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Magnetic moment fragmentation and monopole crystallization
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The Coulomb phase, with its dipolar correlations and pinch-point scattering patterns, is central to
discussions of geometrically frustrated systems, from water ice to binary and mixed-valence alloys,
as well as numerous examples of frustrated magnets. To date, the emergent Coulomb phase of lattice
based systems has been associated with divergence-free fields and the absence of long-range order.
Here we go beyond this paradigm, demonstrating that a Coulomb phase can emerge naturally as
a persistent fluctuating background in an otherwise ordered system. To explain this behaviour we
introduce the concept of the fragmentation of the field of magnetic moments into two parts, one
giving rise to a magnetic monopole crystal, the other a magnetic fluid with all the characteristics of
an emergent Coulomb phase. Our theory is backed up by numerical simulations and we discuss its
importance with regard to the interpretation of a number of experimental results.

I. INTRODUCTION

The interplay between frustration, topological order,
fractionalization and emergent physics has been the fo-
cus of a rapidly increasing body of work in recent years.
In themselves these concepts are not new. Frustration
underpins theories of glassiness and has been much dis-
cussed since the seminal studies of Anderson and Vil-
lain [1, 2]. Likewise, concepts of topological order and
fractionalization, from the fractional quantum Hall ef-
fect [3] and quasi-particles in graphene-like systems [4]
to solitons in one-dimension [5, 6], have been prominent
topics in theroretical and experimental condensed matter
physics for over thirty years.

The subtleties of the inter-dependence between these
concepts has been elucidated only recently, in the con-
text of the so-called emergent Coulomb phase of highly
frustrated magnetic models. However the phenomenol-
ogy of the Coulomb phase, with its characteristic dipolar
correlations and emergent gauge structure, is not limited
to realms of frustrated magnetism. Indeed similar be-
haviour is observed in water ice [7] and models of heavy
fermion behaviour in spinels [8], as well as in models of
binary and mixed valence alloys [9].

Henley [10] succinctly sets out three requirements for
the emergence of a Coulomb phase on a lattice: (i) each
microscopic variable can be mapped onto a signed flux
directed along a bond in a bipartite lattice; (ii) the sum
of the incoming fluxes at each lattice vertex is zero and
(iil) the system has no long-range order. Elementary ex-
citations out of the divergence free manifold are seen to
fractionalize, giving rise to effective magnetic monopoles
that interact via a Coulomb potential [11] and (in three
dimensions) may be brought to infinite separation with
finite energy cost.
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In this paper we demonstrate how the lattice based
magnetic Coulomb phase emerges in a considerably wider
class of models than those covered by the conditions
stipulated above. More specifically, we show that such
a phase exists for a model “magnetolyte” irrespective
of the magnetic monopole density or of monopole or-
dering. We introduce the concept of magnetic moment
fragmentation, whereby the magnetic moment field un-
dergoes a novel form of fractionalization into two parts:
a divergence-full part representing magnetic monopoles
and a divergence-free part corresponding to the emer-
gent Coulomb phase with independent and ergodic spin
fluctuations[12]. Our results apply even for a monopole
crystal which is shown to exist in juxtaposition with mo-
bile spin degrees of freedom: a previously unseen coexis-
tence between a spin liquid and long-range order induced
by magnetic moment crystallization. The implications of
this field fragmentation are wide-reaching and relevant
for the interpretation of a number of experiments, as dis-
cussed below.

II. THE MODEL

Magnetic monopoles [11] emerge as quasi-particle exci-
tations from the ground state configurations of the dumb-
bell model of spin ice. Here, the point dipoles of the dipo-
lar spin ice model [13] are extended to infinitesimally thin
magnetic needles lying along the axes linking the cen-
tres of adjoining tetrahedra of the pyrochlore lattice (see
Fig. 1) which constitute a diamond lattice of nodes for
magnetic charge [14]. The needles touch at the diamond
lattice sites so that, by construction, the long range part
of the dipolar interactions are perfectly screened for the
ensemble of ice rules states in which two needles point
in and two out of each tetrahedron [15]. These ground
states form a vacuum from which monopoles are excited
by reversing the orientation of a needle, breaking the ice
rules on a pair of neighbouring sites. As vacuums go



this one is rather exceptional, as it is far from empty.
Rather, the magnetic moments constitute the curl of a
lattice gauge field [16], the Coulomb phase, with manifest
experimental consequences for spin ice materials. These
include diffuse neutron scattering patterns showing the
sharp pinch point features [17] characteristic of dipolar
correlations, and the generation of large internal mag-
netic fields despite the status of vacuum [18, 19].

In an analogy with electrostatics, the monopole charge
distribution obeys Gauss’ law for the magnetic field,
V.H = Pm, where py, is the monopole density. The
monopole number is not conserved and the energetics of
the dumbbell model at low temperature correspond to a
Coulomb gas in the grand canonical ensemble, in which
the phase space of monopole configurations is constrained
by the underlying ice rules. One can define a Landau en-
ergy, U = Uc — uN, where Ug is the Coulomb energy of
the neutral gas of N = monopoles and p is the chemical
potential such that —2u is the energy cost of introducing
a neutral pair of monopoles an infinite distance apart.
For temperatures of order —u the Coulomb gas picture
of spin ice must be extended to include double charged
monopoles (see Appendix A).

The divergence in H is related to the breaking of the
ice rules through M , the magnetic moment density which
itself obeys Gauss’ law, V.M = — pm- This does not how-
ever, define the entire moment density which can have
two contributions: the first, Mm, is the gradient of a
scalar potential and provides the magnetic charge; the
second, Md, a dipolar field, can be represented as the
curl of a vector potential and is divergence-free [20, 21]

M = My, + Mg =Vo(r) +VAQ. (1)

In states obeying the ice rules, My, = 0, while My = M;
this corresponds to an emergent Coulomb phase [10].
Breaking the ice rules and introducing magnetic charge
leads to the conversion of M from the divergence-free
Md to the divergence-full field Mm. Central to the dis-
cussions in this paper is the concept that this conver-
sion is, in general, partial — the divergence-free part
is not completely suppressed by the presence of the
monopoles. Thus, in almost all circumstances, one has
the coexistence of two complimentary fields, reminis-
cent of the Hamiltonian splitting in topologically ordered
phases [22].

The total charge inside a microscopic volume sur-
rounding a diamond lattice site i is Q; = —fM.dg
with dS an outward pointing surface element. For the
dumbbell model the integral reduces to a discrete sum
Qi = _Zj Mij where Mij = Mdg;] = im/a, dS_’;J is
an infinitesimal surface element cutting the needle, m is
the strength of the magnetic moment and a is the dis-
tance between diamond lattice sites. The positive (neg-
ative) sign is for the needle pointing away from (into)
the site ¢, so that M;; = —Mj;. An ice rules configura-
tion with two needles into and two out of the site indeed

gives Q; = 0 while three-in-one-out (three-out-one-in)
gives Q; = +(—)2m/a [11].

The fields for an isolated three-in-one-out vertex can be
split into divergence-full and divergence-free parts sub-
ject to the constraint that the amplitude of each field
element is |M;;| = m/a:

) (=) = (-1,-1,-1,1) (2)
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The first set of fields satisfy Gauss’ law for the charge at
the origin; the second set satisfy a discrete divergence-
free condition and constitute a residual dipolar field
dressing the monopole (see Fig. 1¢). Decomposition fur-
ther away from the charge could be made by solving the
lattice Poisson equation to find the field sets belonging
to M,, which would be subtracted from the M;; to find
the discrete elements of M. Singly charged monopoles
leave a residual contribution to My at each vertex and it
is only when the vertex is occupied by a double charged
monopole for, which [M;;] = £(m/a)(1,1,1,1), that the
contribution to Md is totally suppressed. Hence, a fluid
of singly charged monopoles should be accompanied by
a correlated random dipolar field whose detailed struc-
ture is updated by the monopole dynamics and only de-
stroyed on the temperature scale at which doubly charged
monopoles proliferate. Indeed the pinch points in diffuse
neutron scattering from spin ice materials are maintained
up to surprisingly high temperatures [17, 23], indicating
the presence of such a dipolar field. The emergence of
the dipolar field is further illustrated in the Appendix C
where we show how the [M;;] are divided around a pair
of isolated nearest neighbour charges of the same sign.
The random fluctuations in the underlying gauge
field can be be ironed out by breaking the two sub-
lattice translational symmetry of the diamond lattice,
creating a monopole crystal with north and south
poles localized on different sub lattices. For an ide-
ally ordered array the divergence-free fields on alter-
nate sites are perfectly satisfied by the sets [M;;la =
+(=)(m/a)(1/2,1/2,1/2,—3/2). Thus one sees the
emergence of a new Coulomb phase with extensive en-
tropy superimposed on monopole order, in which each
vertex has three contributions to the dipolar field of
strength 1/2 (in units of (m/a)) and one of strength
3/2, which is shared between a pair of neighbouring sites
on opposite sub-lattices. This fragmented state could
be termed an “Antiferromagnetic Coulomb Magnet”
(AFCM) by analogy with the “Ferromagnetic Coulomb
Magnet” (FCM), predicted in the gauge mean field the-
ory of quantum magnets on a pyrochlore lattice [24]. The
ordered component corresponds to a broken symmetry of
the Ising spins described in the local axis reference frame
into the three-up-one-down, or three-down-one-up sector.
For the divergence-free part, ]\Zid, placing a dimer along
the bond of strength 3/2 provides a mapping between



FIG. 1. (Colour) Lattice structures: (a) Pyrochlore lattice, showing monopole crystal and magnetic needle (spin) orientations.
The sub-lattice index A; defined in equation (4) is +1 (resp. —1) on the diamond sites where the blue (resp. red) monopoles sit.
The minority spins (red) are equivalent to dimers positioned on the diamond lattice. (b) Two-in-one-out spin configurations in
the confined KII kagome spin ice phase. (c) Spin and needle configurations for a three-in-one-out vertex carrying an isolated
north pole showing magnetic moment fractionalization into divergence-full and divergence-free elements. We shall emphasize
that the divergence-free field emerging here, despite being a Coulomb phase, is different from the standard one in absence of

monopoles described in [11].

the emergent dipolar field and hard core dimers on the
(bipartite) diamond lattice [25]. The extensive entropy
of the dipolar field is thus associated with closed loops of
dimer moves [26]. Introducing quantum loop dynamics
give rise to a U(1) liquid phase close to the Rokhsar-
Kivelson point [27, 28].

A monopole crystal ground state can be induced in the
dumbbell model by modifying the chemical potential so
that the total Coulomb energy Uc outweighs the energy
cost for creating the particles, —u/N. For the monopo-
lar crystal Uc = (Ngo/2)au, where v = —ppQ?/4ma
is the Coulomb energy for a nearest neighbour pair of
monopoles of charge +@Q), o is the permeability, Ny the
number of diamond lattice sites and o = 1.638 is the
Madelung constant. We define a reduced chemical po-
tential p* = p/u and thus the ground state should be a
monopole crystal for

©r < g = % — 0.819. (3)

Monopole crystallization has also been studied recently
within the dipolar spin ice model, in the canonical ensem-
ble, that is, with fixed monopole number [29], leading to
a region of phase separation between the crystalline and
the fluid phases. For classical spin ice, crossing this phase
boundary would correspond to leaving the spin ice phase
[13], at which point double charges become favoured. The
ordering is then to a structure in complete analogy with

zinc blende: a crystal of doubly charged monopoles for
which My is everywhere zero, corresponding to the “all-
in-all-out” magnetic order observed in FeFs3 [30].

In the modeling of spin ice, the chemical potential can
be extracted from the dumbbell approximation to the
dipolar spin ice model (see the supplementary informa-
tion of ref. [11]). To put spin ice materials in the context
of the present work we note that the dumbbell approxi-
mation for dysprosium titanate yields y = —4.35K, while
direct simulations for dipolar spin ice give p = —4.46K
[31], so that p* ~ 1.42, well away from the monopole
crystal phase boundary. In the appendix we return
to this modeling and show that the magnetostatics of
monopoles leads to a prediction for the phase boundary
where the ratio of nearest neighbor exchange to dipo-
lar energy scale reaches J,, /D, = —0.918, in excel-
lent agreement with direct analysis of the dipolar model
[32]. Further, we show that, for a pair of doubly charged
monopoles, both the chemical potential and the coulomb
energy are scaled by a factor of four compared with val-
ues for the monopoles discussed in the main text. Hence,
the zero temperature spin ice - monopole crystal phase
boundary occurs at the same point whether one includes,
or excludes the doubly charged monopoles that complete
the magnetic charge description of spin ice. In this paper
we explicitly exclude double charges, taking us away from
from traditional spin ice modeling for large monopole



concentrations; a point we return to in section IV when
discussing the experimental relevance of our results.

III. RESULTS

We have tested these ideas directly through Monte
Carlo simulations of the dumbbell model (details are
given in the Appendix B). In Figure 2 we show the evo-
lution of an order parameter for monopole crystallization
and the monopole number density, M. and n respectively,
as a function of reduced temperature T* = T'/|u| for dif-
ferent values of u*. M, is defined as

> : (4)

1
M, = (| AN
(3>

where ¢; = (Q;a/2m) = {—1,0,+1} is the topological
charge on site i, A; = £1 is a diamond sub-lattice in-
dex (see Fig. 1), (...) denotes a statistical average and
n = (N)/Ny. The data show clear evidence of monopole
crystallization at a transition temperature, 7¢; that varies
with p*. At this temperature a lattice fluid gives way to
a phase with reduced translational symmetry, in which
M. approaches unity. Debye-Hiickel theory for an uncon-
strained Coulomb gas on a bipartite lattice predicts a line
of second order transitions in the (u*,T) plane, becom-
ing first order via a tri-critical point as pu* increases [33].
Our data is consistent with this despite the additional
constraints of the dumbbell model. From the finite size
scaling analysis shown in the Appendix E we estimate
a tri-critical point, uf, ~ 0.78, T. ~ 0.13. This tem-
perature is comparable to that obtained from numerical
simulation of a cubic lattice Coulomb gas [34], although
e 1s surprisingly close to pg. For small values of p* a
continuous transition takes the system from a high den-
sity fluid (n > 4/7) to the crystalline phase. However,
as pu* increases towards the phase boundary at approxi-
mately 0.8, the fluid density is able to reach lower values
near T, (shown by the data for p* = 0.794 in Fig. 2(b))
indicating that, while the crystalline ground state is en-
ergetically favoured, the finite monopole density of the
fluid phase is stabilized by entropy. It is this minimum
in the density as the transition is approached that drives
the transition first order, as in the Blume-Capel model
for spin-one systems [34]. More work is required to ex-
tract the effect of the constraints in detail and to establish
the tri-critical parameters with precision. There could,
in principle also be a liquid-gas transition at higher tem-
perature, between a low and high density fluid, but at the
level of Debye-Hiickel theory this transition is suppressed
by the monopole ordering [33]. There is no strong evi-
dence of this in our simulations, although the crossover
from high density fluid (region II of the phase diagram
in Fig. 3) to a low density fluid (region III) just outside
the monopole crystal phase boundary is quite sharp and
could be considered as a vestige of such a transition.

In Figure 3 we show the resulting phase diagram, as
mapped out by the divergence of the specific heat, C,,,
at the phase transition. The monopole crystal phase ter-
minates for p* ~ 0.8 in approximate agreement with our
prediction of pf = 0.819, the small difference being most
likely due to finite size effects exacerbated by the long
range interactions.

0.08 0.12 0.16 0.2

0.08 0.12 0.16 0.2

FIG. 2. (Color) (a) Order parameter M. for monopole crystal-
lization as defined in equation (4) and (b) density of charges
n, as a function of reduced temperature T for chemical po-
tential p* = 0.767(+),0.778(x ), 0.784(0J), 0.794(M), 0.801 (o).
The transition appears to pass from second order to first order
via a tri-critical point for uf, ~ 0.78. The very narrow first
order region ends at p* ~ 0.80, above which spin ice physics
is recovered (e.g. the black open circles). The alternating pos-
itive/negative charges on the diamond lattice can also be seen
as stacked monolayers of same charge monopoles in all three
cubic directions. Note that the configurational constraints of
the singly charged monopole fluid result in a high tempera-
ture limit for the density of n = 4/7, rather than the n = 0.5
expected for an unconstrained bipartite lattice gas. A gener-
alization of the worm algorithm has been developed to ensure
equilibration at low temperature (Appendix B).

In Figure 4 we show a simulated elastic neutron scat-
tering map determined within the static approximation,
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FIG. 3. (Color) The position of the singularity in the specific
heat, Cy, in the (u*,T™) plane traces out the phase boundary
for the monopole crystal phase. The most intense peak signals
the passage of the transition from second to first order via
a tri-critical point. Index I, IT and III mark the monopole
crystal, high density fluid and low density fluids respectively.
Regions IT and III are separated by a continuous crossover and
the gas of monopoles (III) corresponds to the low temperature
phase for spin ice.

setting the magnetic form factor equal to unity and by
averaging over 2000 randomly selected configurations of
the ideal monopole crystal. For scattering purposes the
magnetic needles were once again taken as unit vectors
(spins), S, on the sites of the pyrochlore lattice. The
structure factor S(Q) is dominated by Bragg peaks at the
(220) positions, characteristic of the all-in-all-out struc-
ture observed in FeF3 [30]. The intensity of these peaks
is precisely one quarter of that expected for complete all-
in-all-out ordering and is consistent with scattering from
monopoles constructed from fragmented spins with effec-
tive length 1/2. S(Q) also reveals diffuse scattering with
the clearly defined pinch-points of a Coulomb phase. We
have compared the intensity of the diffuse scattering with
that found when the length of the minority spin at each
vertex is extended to three whilst the length of the ma-
jority spins remain fixed at unity. The resulting structure
factor has no Bragg peaks and has four times the inten-
sity of the true diffuse scattering for a given wave vector.
The ensemble of Bragg peaks plus emergent Coulomb
phase therefore appears in excellent agreement with the
predicted moment fragmentation of equation (2).
Magnetic charge crystallization also occurs for the
dumbbell model on the kagome lattice (see Fig. 1) [36—
40]. Breaking a Z> symmetry for needle orientations on
each triangular vertex plunges the system from the so-
called KI phase into a constrained Coulomb phase, the
KII phase, realized in spin ice materials by applying a
field along the (111) direction of the pyrochlore lattice
[41, 42]. The moments of a vertex with configurations

constrained to two needles in and one out can, as above,
be decomposed into divergence-full and divergence-free
parts:

M) () = (-1, -1,1) (5)
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Consequently, simulated neutron scattering plots for the
ensemble of constrained states have both Bragg peaks
and pinch points characteristic of a two dimensional
Coulomb phase (Figure 4). The Bragg peaks have an
intensity of 1/9 of those for a fully ordered all-in-all-out
phase. While deconfined monopole excitations away from
these states carry a magnetic charge Q = 2m/a, as in spin
ice, the charge ordering corresponds to a crystal of ob-
jects with charge /2 = m/a, providing a simple example
of frustration driven charge fractionalization [36-38, 43].

Returning to the three dimensional system, the per-
sistent background fluctuations are further evidenced by
studying local dynamics. We have collected two sets of
data, one using local single spin-flip Metropolis dynam-
ics, the other using a non-local worm algorithm [44] ex-
tended to include long range interactions [45]. While
the non-local algorithm is extremely powerful for ex-
tracting equilibrium properties in the highly constrained
monopole crystal phase, the local dynamics is of great
interest as it provides insight into how real systems
might evolve with time [31, 46]. The one-site, two-time
monopole and spin autocorrelation functions are defined
as

Cult) = <% 0 qi<t>> (6)

i=1

Cu(1) = <§ 3 50 §j<t>> S

J

In region I of our phase diagram the charge autocor-
relation function C¢(t) remains close to unity over the
whole time window, reflecting the broken charge symme-
try and the localization of monopoles, as shown in Figure
(5). The spin autocorrelation function, however, shows
a decay over a modest simulation time, from unity to
an asymptote of Cs(t = oo0) = 1/4, reflecting the ran-
dom projection of the spin onto the four orientations
of a three-in-one-out or three-out-one-in vertex. This
spin ergodicity, superimposed on a background of mag-
netic Bragg peaks illustrates the collective nature of the
monopole excitations: singular nodes in a fluctuating
magnetic fluid, rather than static microscopic objects.
We have evidence for the validity of these conclusions
deep into region I, with simulations down to approx-
imately Tc/2 for each p*. Cs(t) is accessible experi-
mentally as it provides the diagonal contribution to the
a.c magnetic susceptibility, x(w), so that this finite time
scale should show up as a characteristic frequency.

For the perfect monopole crystal the dynamics are re-
stricted to dimer loop moves [26, 47] if the system is to
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FIG. 4. (Color) Simulated unpolarised neutron scattering structure factors, S(Q) for the pyrochlore monopole crystal (left)
and for in-plane scattering from kagome ice (right). The pyrochlore S(Q) has been calculated by averaging over 2000 distinct

monopole crystal ground states of a lattice with L = 8.

In order to reveal the diffuse scattering the Bragg peaks in the

pyrochlore data are plotted as contours in grayscale superimposed on the contribution to S(Q) from the dipolar field. The
wavevector @) is in units of 2w /ap where ap = 4a/ V/3 is the lattice parameter of the cubic unit cell of the pyrochlore lattice.

The kagome ice data is taken from [35].

remain on the ground state manifold. Single spin-flip dy-
namics lead to excitations away from these ground states,
initially by monopole pair annihilation. In region I, single
spin-flip dynamics are dominated by needle flips that de-
stroy and recreate nearest neighbour pairs. Short lived
excitations of this kind collectively displace the fictive
dimer positions approximating to the loop dynamics of
dimers (Appendix D). The energy scale for an isolated
excitation of this kind, dU ~ —ua + 21 goes to zero at
the ground state phase boundary allowing for extensive
local dynamics in this region. Hence for M, close to unity
the system is ergodic, while at the same time retaining
Coulomb phase correlations.

We now turn to an important consequence of the
field fragmentation for the interpretation of experimen-
tal data. The fluctuating background of the Coulomb
phase appears to obscure the phase transition from bulk
magnetic measurements. In Figure 6(a) we show the
magnetic susceptibility, x, as a function of temperature
for different values of p*. At this level of analysis the
susceptibility is virtually featureless through the transi-
tion, showing no evidence of the characteristic cusp that
one might expect at an antiferromagnetic transition in
an Ising system. As one moves towards the tri-critical
point a very weak feature does appear, driven by the huge
monopole density change as the system passes through
the transition, however the unusual characteristic (for a
magnetic phase transition) of being virtually transparent
to the bulk susceptibility, remains essentially intact. A
more detailed analysis of the susceptibility does however
yield interesting information. It was recently shown that
spin ice models show a crossover in the Curie constant,
C, as the system moves from the uncorrelated high tem-

perature phase to the low temperature Coulomb phase
[14, 48, 49]. Tt was demonstrated that taking the needles
as scatterers of unit length gives rise to a crossover from
C =3Txy =1t C = 2. A similar Curie law crossover
is observed in the current work, as shown in Figure 6(b),
where C' is seen to evolve from 4/3 at high temperature,
as expected for a paramagnetic 14 vertex model, to a
value C' ~ 3/2 on entering the monopole crystal phase
and again to C' = 2 on entering the constrained monopole
vacuum. The change from a second to a first order tran-
sition can clearly be seen from this evolution. In the
first order region, C' evolves above 3/2 as the monopole
density drops in the fluid phase, before falling discontin-
uously at the transition onto the 3/2 plateau.

IV. RELATION TO EXPERIMENT

One of our goals has been to construct a minimal
model, based on spin ice, in which monopole order can
be shown to coexist with (Coulomb phase) spin liquid
physics. Spin ice is a central pillar in the ever expanding
field of frustrated magnetism. More generally, models
of, and experiments on, systems based on pyrochlore and
kagome lattices have resulted in a wealth of often puzzling
results stemming from inherent geometrical frustration.
We propose our model as a step towards answering some
of these questions. The rest of this paper is dedicated
to the consideration of experimental systems in relation
to our model and its effects, including rare-earth oxides,
spin ice candidates, artificial spin ice and the use of mag-
netic fields to induce a staggered chemical potential for
magnetic charge.
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FIG. 5. (Color) Charge and spin autocorrelation functions
for p* = 0.57 (top) and p* = 0.41 (bottom) for T = 0.20.
The dotted line in each plot indicates the asymptote at
Cs(t = o0) = 1/4. The time required for the autocorrela-
tion function to reach its long-time asymptote is significantly
greater at u* = 0.41 than at p* = 0.57. This is indicative of
a slowing of the dynamics as the monopole density increases.
As p* increases, n decreases (see Fig. 2(b)) and the t = oo
asymptote of Cs(t) is slightly reduced relative to the value
for the ideal monopole crystal. We note that both panels
correspond to points far into region I.

A. Magnetic field

An external magnetic field couples to both the
monopoles and to My providing a gradient to the chem-
ical potential, inducing transient monopole currents and
ordering the dipolar field (the two processes being inti-
mately related [11, 14, 46, 50]). Applying a field in the
[111] direction imposes kinetic constraints to monopole
movement, restricting them to planes perpendicular to
the field direction. In this scenario, the field constitutes
a staggered chemical potential, breaking the Z; symme-
try between the two sub-lattices, allowing experimental
access to monopole crystallization [11]. This corresponds
to the first order phase transition observed as spin ice
materials leave the plateau region of the (E ,T) phase di-
agram. The corresponding phase boundary terminates
at a critical end point, (Bc,Tc) [51]. If one were to start
from the charge ordered Coulomb phase in zero field, an
external (111) field would couple uniquely to Myg. The
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FIG. 6. (Color) (a) Magnetic susceptibility x as a func-
tion of reduced temperature T* for chemical potential p* =
0.33(+),0.65(%),0.784(A),0.794(1)) < «/2, where « is the
Madelung constant. The inverse susceptibility is plotted in
the inset on a log-log scale.

(b) Curie law crossover 3xT vs T (same color labeling with
two additional values of p* = 0.801(H),0.98(c) > «/2). The
dashed lines are theoretical expectations for the spin liquid
Curie law prefactor C of the Coulomb phase (C' = 2) and the
singly charged monopole fluid (C' = 4/3), while the one for
C = 1.52 is a guide to the eye. Equilibration has been ensured
down to T' = 20 mK (7™ = 0.007) by the worm algorithm (See
Appendix B for more details).

system would then order via a three-dimensional Kaste-
leyn transition in complete analogy with that in two di-
mensions, driven by tilting the field off the (111) axis
[52]. An external magnetic field can also stabilize single
charge monopole in ThoTi;O7 [53].

B. Spin ice candidates

Experimental relevance in zero field is a more open
question. The chemical potential can be reduced within
the confines of classical spin ice by reducing the lattice
parameter, as is the case for the material Dy2GesO7 [54].
Here the monopole number certainly increases but their



proliferation is accompanied by the generation of dou-
ble monopoles with charge +£2@Q. Close to the spin ice,
all-in-all-out phase boundary the energy, entropy balance
of the monopole crystal could possibly stabilize it ahead
of either the monopole fluid, or the fully ordered double
monopole crystal and it would certainly be interesting
to study this problem both numerically and experimen-
tally through high pressure experiments or further sub-
stitution of smaller ions. Replacing germanium with sili-
con is, for example, a challenging possibility [55]. A fur-
ther route to stabilization could be quantum fluctuations
[24, 56, 57]. For systems close to the spin ice — antiferro-
magnetic phase boundary [13] one might hope that zero
point fluctuations of the fragmented dipolar field could
stabilize the monopole crystal over the classical all-in-all-
out spin structure or the spin ice manifold [27, 28]. This
situation would require both transverse spin fluctuations
and dipole interactions between the moments, allowing
the chemical potential to vary while permitting pertur-
bative quantum spin fluctuations about the local (111))
axes of spin ice. Another possibility is the generation of
a staggered monopole chemical potential through a dis-
tortion of the lattice structure and the breaking of the
crystal electric field symmetry. Lifting the doublet de-
generacy corresponding to the Ising like spin ice degrees
of freedom in an ordered manner could thus lead to a
perturbation that couples to monopoles but not to the
dipolar field, favouring monopole crystallization.

C. Tb.Ti,O7

Fifteen years of intense research have made ThyTisO7
one of the most intriguing rare earth frustrated magnets,
sitting somewhere between a spin liquid [58] and quan-
tum spin ice [59] - or maybe spanning both. It is this dual
nature that makes it an interesting study case for mag-
netic moment fragmentation. ThoTisO7 has a negative
Curie-Weiss temperature, Ocw = —14 K [60]. As such it
can be considered as an antiferromagnet and numerical
simulations of the corresponding dipolar spin ice model
give a phase transition to the all-in-all-out state at 1.2
K [13]. At ambient pressure it fails to develop magnetic
order down to at least 50 mK [61]. Recently, diffuse neu-
tron scattering from single crystal samples have exposed
pinch point scattering patterns indicating the presence
of Coulomb phase correlations [62, 63], albeit somewhat
deformed compared with those observed for classical spin
ice materials [17].

This picture is however very sensitive to perturbations.
Under high pressure the liquid-like phase transforms into
a partially ordered structure where each vertex has one
spin along a spin ice axis and three collinear spins [64].
Vertices on the two diamond sub-lattices have spin con-
figurations with mirror symmetry and the ordered state
coexists with a fluctuating magnetic background. There
is also evidence that a small magnetic field imposed
along the [111] direction induces weak all-in-all-out order

leading to the material being described as an “incipient
ATAO antiferromagnet” [65]. A strong field in the [110]
direction stabilizes a double-layered structure of singly
charged monopoles [53, 66]. Recent experiments on poly-
crystalline samples have also shown that a very small
amount of Th3t stuffing produces a yet unexplained
long range order, accompanied by weak antiferromag-
netism [67]. Finally, both strong magneto-elastic cou-
pling linked to quantum spin liquid behaviour [68, 69] and
splitting of the single ion ground state doublet [63, 70-72]
have been reported.

It would be naive to suggest a quantitative connection
between the rich behaviour of ThyTisO7 and the sim-
ple classical model presented here, but at a qualitative
level the similarities are striking. In the monopole crys-
tal phase the model is an antiferromagnet with Coulomb
phase correlations. Placing it in the fluid phase but
close to the monopole crystal phase boundary, one could
have residual pinch point correlations from the underly-
ing gauge field emanating from the correlated monopole
fluid. Higher pressure could then send the system over
the line into the crystalline state through a modification
of the chemical potential [73, 74]. The experimentally
observed spin configuration in the high pressure phase
is quite different from the three-in-one-out spin ice ver-
tices of the monopole crystal, but it does share the same
two sub-lattice structure, to which one would have to
add transverse spin relaxation off the spin ice axes. The
background of magnetic fluctuations is consistent with
the fluctuating dipolar degrees of freedom, My. The in-
cipient, or partial, all-in-all-out behaviour in the presence
of a field along [111] is exactly what one would expect of
our model when sat close to the monopole crystal phase
boundary. As for the influence of the [110] field, since
it does not give rise to monopoles at very low tempera-
ture in single crystals of HooTiaO7 or Dy Ti2O7 [75, 76],
the double layer structure of monopoles observed in
TbaTizO7 is a strong indication that such singly charged
monopoles can be stabilized via internal couplings, even
if the microscopic mechanism remains unknown. Spin-
lattice coupling could be particularly relevant in this con-
text [53, 77].

Turning to dynamics, the freezing observed in
ThyTiaO7 [61, 78, 79] only involves a fraction of the
spins (210%) and has been shown to be different from
spin glass physics [79]. Such partial spin freezing seems
consistent with magnetic moment fragmentation where
only a fraction of the degrees of freedom order; the pre-
cise value of this fraction could then be mediated by
quantum fluctuations. Hence, while microscopic mod-
eling of ThoTisO7 is beyond the scope of this paper,
we do propose magnetic moment fragmentation as a
promising route to understanding apparent co-existence
in this material of antiferromagnetism with the fluctu-
ating Coulomb phase physics of a frustrated ferromag-
net [62].



D. Other materials

A second quantum spin ice candidate is YbyTisO7,
[56, 80]. This material, with a Curie-Weiss tempera-
ture estimated at around 600 mK [81], shows an unusual
phase transition at 200 mK, [82] with apparently no
accompanying magnetic order [82, 83] and magnetic di-
mensional reduction [84] in the high temperature phase.
There are, however, reports of a (partial) ferromagnetic
ordering [84, 85] at ~ 400 mK. The magnetic anisotropy
in YbyTipO7 was initially considered to be XY like [82]
but more recent analysis has suggested that it could in
fact be considered as a spin ice with the low temperature
behaviour experimentally close to a quantum spin liquid
[56, 80]. Within this context, a quantum spin liquid —
classical spin gas transition has recently been proposed
[86]. With such complex behaviour and sample depen-
dence [87, 88], a quantitative understanding requires a
detailed microscopic approach [56, 80, 89]. That being
said, the joint features of a low temperature magnetically
fluctuating phase and the presence of a phase transition
which is partially transparent to magnetic probes is not
unlike the fragmentation-driven transition in this paper
and the concepts developed here could be of use in un-
derstanding this complex material.

The understanding of ThoSn,O7 also remains incom-
plete. This material orders in a ferromagnetic structure
with spins canted off the local spin ice axes [90, 91], as
predicted by combining dipolar interactions and spin re-
laxation [92]. However, the ordering is accompanied by
an, as yet unexplained fluctuating magnetic background,
while the correlations above the transition appear to be
antiferromagnetic. Although the details will almost cer-
tainly be different, magnetic moment fragmentation does
seem to be at play here and the concept could be of use
in understanding this ordered yet fluctuating system.

E. Artificial spin ice

There are immediate experimental consequences for
our results for charge ordering in two dimensions. We
have shown here that the KII phase on a kagome lattice,
which was previously believed to be magnetically disor-
dered, actually has partial all-in-all-out order (equation
5). Crystallites of the KII phase have recently been real-
ized in permalloy nano-arrays with a honeycomb struc-
ture [93]. A simulated neutron scattering analysis of the
dipole orientations of the sample should therefore yield
Bragg peaks of reduced intensity, similar to those ob-
served in Figure 4. Artificial spin ice systems could there-
fore provide direct experimental realizations of magnetic
moment fragmentation. The (2,2,0) Bragg peaks char-
acteristic of two-dimensional charge ordering should, in
principle also occur in spin ice materials with field along
the (1,1, 1) direction, although they may be masked by
the field induced magnetic order.

V. CONCLUSIONS

In conclusion we have shown how, through the pres-
ence of singly charged monopoles, a gauge field emerges
from the dumbbell model of spin ice [11] which only par-
tially maps onto the physical degrees of freedom, the
magnetic needles. As a consequence, the intrinsic mo-
ments fragment into two parts. The first satisfies the
discrete Poisson equation on a diamond lattice giving the
magnetic monopoles, but does not exhaust the magnetic
resources associated with each vertex. What remains
forms an emergent dipolar field which evolves through
monopole dynamics. By varying the chemical potential
for monopole pair creation, one can observe a monopole
crystallization transition, below which the gauge field
provides a fluctuating and ergodic magnetic background
with Coulomb phase correlations. An analogous descrip-
tion exists for magnetic charge ordering in the KII phase
of magnetic needles on a kagome lattice.

Order, or partial freezing in the presence of a fluctuat-
ing magnetic background is a recurring phenomenon in
frustrated magnetism (see for example [65, 82, 90, 94,
95]). Here the magnetic moment fragmentation leads
naturally to persistent spin fluctuations within a purely
classical model based on spin ice physics. These back-
ground fluctuations mask the magnetic phase transition
from view in susceptibility measurements, a phenomenon
which can also occur in experiments on rare earth py-
rochlores [84, 96, 97]. It will be interesting to see if this
concept of partial emergence can provide a more generic
mechanism for persistent spin fluctuations in other sit-
uations. Finally, recent studies of quantum spin ices
[24, 98, 99] have revealed a complete model for quan-
tum electrodynamics (QED) with magnetic monopoles,
conjugate electric poles and photon excitations. Includ-
ing magnetic moment decomposition within this model
for QED opens the possibility for new levels of fraction-
alization, such as fractional charge and spin-charge sep-
aration.
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Appendix A: The Coulomb Physics of Spin Ice

The dipolar spin ice Hamiltonian can be written (see
ST of [11]), within the dumbbell approximation as

1 Qi 1
H7H0:§ZM+ w0 Q2

4mri; 2 (A1)
where @Q); is the total magnetic charge on diamond lattice
site 7 and vg is an on-site term whose value is calculated
from estimating spin flip energies in the dipolar model.
Hj is the ground state energy for a Pauling state within
the dumbbell approximation, Hy = —(No/2)vo@?, with
@ = 2m/a the monopole charge. The ice rules and their
consequent violation impose that @Q; = 0, £Q, £2Q only
and the diagonal term provides the chemical potentials
for both singly (1) and doubly charged (p2) monopoles:

1 2
§’UQ ZQZ = _,U/N - M2N27 (A2)

where 1 = —v9Q?/2, 2 = —2v0Q? and where the num-
ber of single and double monopoles are N and Ny re-
spectively. The sketch below illustrates the energy scale
taking a single vertex, or diamond lattice site from a two-
in-two out ground state, to a three in- one out monopole
and finally to an all-in or all-out double monopole.
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_ Neglecting the double monopoles, the internal energy,
U = Ugc — pN and we have the lattice Coulomb gas
studied in the main text.

This analysis shows that both the chemical potential
and the Coulomb energy scale by a factor of 4 when mov-
ing from single to double monopoles. Hence the zero
temperature phase transition from monopole vacuum to
monopole crystal, equation (3), holds for both single and
double monopole crystals, giving in both cases

_ Mo
Ama’

" (A3)
Below this threshold, if both species are present, the ex-
cess Coulomb energy of the double monopoles wins, en-
suring the predicted all-in-all-out ground state outside
the classical spin ice phase.

One can use the monopole crystallization as a criterion
to estimate the position of the spin ice phase boundary:
following [11]

v Q* 2J 8 \/5
= =—|—=+:|1 = |D A4
ul == l 5 T3l1ty3 (Ad)
where J is the nearest neighbor (antiferromagnetic) ex-

prom?®
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change constant and D = is the strength of the
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dipole interaction between the moments of dipolar spin
ice. The Coulomb interaction between nearest neighbor

monopoles can be written |u(a)| = g\/gD, so that equa-

tion (3) becomes

2J 8 2 a8 [2
21 Z|D===4/=D A5
3 +3< + 3) 23\/; ’ (45)
and hence
Jn 4 2 « o
St \/; (1 _ 5)] — 0918,  (A6)

where J,, = J/3 and D,,, = 5D/3. This Coulomb
gas estimate is in excellent agreement with numerical
estimates for dipolar spin ice. Melko et al [32] find
Jnn/Dnn = —0.905 with hysteresis down to Jy,/Dpp =
—1, the origin of the difference being the small band
width for the Pauling states which is neglected in moving
to the magnetic charge description.

In the present paper the double charges are suppressed
leading to the monopole crystal with finite zero point en-
tropy and magnetic moment fragmentation. In model
spin ice, any perturbation which displaces the equality,
e = 4p in favor of single monopoles will generate the
monopole crystal phase in a band between the spin ice
and the double monopole crystal phases. It is possible
that the phase could be stabilized near this phase bound-
ary, by quantum fluctuations [100], thermal fluctuations,
or a staggered, sub lattice dependent chemical potential.
This point is addressed further in section IV B, where we
discuss the relevance of our work to experiment.

Appendix B: Simulations

The numerical results in this paper were obtained by
simulating the dumbbell model [11], equivalent to a gas
of singly charged magnetic monopoles. The energy scale
of the Coulomb interactions was entirely determined by
u(a), the energy scale for nearest neighbour monopoles.
The chemical potential p* is then a free parameter.

Three variants of Monte Carlo simulations were em-
ployed: (i) single spin-flip Metropolis update (SSF), to
reproduce the local dynamics relevant for classical spin
ice materials such as Dy3TioO7 and HooTiaO7 (used for
the results in Figs. 3 and 6); (ii) joint dynamics of SSF
and a worm algorithm specifically designed for the cur-
rent model (used for the results in Fig. 5; see below for
more details on the worm algorithm); (iii) SSF with worm
updates and parallel tempering [101] (used for the results
in Fig. 2).

The results presented in Figure 3 were obtained us-
ing a system comprised of 8L? = 1000 diamond lattice
sites where L = 5 is the number of cubic unit cells in
each spatial dimension. The system was equilibrated over
teqg = 10* Monte Carlo Steps per diamond lattice site
(MCS/s) with data collected over a further 10> MCS/s.



For the results in Figure 6, we used a system with
L =7 (Ny = 2744) with t.q = 10* MCS/s (for both val-
ues of p*) after which observations of the autocorrelation
function were made every MCS/s for a total of 2.5 x 10*
MCS/s (u* = 0.57) and every 100 MCS/s for a total
of 105 MCS/s (u* = 0.41). Each point on these plots is
the result of averaging over 100 consecutive observations.
The density of monopoles, n, in equation (5) was chosen
as that at ¢t = 0.

Figure 5 shows data obtained for a system with L = 4
(Nog = 512). After annealing from high temperature
to the temperature T of interest over a period of 10°
MCS/s, the system was equilibrated at temperature T
for a further toq = 105 MCS/s prior to the data collection
period lasting 10° MCS/s during which observations
were made every 10 MCS/s. Fifty worm updates were
performed every 10 MCS/s to facilitate thermalization.
We ran six independent simulations for each value of the
parameter p*; the error bars are the standard deviations
of these six samples at each temperature. Similarly, for
the data in Figure 2, the parameters are L = 8, toq = 10*
MCS/s, with an observation period of 10> MCS/s and
averaging over 4 independent simulations. Again, 50
worm updates were performed every 10 MCS/s; 100
different temperatures between 0.2 and 0.6 K were used
for parallel tempering.

1. Worm algorithm

In the absence of interactions between particles, the
free energy of a system in the grand canonical ensemble
only depends on the density of charges. With the addi-
tion of Coulomb interactions the free energy also depends
on the position of the charges. Hence an update which:

e does not modify the number of charges or their po-
sitions and

e respects detailed balance, i.e. has the same proba-
bility flux to be formed and erased,

will necessarily be rejection-free. In the absence of dou-
ble charges, if we randomly choose an initial tetrahedron
and spin (say pointing “in”), it will always be possible
to move forward and start a worm by flipping an “out”
spin on the chosen tetrahedron. The number of “out”
spins can be 1 (three-in-one-out), 2 (two-in-two-out) or 3
(three-out-one-in). Given that these choices remain the
same irrespective of whether the worm is being created
or destroyed, detailed balance is obeyed. When the worm
closes on itself, it can be flipped at no energy cost whilst
respecting detailed balance; the update can be accepted
with probability 1. The strength of this algorithm is that
it is rejection free in the Coulomb phase (two-in-two-out),
the dimer covering of the diamond lattice (alternating
three-in-one-out and three-out-one-in) and for all densi-
ties of monopoles in between.
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This worm algorithm could also be developed for the
dipolar spin ice model [13]. In this case an additional
global Metropolis argument would be needed to take into
account the degeneracy lifting between states due to cor-
rections of quadrupolar order when the needles of the
dumbbell model are replaced by point dipoles on the
nodes of the pyrochlore lattice.

Appendix C: Field distributions

As an example of magnetic moment fractionalization
in the monopole fluid phase, we show, in Figure 7, two
isolated neighbouring north poles on a square lattice. It
is useful to consider this case (even though we do not
consider in detail the dumbbell model on a square lattice
[36] in this paper) as the fields can be easily visualized.
Starting at 9 o’clock and turning clockwise the fields for
sites 1 (on the left) and 2 (on the right) can be decom-
posed as follows:

[Mij]1 (%) =(-1,-1,1,-1) (C1)

*1101+0111
7727’2 ’27’27

Myla () = (~1.-1,-1,1) (C2)

1 1 13
=(0,—=,-1,—= -1,-=,0,2
<0’ 2’ ) 2> +< ) 270’2>7

where in each case the first term and second terms are the
contributions to the divergence-full, M,,, and divergence-
free, My, fields, respectively.

Appendix D: The dynamics of dimer flips

Single spin-flip Metropolis dynamics below the crystal-
lization transition are dominated by needle flips that cre-
ate and destroy north-south monopole charges. In Figure
S8 we show a typical sequence of moves for the monopole
crystal phase on a square lattice. In the first instance
the vertical needles flip independently, thus destroying
the two neutral pairs of monopoles and re-establishing
the ice rules on the four vertices of the square plaquet.
These moves are followed by flipping of the horizontal
needles which re-establishes locally the monopole crystal.
A net consequence of such a sequence is to flip the fictive
dimers from a horizontal to a vertical arrangement, as in
a dimer loop move [26]. Similar sequences occur for the
pyrochlore and kagome lattices considered in this article,
for which the shortest loop is a hexagon comprised of six
needles, or, equivalently, three dimers.
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FIG. 7. (Color) Divergence-full and divergence-free field distributions for two isolated nearest neighbor north poles (particle 1
on the left and 2 on the right) for the dumbbell model on a square lattice. Each chevron corresponds to a magnetic moment
field strength of m/2a and a dotted line to zero field strength. The blue circles represent north poles of charge 2m/a.

FIG. 8. (Color) A sequence of Metropolis updates in the
monopole crystal phase of a dumbbell model on a square lat-
tice. The grey ellipses show the fictive dimer positions and
the blue and red circles signify north and south poles respec-
tively. The chevrons shows the needle orientations along the

bonds. The sequence of moves simulates a hard core dimer
flip on a square plaquet.

Appendix E: Finite-Size Scaling

The susceptibility of the monopole crystallization or-
der parameter is defined as
_ <Mc2> — <Mc>2 (El)
Xe = e
In order to characterize more quantitatively the nature
of the phase transitions, we performed finite size scaling

on the maxima of the specific heat C}, and susceptibility
Xe, plotted in Figure 9. As explained in the paper, two
regimes clearly appear. The transition is continuous up
to a tri-critical point at pf. = 0.78 4 0.01 where it be-
comes 1% order before disappearing for g* > 0.80040.05.
Our simulations suggest the continuous transition line to
be of the 3D Ising Universality class — consistent with a
Debye screening of the long range interactions — however
distinguishing between Ising and mean field exponents is
a difficult task [33] which would require further numeri-
cal and/or theoretical effort.

The discontinuity of the order parameter in Figure 2
of the main text strongly supports the 15% order nature
of the phase transition, but its quantitative signature in
finite size scaling is rather challenging. That is, the di-
verging correlation length either side of the tri-critical
point could lead to over estimates of pf, and T;.. The 15¢
order regime in our system occupies only a small region
of parameter space making it difficult to separate first
order from tri-critical behaviour. Increasing the system
size beyond the correlation length rapidly becomes very
time consuming — the long range nature of the Coulomb
interactions makes the CPU time scale as L®. This com-
putational cost is compounded by the relative inefficiency
of the parallel tempering algorithm for 15 order transi-
tions, especially in large systems. Nonetheless, it has
been possible to show a sharp increase of the scaling ex-
ponents close to the low temperature phase boundary,
their values approaching those of a 1°* order transition
(see lower panels of Figure 9). In particular, the max-
imum in C), develops scaling behaviour in this region —
close to a/v =3 for L > 4 and p* = 0.796.

An interesting consequence of our theory is the
appearance of critical correlations even in the spin ice
regime where there is no phase transition. In Figure 9,
the green data points (p* = 0.801) are constant for
L > 4, as expected for a spin ice crossover into the
two-in-two-out Coulomb phase. However for very small
systems, both C), and x. seem to scale the same way as
in the 15¢ order region. This suggests that spin ice ma-
terials and models close enough to the low temperature
phase boundary can exhibit correlations inherited from
the monopole crystallization, which should be visible
using local probe such as neutron scattering.
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FIG. 9. (Color) Top: Finite size scaling of the maxima of the specific heat C,, and susceptibility x. of the order parameter M,
as a function of linear system size L, for u* = 0.490 (+), 0.654 (), 0.768 (O), 0.778 (M), 0.784 (o), 0.794 (e), 0.795 (), 0.796
(A), 0801 (:¢). The error bars are the standard deviation o over 4 independent simulation outcomes. Each solid line is the best
fit obtained using “Wolfram Mathematica v9.0”[102], including all data points for a given u* and weighting each data point by
1/02. The dashed line is a guide-to-the-eye for the cubic power law (o< L?) appearing in the 1°° order regime for L > 4.
Bottom: Scaling Exponents ratio a/v and /v as a function of p*. The error bars represent a confidence level of 90%, based
on the statistical uncertainty of the data plotted in the top panels.
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