3 +
1

4
(S3 + S4) (19)

The difference between 3rd and 4th order of expansion is
the uncertainty of our NLC computations.

High Temperature Expansion

The High Temperature Expansions (HTE) are done up
to order β8, as explained in the book of Ref. [43]. The
series expansion are then analyzed using Padé approxi-
mants, i.e. based on rational functions. We constructed
all near-diagonal Padé approximants with 8 or 7 terms
in the series, i.e. [4/4], [5/3], [3/5], [6/2], [2/6], [4/3],
[3/4], [5/2], [2/5] where [m/n] stand for the powers of
the polynomial in the numerator and the denominator.
The resulting spread in Padé approximant values repre-
sents the error bars of our HTE computations.

[1] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and
Y. Tokura, Science 291, 2573 (2001).

[2] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[3] H. Yan, O. Benton, L. D. C. Jaubert, and N. Shannon,

arXiv:1311.3501 (2013).

[4] B. Canals, M. Elhajal, and C. Lacroix,
Physical Review B 78, 214431 (2008).

[5] J. A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dal-
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