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LARGE-TIME BEHAVIOR OF SOLUTIONS TO
VLASOV-POISSON-FOKKER-PLANCK EQUATIONS: FROM

EVANESCENT COLLISIONS TO DIFFUSIVE LIMIT

MAXIME HERDA AND L.MIGUEL RODRIGUES

Abstract. The present contribution investigates the dynamics generated by the two-
dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady in-
homogeneous background of opposite charges. We provide global in time estimates that
are uniform with respect to initial data taken in a bounded set of a weighted L2 space,
and where dependencies on the mean-free path τ and the Debye length δ are made ex-
plicit. In our analysis the mean free path covers the full range of possible values: from
the regime of evanescent collisions τ Ñ 8 to the strongly collisional regime τ Ñ 0. As a
counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is
used to close our nonlinear estimates. Accordingly we pay a special attention to relax as
much as possible the τ -dependent constraint on δ ensuring exponential decay with explicit
τ -dependent rates towards the stationary solution. In the strongly collisional limit τ Ñ 0,
we also examine all possible asymptotic regimes selected by a choice of observation time
scale. Here also, our emphasis is on strong convergence, uniformity with respect to time
and to initial data in bounded sets of a L2 space. Our proofs rely on a detailed study
of the nonlinear elliptic equation defining stationary solutions and a careful tracking and
optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.
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1. Introduction

In a periodic boxT2 “ R2{Z2, we consider a large number of charged particles subject to
self-consistent electrostatic forces and interacting with a fixed background of steady heavy
particles with opposite charge as well as a thermal bath. The system can be described at
a kinetic level by a distribution function f : R` ˆ T2 ˆ R2 Ñ R`, pt, x, vq ÞÑ fpt, x, vq
obeying the Vlasov-Poisson-Fokker-Planck (VPFP) system which reads in dimensionless
form

(1.1)

$

’

’

’

&

’

’

’

%

Btf ` v ¨∇xf ´∇xφ ¨∇vf “
1

τ
divv pvf `∇vfq ,

´δ2∆xφ “ ρ´ ρ˚, ρ “

ż

R2

f dv

and is completed with the prescription of an initial data, fp0, ¨, ¨q “ f0.
The number density of background particles is given as ρ˚ : T2 Ñ R` whereas φ :

R`ˆT2 Ñ R is the electrostatic potential satisfying a Poisson equation. Interactions with
the thermal bath are modeled by the Fokker-Planck term at the right-hand side of the first
equation. The characteristic temperature of the bath is scaled to 1. The respective total
charges have also been scaled to 1,

ż

T2ˆR2

f0 “ 1 ,

ż

T2

ρ˚ “ 1 ,

the constraint being preserved by the time evolution.
The parameter τ denotes the scaled mean free path between two "collisions" with the

thermal bath. The scaled Debye length δ measures the radius of electrostatic influence
of an isolated particle. The asymptotics δ Ñ 0 is called the quasineutral limit and the
terminology quasineutral parameter is also used for δ. The quasineutral regime is very
relevant for plasma dynamics. However, for collisionless equations and initial data with
general shape profiles, instabilities are known to arise in the quasineutral limit [35]. Since
we consider general shapes and all Knudsen numbers uniformly in time, we need to remain
far from this complex regime. In particular we allow ourselves to use the largeness of
δ to close nonlinear estimates. While, as we discuss further later on, our strategy may
potentially be extended to any dimension, we anticipate that the precise outcome would
be significantly modified by another dimensional choice therefore we also choose to restrict
ourselves to the two dimensional setting.

The VPFP system, as expounded here or with some variants, including the consideration
of gravitational forces instead of electrostatic forces, has a long history. A derivation of the
model and references to even earlier derivations may already be found in a seminal piece
of work by Chandrasekhar [18]. Concerning the Cauchy problem in two dimensions, first
global well-posedness results were obtained by Neunzert, Pulvirenti and Triolo [51] on R2

for bounded compactly-supported initial data, by the method of stochastic characteristics;
then by Degond [19] for a frictionless version of the system, on R2, forW 1,1 data with finite
moments in velocity of more than second order, by relying mostly on suitable maximum
principles. Since then those results have been extended and improved in various ways
[60, 16, 53].

Our goal is to provide a description of the dynamics of solutions to Equation (1.1) on
every possible time scale, from initial data to exponential convergence towards a stationary

2



state, and in any regime of the collisional parameter τ . We also aim at providing strong
convergence results uniform with respect to initial data taken from bounded sets. Our
normalization already contains }f0}L1pT2ˆR2q “ 1. However to benefit from a Hilbert
structure we shall use a weighted L2 space embedded in L1 instead of L1 itself. Namely we
introduce the norm } ¨ }L2pM´1q defined by

}u}2L2pM´1q “

ĳ

T2ˆR2

|upx,vq|2

Mpvq dx dv

where M is the local Maxwellian

Mpvq “
1

p2πq
e´

1
2 |v|

2

.

The main advantage in this particular weight choice stems from the fact that the Fokker-
Planck operator is symmetric on L2pM´1q. Then we choose f0 ě 0 such that

}f0}L2pM´1q ď R0 ,

where R0 ě 1 is fixed but arbitrary and obtain bounds depending on R0 but not on f0
itself.

As a preliminary observation, note that stationary states pf8, φδ8q are characterized by
$

’

&

’

%

v ¨∇xf8 ´∇xφ
δ
8 ¨∇vf8 “

1

τ
divv pvf8 `∇vf8q ,

´δ2∆xφ
δ
8 “ ρ8 ´ ρ˚ , ρ8 “

ż

R2

f8 dv.

Since the Fokker-Planck operator is symmetric on L2pe´φδ8M´1q and the transport part is
skew-symmetric on this space, if for instance φδ8 is bounded and f8 P L2pM´1q then the
two parts must vanish separately when applied to f8. Therefore f8 is a global Maxwell-
Boltzmann distribution

(1.2) f8px, vq “Mpvqe´φ
δ
8pxq,

and the stationary equations reduce to

(1.3) ´δ2∆xφ
δ
8 “ e´φ

δ
8 ´ ρ˚ .

Concerning the latter, we observe that

Lemma 1.1. For any ρ˚ P H´1pT2q such that
ş

T2 ρ˚ “ 1, for any δ ą 0, Equation (1.3)
possesses a unique weak solution φδ8 P H1pT2q and moreover

ş

T2 e
´φδ8 “ 1.

Our analysis involves a more detailed study of Equation (1.3). Though we have not found
in the literature directly applicable results, the first steps of our analysis of equilibrium states
is however by now essentially standard [29, 23, 20, 28, 21, 14, 26, 25]. It is noteworthy that
the existence of nontrivial stationary states holds for most generalizations of (1.1). To
prevent it, one essentially needs to look either at frictionless versions, where the Fokker-
Planck operator is replaced with a Laplacian in velocity, or at equations on R2 with no
background density ρ˚ ” 0 and no confining potential [28, 21]. Correspondingly, in the
former case, in various perturbative settings, self-similar decay to zero at algebraic rates
has been proven [17, 15, 54, 46].

In [12, 21], Bouchut and Dolbeault prove that in Rd, d ě 3 in presence of a confining
potential, when ρ˚ ” 0, solutions f starting from initial data with finite mass, finite energy,
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finite entropy and such that ∇xφ P L
8
locpp0,8q;L

8pRdqq, converge in L1pR2dq to a global
Maxwell-Boltzmann distribution as time goes to infinity. Their proof is likely to extend
to the case under consideration and our focus is not in reproving such behavior but in
providing uniform bounds in the same space for the solution and the initial data, and
including exponential decay to equilibrium.

Obviously this encompasses asymptotic stability of equilibrium states. For the equation
under consideration, Hwang and Jang [44] have already proved some asymptotic stability
results for the case where ρ˚ ” 1 so that φδ8 ” 0, in a topology requiring pf0 ´ f8q{

?
f8

to be small in H3pT2 ˆ R2q (instead of L2). Note that condition φδ8 ” 0 brings a lot
of exceptional cancellations in the analysis and a considerable part of asymptotic stability
results for similar equations have been so far focused essentially on this case. Our result
contains asymptotic stability in L2 with explicit dependence on parameters of exponential
convergence rates, and arbitrary ρ˚, provided δ is sufficiently large. Though we have not
investigated this track, we anticipate that our strategy of proof would also yield exponential
asymptotic stability in L2 for any fixed δ provided ρ˚ ´ 1 is sufficiently small, in the spirit
of [25]. During the completion of the present contribution, also appeared by Bedrossian
[2] an extension of [44], still with ρ˚ ” 1 and high-regularity weighted L2 spaces (but with
algebraic weights instead of Gaussian ones), to a version of the system where collisions are
more nonlinear and model self-collisions instead of collisions with a thermal bath. More
importantly to us, holding δ fixed, Bedrossian provides a careful study of dependencies on
the parameter τ in the limit τ Ñ8, benefiting both from Landau damping for the limiting
Vlasov-Poisson system [50, 8] and from mixing-enhanced dissipation. This extends to the
full nonlinear regime the former linearized analysis by Tristani [59] and is similar in spirit
to [9, 3, 4, 10, 5] that build on inviscid damping for shear flows of the Euler system [6, 7].

It is important to note however that our nonlinear parameter shall not be the distance of
the initial data to some equilibrium, that is essentially arbitrary here, but the inverse of the
quasineutral parameter. In particular even when ρ˚ ” 1 our set of initial data contains data
that fail to satisfy Penrose stability criterion, that is known to play a crucial role for the
Vlasov-Poisson system both in the large-time limit [55, 33, 50, 8] and in the quasineutral
limit [36]. Though the currently available results [19] concerning the approximation of
solutions to (1.1) by those of the Vlasov-Poisson system are not precise enough to justify
relevant heuristic arguments, this strongly hints at the fact that one cannot benefit from
mixing properties at least initially and that one needs to take δ Ñ8 when τ Ñ8.

Though they do not state it in this precise way, the recent analysis by Hérau and
Thomann [40] proves precisely that for any fixed pτ,R0q there indeed exists a δ0pτ,R0q

such that when δ ą δ0pτ,R0q one may obtain global bounds for the solution, for the version
of the system set on R2, with a confining potential but with ρ˚ ” 0. Our main goal here is
to provide explicit upper bounds for those δ0pτ,R0q. The analysis of Hérau and Thomann
scales badly with respect to τ , due to the anisotropic nature of hypocoercivity/hypoelliptic-
ity. Indeed, their analysis uses directly decay estimates from [38] (see also [39, 37]) for the
linearization about a stationary solution. Yet using those would prevent us from keeping
track of the anisotropic nature of dissipation that helps in improving estimates of δ0pτ,R0q.
Moreover, as we discuss more precisely below — see comments around Propositions 8.2
and 8.3 —, in the limit τ Ñ 0, our optimization of involved hypocoercive Lyapunov func-
tionals differs from what would follow from an optimal treatment of the linearized problem
!
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Main results. Let us state our main results concerning the latter, that we split in cases
including respectively either the strongly collisional regime or the the regime of evanescent
collisions.

Our first result concerns the diffusive regime, namely when τ is small.

Theorem 1.2 (Diffusive regime; τ À 1).
For any τ0 ą 0, any R0 ą 1 and any ρ˚ PW 1,ppT2q, with p ą 2, such that

ş

T2 ρ˚ “ 1, there
exist positive constants θ0 and K such that for any τ ď τ0, any δ ě K p1`R

1{2
0 q,

‚ for any f0 such that

}f0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “ 1 ,

then Equation (1.1) possesses a (unique strong) solution f starting from f0, and it
satisfies for any t ě 0

}fpt, ¨, ¨q ´ f8}L2pM´1q ď K }f0 ´ f8}L2pM´1q e
´θ0 τ t

where f8 solves (1.2)-(1.3);
‚ for any f0, g0 such that

}f0}L2pM´1q ď R0 , }g0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “

ż

T2ˆR2

g0 “ 1 ,

then corresponding solutions f and g satisfy for any t ě 0

}fpt, ¨, ¨q ´ gpt, ¨, ¨q}L2pM´1q ď K }f0 ´ g0}L2pM´1q e
´θ0 τ t .

Note that forcing by ρ˚ induces inhomogeneity in our lower bound on admissible δs.
Our second result concerns the regime of evanescent collisions, namely when τ is large.

Theorem 1.3 (Evanescent collisions; τ Á 1).
For any ε ą 0, any τ0 ą 0, any R0 ą 1 and any ρ˚ P W 1,ppT2q, with p ą 2, such
that

ş

T2 ρ˚ “ 1, there exist positive constants θ0 and K such that for any τ ě τ0, any
δ ě K p1`R

1{2
0 q τ7{15`ε,

‚ for any f0 such that

}f0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “ 1 ,

then Equation (1.1) possesses a (unique strong) solution f starting from f0, and it
satisfies for any t ě 0

}fpt, ¨, ¨q ´ f8p¨, ¨q}L2pM´1q ď K }f0 ´ f8}L2pM´1q e
´θ0

t
τ

where f8 solves (1.2)-(1.3);
‚ for any f0, g0 such that

}f0}L2pM´1q ď R0 , }g0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “

ż

T2ˆR2

g0 “ 1 ,

then corresponding solutions f and g satisfy for any t ě 0

}fpt, ¨, ¨q ´ gpt, ¨, ¨q}L2pM´1q ď K }f0 ´ g0}L2pM´1q e
´θ0

t
τ .
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Some comments are in order. Previous theorems prove that the combination of the
transport term that mixes space and velocity at typical time scale of size 1 with the Fokker-
Planck part that regularizes and dissipates in the velocity variable at time scale τ does
lead to both decay and regularity in all variables, regularization being somewhat implicit
in our statements, but clearly apparent in our proofs. This type of structure is actually
the prototype of systems leading to hypocoercive decay to equilibrium [39, 49, 61, 24,
22, 48] and hypoelliptic regularization [43, 47, 39, 37, 48]. Regularization allows us to
obtain exponential convergence starting from initial data in L2pM´1q and to prove Lipschitz
dependence on the initial data from the norm topology of L2pM´1q to the norm topology
of L8pR`;L2pM´1qq. The latter is somewhat in contrast with the analysis in [34]. The
presence of a constant K (larger than 1) in our exponential decay estimates reflects both
the non purely dissipative nature of the nonlinear system under consideration and, since
we start from L2 initial data, our use of regularizing effects. Indeed, to state it in technical
words, the dissipations of functionals involved in our proofs need some time to control
enough regularity to prevent the nonlinearity from inducing some norm growth.

Real part of eigenvalues of the toy
model vs. τ , in logarithmic scale.

The dependence of decay rates in the colli-
sional parameter τ also stems from the multi-scale
anisotropic behavior of the system. As a simple but
enlightening toy model consider the system of two
ordinary differential equations

X 1ptq “ V ptq
V 1ptq “ ´Xptq ´ τ´1V ptq

that mixes X and V at scale 1 and dissipates explic-
itly V at scale τ , mimicking respectively transport
and collisions. For the toy model one readily checks
that the rate of exponential decay to zero behaves
as 1{p2τq in the limit τ Ñ 8 and as τ in the limit
τ Ñ 0`. This is consistent with our results for (1.1).
Also note that our decay rates are directly related to

the spectral gap of self-adjoint operators ´τ ∆x ´ τ´1 divv pv ¨ `∇v¨q on L2pM´1q, that
exhibit the same asymptotic behaviors.

To comment on constraints on δ, let us start with a deliberately oversimplified analogy.
Retaining from the foregoing discussion only decay rates and assuming that regularity is not
an issue leads to the consideration of scalar differential equations y1ptq “ 1`yptq

δ2
yptq´ τyptq

when τ À 1 and y1ptq “ 1`yptq
δ2

yptq ´ 1
τ yptq when τ Á 1, the forcing by y{δ2 modeling

in particular the effect of the inhomogeneity of ρ˚. For those equations the ball of center
zero and radius R0 is uniformly attracted to zero respectively when δ ą

?
1`R0 τ

´1{2 and
when δ ą

?
1`R0 τ

1{2. Though those equations fail to provide relevant predictions for
our system, they give an idea of the kind of conclusion that can be drawn when one first
derives bounds for the semi-group evolution, without tracking anisotropic dependences in
parameters, and then uses them at the nonlinear level. In the regime where τ À 1 it is
obvious that the foregoing scalar equation is way too pessimistic to be relevant since it
overlooks the dissipation in v at rate τ´1 that helps to bound any term that involves a
derivative in v, including all contributions from the electric field, hence all nonlinear terms
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! It is a bit more surprising that it also fails to predict an accurate threshold in the limit
τ Ñ8.

It may be worth stressing that the necessity to impose δ Ñ 8 when τ Ñ 8 is a short-
time/nonlinear constraint and that for the evolution linearized about f8 one may obtain
uniform estimates assuming only that δ is large uniformly with respect to τ P p0,8q. This
follows directly from Proposition 8.2 and contrasts with Proposition 8.3.

To try a comparison with previous analyses involving an explicit discussion on the
parameter τ , let us extrapolate that when ρ˚ ” 1 our constraint could be turned into

}f0 ´ f8}{δ
2 ď Kε minp1, τ´p

14
15`εqq for any ε ą 0 and some K, where } ¨ } is a suitable

norm. As already pointed out, in the limit τ Ñ 8 this compares unfavorably with the
recent analysis of Bedrossian [2] that only requires }f0 ´ f8} ď Kδ τ

´1{3 (with a norm
encompassing strong regularity however) when τ À 1, and whose cornerstones are Landau
damping and mixing-enhanced dissipation — a priori not available in our context — that
leads to a dissipation in τ´1{3, instead of τ´1, for inhomogeneities in the x variable. In
the limit τ Ñ 0 it would compare however favorably with the analysis by Jin and Zhu [45],
that also appeared during the finalization of the present contribution and that requires
}f0 ´ f8}{δ

2 ď K τ when τ À 1 (in a norm also requiring strong regularity of the initial
data). In particular their result does not allow to take limits when τ Ñ 0 for a fixed non-
trivial pair pf0, δq. However, for precision’s sake let us mention that the primarily focus of
[45] is on quantifying propagation of uncertainty in the initial data.

Now we turn to asymptotic regimes. In the diffusive regime, constraints on δ are uniform
with respect to τ . Therefore for any sufficiently large fixed δ one may examine model
reductions in the limit τ Ñ 0. Those depend on the typical time scale chosen to observe the
solution. Therefore we introduce an observation time tref ” trefpτq and scale f accordingly
to obtain fref through frefpt, x, vq “ fptref t, x, vq. The following diagram may help the
reader to visualize remarkable time scales appearing in our last main result.

trefpτq
pvq

|
τ

pivq piiiq
|

1{τ

piiq piq

Frozen
initial data Asymptotically thermalized regimes

Asymptotically free-field
linear regimes

Asymptotically
steady regime

Nonlinear low-field

Fokker-Planck
Homogeneous

regime

|

0
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Theorem 1.4 (Diffusive limits; τ Ñ 0).
Let us denote frefpt, x, vq “ fptrefpτq t, x, vq the rescaled solution provided by Theorem 1.2.

(i). With K depending only on R0, ρ˚ and τ0, there holds for any t ě 0 and τ ď τ0

}frefpt, ¨, ¨q ´ f8p¨, ¨q}L2pM´1q
ď K }f0 ´ f8}L2pM´1q e

´θ0 trefτ t

so that, in L2pM´1q, uniformly with respect to times t taken in compacts of p0,8s,

frefpt, ¨, ¨q
τÑ0
ÝÑ f8

provided trefpτq τ
τÑ0
Ñ 8.

(ii). When trefpτq “ τ´1, with K depending only on R0, any ρ˚ PW 2,ppT2q, with p ą 2,
and τ0, there holds for any τ ď τ0

}fref ´ ρrefM}L2pR`;L2pM´1qq
ď K τ }f0 ´ f8}L2pM´1q

τÑ0
ÝÑ 0

with ρref “
ş

R2 frefp¨, ¨, vqdv, and, in L8pR`;L2pT2qq,

ρrefpt, ¨, ¨q
τÑ0
ÝÑ ρas

where ρas P L
8pR`;L2pT2qqXL2pR`;H1pT2qq is the unique strong solution to the

drift-diffusion equation

(1.4)

#

Btρas ` divxpEas ρas ´∇xρasq “ 0 ,

Eas “ δ´2∇x∆´1
x pρas ´ ρ˚q ,

starting from ρ0 “
ş

R2 f0p¨, vqdv P L2pT2q.
(iii). In L2pM´1q uniformly with respect to times t taken in compacts of p0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ ρ0M

with ρ0 “
ş

R2 f0p¨, vqdv provided trefpτq τ
τÑ0
Ñ 0 and trefpτqτ´1

τÑ0
Ñ 8 .

(iv). When trefpτq “ τ , in L2pM´1q, uniformly with respect to times t taken in compacts
of r0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ fFP

where fFP is the unique strong solution to the homogeneous Fokker-Planck equation

(1.5) BtfFP “ divvpv fFP `∇vfFPq ,

starting from f0.

(v). In L2pM´1q, uniformly with respect to times t taken in compacts of r0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ f0

provided trefpτqτ´1Ñ0 when τ Ñ 0 .

Note that our Lipschitz dependence on initial data also allows us to replace the fixed
initial data of the previous theorem with a τ -dependent family converging to f0 in L2pM´1q

as τ Ñ 0.
In this theorem we prove strong convergence in each particular regime. In the asymptoti-

cally steady regime (i) we prove exponential convergence to the global Maxwellian uniformly
8



with respect to f0. Here uniformity in time necessarily excludes a neighborhood of initial
time since the asymptotic limit loses any trace of the initial data. Likewise, in regimes (ii)
and (iii) part of the initial data is asymptotically lost so that uniformity near initial time
may hold for the asymptotics of ρref but not for fref. There is a threshold trefpτq “ τ´1

between asymptotic regimes where nonlinearity due to field effects play a role ((i) and (ii))
and the asymptotically field-free linear regimes ((iii), (iv) and (v)). For the latter regimes,
moreover, the macroscopic density ρ is asymptotically stuck to its initial data, which pre-
vents uniformity in time to hold up to infinite time. Actually those three regimes may be
understood via the fact that solutions are asymptotically close to the family of solutions rf
to homogeneous Fokker-Plank equation

τ

trefpτq
Bt rf “ divvpv rf `∇v

rfq ,

starting from f0. As for the foregoing linear case, our proof does provide convergence rates
for those three asymptotically linear regimes when one assumes more regularity on initial
data.

At the threshold (ii) appears the most interesting limit, known as the low-field, para-
bolic or diffusion limit1. Here the asymptotic dynamics for ρref is non-linear and capable
of connecting initial data to large-time equilibrium, resulting in estimates uniform with
respect to time in r0,8s. Note moreover that System (1.4) inherits the same properties of
exponential convergence and uniform stability with respect to initial data as (1.1). As for
the large-time limit, our main goal here is not to prove that the limit holds but to provide
strong convergence in the same L2 space where the initial data is taken and uniform in
time. Indeed the present limit has been extensively investigated over the years, with first
results obtained by Poupaud and Soler [56], then improved by Goudon [30] and extended
to higher dimensions [27] and multiple-species dynamics [62, 41]. In particular, for various
variants of (1.1), the limit is known to hold for initial data with finite mass, finite energy
and finite entropy (plus one moment in velocity when the system is set on R2). Yet the
convergence of ρ proved there is local in time and only weak in the spatial variable, that is,
it is proved in L8locpp0,8q;L

1 ´ weakq. In particular those convergence results cannot be
used to transfer the large-time behavior of the limiting (1.4) to the original (1.1). In con-
trast, assuming here that δ is sufficiently large, uniformly with respect to τ , we prove that
the convergence of ρref holds in L8pR`;L2pT2qq assuming that f0 P L2pM´1q. Moreover,
as for asymptotically linear regimes, assuming more regularity on the initial data, our proof
also provides uniform convergence rates.

Perspectives. To conclude this introduction, we draw now a few perspectives.

Optimality. Probably the most interesting question left open by our analysis is the question
of optimality of the constraint on δ. Unfortunately our analysis provides almost no hint
concerning possible scenarios for transient growth without bound on bounded sets of initial
data.

Higher dimensions. Our strategy, consisting mainly in optimizing in parameters classical
hypocoercive/hypoelliptic estimates, is robust enough to be adapted to most situations,
with different outcome however, the optimization requiring a case-by-case analysis. It is
important to note yet, that, in dimension 3, our analysis would not allow us to start

1In contrast we use the term for any limit corresponding to sending the diffusive parameter to infinity.
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from L2 initial data. This is due to insufficiently strong regularization mechanisms. To
give a few insights, hold in mind that as encoded in our functionals, regularization of one
space derivative costs initial blow-up t´3{2 and of one velocity derivative costs t´1{2 blow-
up, that E is one derivative smoother than h in spatial variables, and that HspTdq is
embedded in L8pTdq provided s ą d{2. By using these elements an analysis that would
treat E ¨A˚h as a perturbative term, starting from L2 initial data, as we do, would require
t ÞÑ tp3{2qˆppd{2q`η´1q`1{2 to be locally integrable (for some η ą 0) which is possible only
if d “ 2 and 0 ă η ă 1{3. The same heuristic suggests that in dimension 3 one needs to
start with a spatial derivatives and b velocity derivatives with pa, bq so that 3a ` b ą 1{2.
See [40] for some related discussions and a 3-dimensional analysis starting with more than
1{2-derivatives in all variables.

Whole space. We anticipate that an extension of our analysis to the whole space R2 in the
presence of a confining potential, as in [40], would not require significant changes. More
interesting would be an extension to R2 for the same system, as in [44]. It may seem in
contradiction with the fact that at several places we use a spectral gap argument for ´∆x

on T2 in the form of Poincaré inequalities. To bypass this difficulty one needs to be able to
include lower-order terms in the dissipation to provide a direct control on the macroscopic
density n (without using ∇xn). At least when ρ˚ ” 1, the coupling by the Poisson equation
allows us to carry out this plan. Indeed, a direct computation shows that

ż

E ¨∇xn “ ´
1

δ2
}∇xp´∆xq

´
1
2n}2L2 “ ´

1

δ2
}n}2L2

and, in the case where ρ˚ ” 1, the foregoing term appears in the time derivative of
ż

j ¨∇xn

so that we only need to add those two terms to our functionals and correctly tune pa-
rameters. Involved extra computations are expected to be similar to those performed in
Section 9. Interestingly enough, the approach shares some similarities with the method
developed by Dolbeault, Mouhot and Schmeiser [22] to obtain hypocoercive estimates in
L2 for equations that do not exhibit hypocoercive regularization. Indeed for the kinetic
Fokker-Planck equation Btf ` v ¨∇xf “ divvpv f `∇vfq their method consists in adding

ż

j ¨ pI´ a∆xq
´1∇xn ,

(where a is some explicit universal constant) to the usual L2 energy functional.

Other extensions. Many other extensions would require a similar case study : other colli-
sional operators, multiple-species dynamics, coupling with magnetic fields etc.

High-field, hyperbolic limit. To complete the picture, let us discuss another famous asymp-
totic limit of (1.1), the so-called high-field or hyperbolic limit. It consists in taking the limit
τ Ñ 0 with δ2 “ τ´1 on a time scale tref independent of τ . In this regime nonlinear terms
dominate diffusive effects and we are asymptotically lead to an hyperbolic equation on the
macroscopic density. The limit is now rigorously established [52, 31]. But the regime is
somewhat orthogonal to our focus since it brings us to an equation that could lead to shock
formation in finite time. It seems rather unclear if our approach could improve anything to
our understanding of this limit. Yet it would be interesting to gain some insight on what
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happens asymptotically for quasineutral parameters of intermediate size, between the low-
field and high-field regimes, or, even for the high-field regime, to elucidate what happens
on other time scales. Any progress is likely to require a significantly more nonlinear version
of our arguments, for instance involving the time-dependent measure of density e´φpt,¨qM
instead of the stationary f8.

Outline. The rest of the paper is devoted to proofs of our three main theorems. In the
next section, we introduce notational conventions and expound our strategy. In Section 3,
we investigate the well-posedness of Equation (3.1) and gather estimates on its solution φδ8,
which provides estimates on the steady state f8. Then, in Section 4, we glean estimates
on E in terms of h when it is obtained from the Poisson equation of (2.3). In Section 5,
we gather some preliminary pieces of information on solutions to the system obtained by
freezing nonlinear terms. In Section 6, to support our choice of exponents β in the functional
F , we close estimates for Bth ` Lτh “ 0, a δ “ 8 version of (2.3). Theorems 1.2 and 1.3
are then proved in Section 7 and 8. Finally, the last section is devoted to the proof of
Theorem 1.4.

2. Strategy

We now provide some more details on our strategy. To begin with, though we do consider
initial data not necessarily close to f8, it is convenient for this forthcoming analysis to write
solutions in a seemingly perturbative form by introducing the following new unknowns

h “
f ´ f8
f8

, ψ “ φ´ φδ8 .

In terms of ph, ψq, System (1.1) becomes

(2.1) Bth` v ¨∇xh´∇xφ
δ
8 ¨∇vh`

1

τ
pv ´∇vq ¨∇vh`∇xψ ¨ v “ ∇xψ ¨ p∇v ´ vqh

coupled with the Poisson equation

(2.2) ´δ2∆ψ “ n ,

where the source is given by

n “

ż

R2

h f8dv .

Once sufficient bounds have been obtained on φδ8, one may rightfully replace in all
our statements canonical norms of L2pM´1q with the equivalent norm arising from its
interpretation as H :“ L2pT2 ˆ R2, µq where µ is the measure with probability density
function f8. The space H is thus endowed with its canonical scalar product

x¨, ¨y : pf, gq ÞÝÑ

ż

T2ˆR2

f g dµ.

and we denote by } ¨ } the corresponding norm. The main advantage is that now at the
linearized level the transport term becomes skew-symmetric for the new structure whereas
the Fokker-Planck operator remains symmetric. We stress that h0f8 is mean-free and so
will remain hpt, ¨, ¨qf8 for later times t. Hence we introduce the following subspace of H

H0 “

"

h P H such that x1;hy “

ż

T2ˆR2

h dµ “ 0

*

where 1 denotes the constant function with value 1.
11



As is customary in the field, in particular following the memoir of Villani [61], we shall
write estimates proving hypocoercivity using an abstract formulation of the equations. In
order to do so we introduce the following unbounded operators on H

A “ ∇v ,

B “ v ¨∇x ´ p∇xφ
δ
8q ¨∇v .

Let us mention that in order to clarify computations using vectors or higher-order tensors
we sometimes use Einstein summation convention on repeated indices. In this way, we also
introduce Lτ defined as

Lτ “
1

τ
A˚iAi `B

where we use the superscript ˚ to denote coordinate-wise formal adjoint in H. On this
example our convention explicitly reads

A˚ “ v ´∇v , B˚ “ ´B .

The perturbative form (2.1)-(2.2) is then equivalently written

(2.3)

$

’

&

’

%

Bth ` Lτh ´ E ¨A˚p1q “ E ¨A˚h ,

E “ δ´2∇x∆´1
x n , n “

ż

R2

h f8dv .

In this abstract form preservation of mass follows from Ap1q “ 0, B˚p1q “ 0, and the
non-linear part of the system lies on the right-hand side of the first equation.

Commutators play a crucial role in the analysis so that we define and evaluate

C “ rA,Bs “ ∇x ,
rB,Cs “ Hesspφδ8q∇v ,
rAi, A

˚
j s “ δij ,

where Hesspφδ8q is the Hessian matrix of φδ8 and δij is the Kronecker symbol. At the
linearized level, good dissipative terms arise from

xh;Lτhy “
1

τ
}Ah}2 and xABh;Chy ` xAh;CBhy “ }Ch}2 ´

A

Ah;Hesspφδ8qAh
E

that are involved in computations of time derivatives of respectively }h}2 and xAh,Chy,
when h solves (2.3). Incidentally, we point out that, for K,L two vector-valued operators,
we shall repeatedly use KL to denote the matrix-valued operator with coefficients KiLj .
For instance the operator yielding the Hessian in the velocity variable is denoted AA or A2.

We will prove all parts of Theorems 1.2 and 1.3 — existence, uniqueness, stability with
respect to initial data, regularization and exponential convergence — at once by interpreting
(2.3) as the research of a fixed point for a strict contraction on a functional space that
encodes regularization and decay and that quantifies precisely dependences on τ . This
function space is designed from functionals Eγ, β, τ, δ and Fθ

γ, β, τ, δ built as follows. First we
consider the following weighted Sobolev norm

~h~2γ, β, τ, t “ }h}2 ` γ1τ
β1 min

`

1, tτ
˘

}Ah}2

` γ2τ
β2 min

`

1, tτ
˘3
}Ch}2 ` 2γ3τ

β3 min
`

1, tτ
˘2
xAh,Chy ,

12



and a corresponding dissipation

Dγ, β, τ, tphq “ τ´1}Ah}2 ` γ1τ
β1´1 min

`

1, tτ
˘

}A˚ ¨Ah}2

` γ2τ
β2´1 min

`

1, tτ
˘3
}ACh}2 ` γ3τ

β3 min
`

1, tτ
˘2
}Ch}2.

The presence of cross terms in ~h~γ, β, τ, t is related to the above mentioned commutator
computation. Let us also mention that we have chosen to use weights with pure powers
of τ instead of, for instance, some minima of two powers, principally to facilitate reading.
However it forces us to split the discussion between regimes τ Á 1 and τ À 1. We mention
that after the completion of our work, Clément Mouhot pointed to us that a similar strategy
has been used recently by Briant [13] to quantify hydronamic limits starting from the
Boltzmann equation.

Note that an estimation of ~hpt, ¨, ¨q~γ, β, τ, t in terms of ~h0~γ, β, τ, 0 “ }h0} when h
solves (2.3) would encode hypoelliptic regularization. Powers of the time variable should be
appreciated with this in mind as they are associated with classical gain of regularity afforded
by the kinetic Fokker-Planck operator; see for instance [61, Appendix A.21]. Furthermore,
if one proves that solutions to (2.3) satisfy for any t2 ě t1 ě τ

~hpt2q~
2
γ, β, τ, t2 ` θ

ż t2

t1

Dγ, β, τ, sphpsqq
2ds ď ~hpt1q~

2
γ, β, τ, t1

for some θ ą 0, then by using Poincaré inequality one deduces exponential decay with rates
scaling as minpτ´1, τβ3 , τβ3´β2q. Hence closing such form of estimates will prove at the
same time hypoelliptic regularization and hypocoercive decay.

In Section 6 we first show what choices of parameters γ and β are available for the reduced
toy system Bth ` Lτh “ 0 that may be thought as a δ “ 8 version of System (2.3). We
may then analyze for the original problem what is, among available parameters for the toy
system, the optimal choice to relax as much as possible the constraint on δ and still obtain
the same entropy/dissipation relations. Since the way in which we prove corresponding
nonlinear a priori estimates lends itself to a strict contraction formulation this will lead to
Theorems 1.3 and 1.2. Actually in our study of (2.3) we rather use

Eγ, β, τ, δ, tphq “ ~h~2γ, β, τ, t ` δ2p1` γ1τβ1 min
`

1, tτ
˘

q}E}2L2

to offer a better account of electric-field contributions. Our goal is then essentially to build
solutions such that

Fθ
γ, β, τ, δphq ď K }h0}

2

for some constant K, where

(2.4) Fθ
γ, β, τ, δphq “ Eγ, β, τ, δphq ` θ Dγ, β, τ phq

with
Eγ, β, τ, δphq “ sup

tě0
Eγ, β, τ, δ, tphpt, ¨, ¨qq,

and
Dγ, β, τ phq “

ż 8

0
Dγ, β, τ, tphpt, ¨, ¨qq dt

for a suitable choice of θ ą 0, β P R3 and γ P p0,`8q3 under the weakest possible constraint
on δ and uniformly with respect to pτ, h0q taken in relevant spaces. It turns out that our
choices are β “ p0, 2, 1q when τ À 1 and β “ p´8{15, 2{5,´1{15q when τ Á 1, and we
amply comment on motivations of these choices along the proof. We stress however here
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that the latter choice differ from the choice β “ p´1,´1,´1q optimal for the linearized
dynamics when τ Á 1.

Once Theorem 1.2 and 1.3 have been proved, corresponding estimates or higher-order
versions of those may be used to bound error terms in diffusive asymptotics, leading to
Theorem 1.4.

3. The Poisson-Boltzmann equation

In this section we provide well-posedness and regularity results for

(3.1) ´δ2∆xφ
δ
8 “ e´φ

δ
8 ´ ρ˚ .

Consistently with our global analysis we insist on uniformity of estimates with respect to
δ when δ is bounded away from zero. This turns out to be crucial so as to control all our
norms and relative inequalities since they depend on δ through φδ8.

As a key example note the following form of the Poincaré inequality in H0.

Proposition 3.1. There exists a positive constant K such that for any h P H0 and any
δ ą 0, one has

}h}2 ď K }eφ
δ
8}L8pT2q }e

´φδ8}L8pT2q

`

}Ah}2 ` }Ch}2
˘

.

The foregoing inequality is actually a straightforward consequence of the tensorization of
the classical Poincaré inequality on the torus with the Gaussian Poincaré inequality. The
reader is referred to [1, Chapter 4] for a detailed argument.

In the present section our arguments are relatively classical and strongly echo those in
[11, 20, 14] and even more those in [42, Section 3]. In particular the existence part follows
by identifying (3.1) with an Euler-Lagrange equation. In order to do so we set nh “ ρ˚´ 1
so that nh is mean-free and introduce the functional

Jpφq “
δ2

2

ż

T2

|∇xφ|
2 `

ż

T2

φnh ` ln

ˆ
ż

T2

e´φ
˙

on

H0 “

"

φ P H1pT2q

ˇ

ˇ

ˇ

ˇ

ż

T2

φ “ 0

*

.

The functional J is coercive, bounded from below and strictly convex provided that ρ˚ P
H´1pT2q. The main observation leading to strict convexity is that from the Holder inequal-
ity stems for any θ P r0, 1s and φ1, φ2 P H0,

ż

T2

e´θφ1´p1´θqφ2dx ď
ˆ
ż

T2

e´φ1dx
˙θ ˆż

T2

e´φ2dx
˙1´θ

.

In turn, since by Jensen’s inequality, for any φ P H0

ln

ˆ
ż

T2

e´φ
˙

ě ln
´

e´
ş

T2 φ
¯

“ 0 ,

coercivity and boundedness from below are explicitly derived from

(3.2) Jpφq ě
δ2

2

ż

T2

|∇xφ|
2 ´ K }nh}H´1pT2q

ˆ
ż

T2

|∇xφ|
2

˙1{2

` ln

ˆ
ż

T2

e´φ
˙
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that holds for some constant K and any φ P H0. The Euler-Lagrange equation associated
with J is actually

´δ2∆xφδ “
e´φδ

ş

T2 e´φδ
´ ρ˚ .

Yet, solutions φδ P H0 to the foregoing equation are in one-to-one correspondence with
solutions φδ8 P H1pT2q to Equation (3.1) through

(3.3) φδ8 “ φδ ` ln

ˆ
ż

T2

e´φδ
˙

, φδ “ φδ8 ´

ż

T2

φδ8 ,

(since Equation (3.1) implicitly contains
ş

T2 e
´φδ8 “ 1).

Proposition 3.2 (Existence, uniqueness and regularity).

(1) For any ρ˚ P H´1pT2q such that
ş

T2 ρ˚ “ 1, for any δ ą 0, Equation (3.1) possesses
a unique weak solution φδ8 P H1pT2q and this solution is such that

ş

T2 e
´φδ8 “ 1.

(2) Moreover there exists a positive constant K such that for any such ρ˚ and any δ ą 0,
the corresponding solution φδ8 satisfies

δ2}∇φδ8}2L2pT2q `

ˇ

ˇ

ˇ

ˇ

ż

T2

φδ8

ˇ

ˇ

ˇ

ˇ

ď K}ρ˚ ´ 1}2H´1pT2q .

(3) If additionally, for some p P r1,`8s, ρ˚ P LppT2q then

}e´φ
δ
8}LppT2q ď }ρ˚}LppT2q .

(4) In particular, for any p P p1,`8q, there exists Kp ą 0 such that for any ρ˚ P LppT2q

such that
ş

T2 ρ˚ “ 1 and any δ ą 0, the unique solution φδ8 to Equation (3.1)
satisfies

}∇2
xφ

δ
8}LppT2q ď

Kp

δ2
}ρ˚}LppT2q

and

}φδ8}L8pT2q ď
Kp

δ2
}ρ˚}LppT2q .

Proof. Existence and uniqueness follow from the properties of J expounded above through
a direct minimization of the strictly convex functional J . Then the bound in H1 stems
from (3.2) and Jp0q “ 0 by noticing that

ż

T2

φδ8 “ ln

ˆ
ż

T2

e´φδ
˙

ě 0 .

Concerning Lp estimate of e´φδ8 , the formal argument proceeds by multiplying the equa-
tion by ´e´pp´1qφδ8 and integrating to derive

pp´ 1qδ2
ż

T2

|∇xφ
δ
8|

2 e´pp´1qφ
δ
8 `

ż

T2

e´pφ
δ
8 “

ż

T2

e´pp´1qφ
δ
8 ρ˚

that implies
}e´φ

δ
8}

p
LppT2q

ď }e´φ
δ
8}

p´1
LppT2q

}ρ˚}LppT2q
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by Hölder’s inequality, from which the bound follows by simple computations. This may
be turned into a sound argument by testing instead against ´e´pp´1qmaxptφδ8,ηuq and letting
η Ñ ´8.

From here the W 2,p bound stems directly from the equation and classical elliptic regu-
larity properties — in Calderón-Zygmund form — for which we refer the reader to [57, 58]
or [32]. The L8 bound then follows from the bound on

ş

T2 φ
δ
8 and a Sobolev embedding

applied to φδ8 ´
ş

T2 φ
δ
8. �

The foregoing proposition provides an L8 bound on eφ
δ
8 that blows up exponentially

in δ´2 in the quasi-neutral regime δ Ñ 0. Though this will be sufficient for our general
argument and thus we do not pursue this line of investigation here, let us mention for
precision’s sake that the bound on eφ

δ
8 may be dramatically improved if ρ˚ is bounded

away from zero.

Proposition 3.3 (Higher regularity). Let s P N, s ě 2, q P p1,8s and p P p1,8q.
There exists a positive constant K “ Kp,q,s and an integer αs such that for any ρ˚ P

W s´2,ppT2q X L8pT2q such that
ş

T2 ρ˚ “ 1 and any δ ą 0, the unique solution φδ8 to
Equation (3.1) satisfies

(3.4) }∇s
xφ

δ
8}LppT2q ď

K

δ2

ˆ

1` }e´φ
δ
8}

s´2
2

L8

˙

´

1` }φδ8}
αs
W 2,q

¯

`

1` 1
δs´2

˘

}ρ˚}W s´2,p .

Proof. We proceed by induction. The induction estimate

δ2}∇k`2φδ8}LppT2q ď K}∇kρ˚}LppT2q ` K}e´φ
δ
8}L8pT2qp1` }φ

δ
8}

k´1
W 2,qpT2q

q}φδ8}Wk,ppT2q

is obtained essentially by differentiating the equation and applying suitable Sobolev inequal-
ities in Gagliardo-Nirenberg’s form. Namely, the elementary block leading to the foregoing
estimates is that if 1 ď ` ď k and σ P pN˚q` is such that |σ| “ k then

}
ź̀

j“1

Bσjφδ8}LppT2q ď
ź̀

j“1

}Bσjφδ8}Lpj pT2q

ď K
ź̀

j“1

}φδ8}
1´

σj
k

W 2,qpT2q
}∇kφδ8}

σj
k

LppT2q
“ }φδ8}

`´1
W 2,qpT2q

}∇kφδ8}LppT2q

ď K p1` }φδ8}
k´1
W 2,qpT2q

q }φδ8}Wk,ppT2q

where pj “ p k{σj . Actually some of the derivatives needs first to be replaced with finite
differences to justify formal manipulations, but we skip those classical details. �

From now on we shall always assume but never repeat that φδ8 is obtained from ρ˚
through Equation (3.1) and we shall keep the dependence on norms of ρ˚ implicit. Also for
concision’s sake we shall use without mention estimates of the present section.

4. The Poisson equation

We glean here estimates on E in terms of h when E “ ´∇ψ and

´δ2∆ψ “ n , n “

ż

R2

hp¨, vq f8p¨, vqdv
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whenever h P H0. They are naturally obtained from classical estimates on the Poisson
equation on one side and estimates on n in terms of h on the other side. We recall that } ¨ }
denotes the canonical L2pdµq norm for the measure dµ “ f8dxdv, that does depend on δ
and ρ˚.

Proposition 4.1.

(1) For any s P N, ρ˚ P HspT2q such that
ş

T2 ρ˚ “ 1 and δ0 ą 0 there exists Ks ą 0
such that for all δ ě δ0, for any h, n “

ş

R2 hp¨, vq f8p¨, vqdv satisfies

}∇s
xn}L2pT2q ď Ks

ÿ

kďs

}∇k
x h}

and if moreover h P H0 and E is the corresponding electric field

}∇s`1
x E}L2pT2q ď

Ks

δ2

ÿ

kďs

}∇k
x h} .

(2) For any ρ˚ P H
1pT2q such that

ş

T2 ρ˚ “ 1, p P p1,8q and δ0 ą 0 there exists
Kp ą 0 such that for all δ ě δ0, for any h, n “

ş

R2 hp¨, vq f8p¨, vqdv satisfies

}n}LppT2q ď Kp }h}
2
p }∇xh}

1´ 2
p

and if moreover h P H0 and E is the corresponding electric field

}∇xE}LppT2q ď
Kp

δ2
}h}

2
p }∇xh}

1´ 2
p .

(3) For any ρ˚ P L2pT2q such that
ş

T2 ρ˚ “ 1, p P p1,8q and δ0 ą 0 there exists Kp ą 0
such that for all δ ě δ0 and any h P H0, the corresponding electric field E satisfies

}E}LppT2q ď
Kp

δ2
}h} .

(4) For any ρ˚ P L2pT2q such that
ş

T2 ρ˚ “ 1, η P p0, 1s and δ0 ą 0 there exists Kη ą 0
such that for all δ ě δ0 and any h P H0, the corresponding electric field E satisfies

}E}L8pT2q ď
Kη

δ2
}h}1´η }∇xh}

η .

Proof. The Sobolev estimate on the macroscopic density stems from an integration of the
point-wise

|∇snpxq|2 ď K
ÿ

kďs

|∇s´k
x pe´φ

δ
8qpxq|2 eφ

δ
8pxq

ż

R2

|∇k
xhpx, vq|

2 f8px, vqdv

that follows from direct differentiation and Jensen’s inequality (for the square function).
The Lebesgue estimate on the macroscopic density follows from

}n}LppT2q ď }e´φ
δ
8}L8pT2q

ż

R2

}hp¨, vq}LppT2qMpvqdv

ď Kp}e
´φδ8}L8pT2q

ż

R2

}hp¨, vq}
2
p

L2pT2q
}∇xhp¨, vq}

1´ 2
p

L2pT2q
Mpvqdv

ď Kp}e
´φδ8}L8pT2q }e

φδ8}L8pT2q }h}
2
p }∇xh}

1´ 2
p
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that is derived by triangle inequality, some Sobolev embeddings and the Hölder inequalities.
Remaining estimates are then deduced from classical elliptic regularity. Note in particular
that for any 1 ď p ă 2 ă q ď 8 there exists Kp,q such that

}E}L8pT2q ď Kp,q}n}
θp,q
LppT2q

}n}
1´θp,q
LqpT2q

where θp,q P p0, 1q is defined by 1{2 “ θp,q{p` p1´ θp,qq{q. �

5. Frozen equations

As preliminaries to nonlinear final arguments, here we consider nonlinear terms as source
terms and derive corresponding estimates. Namely we set

(5.1) Bth ` Lτh´ E ¨ v “ rE ¨A˚g ,

where
E “ δ´2∇x∆´1

x n , n “

ż

R2

h f8dv ,

and rE and g are given sources, rE being derived from some given rg P H0 through

rE “ δ´2∇x∆´1
x rn , rn “

ż

R2

rg f8dv .

We first collect algebraic identities describing each elementary piece of the final energy
estimate.

Lemma 5.1. Any smooth localized h solving (5.1) satisfies
1

2

d
dt

`

}h}2 ` δ2}E}2L2

˘

`
1

τ
}Ah}2 “ R0ph, g, rgq ,

1

2

d
dt

`

}Ah}2 ` δ2}E}2L2

˘

`
1

τ
p}Ah}2 ` }A2h}2q “ QAphq `RAph, g, rgq ,

1

2

d
dt
}Ch}2 `

1

τ
}ACh}2 “ QCphq `RCph, g, rgq ,

d
dt
xAh,Chy ` }Ch}2 “ QACphq `RACph, g, rgq ,

with quadratic terms given by

QAphq “ ´ xCh,Ahy(5.2)

QCphq “

A

Hesspφδ8qAh,Ch
E

` x∇xpE ¨ vq, Chy(5.3)

QACphq “ ´
1

τ

`

xAh,Chy ` 2
@

A2h,ACh
D˘

` rQACphq(5.4)

where
rQACphq “

A

Hesspφδ8qAh,Ah
E

` xE,Chy ` x∇xpE ¨ vq, Ahy

and trilinear terms

R0ph, g, rgq “

A

Ah, rEg
E

(5.5)

RAph, g, rgq “

A

Ah, rEg
E

`

A

A2h, rEAg
E

(5.6)

RCph, g, rgq “

A

ACh, rECg
E

`

A

CAh, g∇x
rE
E

(5.7)

RACph, g, rgq “

A

A2h, rECg
E

`

A

A2h, g∇x
rE
E

`

A

Ch, rEg
E

`

A

ACh, rEAg
E

.(5.8)
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For latter use we also observe that if more frozen nonlinear terms of the same form were
added to (5.1), this would only result in adding more trilinear terms of the same form in
the foregoing identities. Namely, if rE ¨ A˚g is replaced with rE1 ¨ A

˚g1 ` rE2 ¨ A
˚g2, then

accordingly trilinear terms R#ph, g, rgq are turned into R#ph, g1, rg1q `R#ph, g2, rg2q.

Proof. We evaluate the time derivative of }h}2, }Ah}2, }Ch}2 and xAh, Chy. Using (5.1),
we need to compute three kinds of terms, involving respectively Lτ , E ¨ v and the nonlinear
product rE ¨A˚g. Trilinear remainders R0, RA, RC and RAC are exclusively obtained from
the latter while dissipation terms and quadratic remainders come from other terms.

To obtain the first energy equality we use the skew-symmetry of B to derive

´xLτh, hy “ ´
1

τ
xA˚Ah, hy “ ´

1

τ
}Ah}2,

To proceed we use the continuity equation

(5.9) Btn ` divxpjq “ 0 , j :“

ż

R2

v h f8dv

obtained by multiplying the first equation of (5.1) by f8 and integrating with respect to
the velocity variable. By the Poisson equation, written in terms of a potential ψ such that
E “ ´∇ψ, and (5.9) we obtain

xE ¨ v, hy “

ż

T2

j ¨ E dx “ ´

ż

T2

ψ Btn dx “ ´δ2
ż

T2

∇xψ ¨ Bt∇xψ dx “ ´
1

2
δ2

d
dt
}E}2L2 .

The second equation follows from similar computations using that C “ rA,Bs and I “
rA,A˚s, which implies

}A˚ ¨Ah}2 “
@

A˚iAih,A
˚
jAjh

D

“ xAjA
˚
iAih,Ajhy

“ xδijAih,Ajhy ` xAjAih,AiAjhy

“ }Ah}2 ` }A2h}2 .

This leads to

´ xALτh, Ahy “ ´
1

τ
}A˚Ah}2 ´ xABh, Ahy

“ ´
1

τ
p}Ah}2 ` }A2h}2q ´ xCh, Ahy ,

and we also observe that

xAipEj vjq, Aihy “ xEi, Aihy “ xA˚i pEiq, hy “ xv ¨ E, hy ,

which we recognize as a term already computed. The trilinear term RA is
A

Aih, Aip rEj A
˚
j gq

E

“

A

Aih, AiA
˚
j
rEjgq

E

“

A

Aih, rEig
E

`

A

AiAjh, rEj Aig
E

.

Concerning the third equation we first compute

´xCi Lτh, Cihy “ ´
1

τ
xAj Cih, Aj Cihy ` xrB,Cish, Cihy ,

and use that rB,Cs “ Hesspφδ8qA. The remainder term RC is
A

Cih, Ci p rEj A
˚
j gq

E

“

A

Cih, pBxi
rEjqA

˚
j g
E

`

A

Cih, rEj CiA
˚
j g
E

.
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Finally, for the fourth equality, we only explain how a few typical terms are derived,
other following by the same kind of arguments. To this purpose note that

´xABh, Chy ´ xAh, CBhy “ ´}Ch}2 ` xAh, rB,Cshy

and

´xAA˚ ¨Ah, Chy ´ xAh, CA˚ ¨Ahy “ ´ xAh, Chy ´ 2
@

A2h, ACh
D

.

�

In the following lemmas, we indicate how to estimate each right-hand side term of the
foregoing lemma. The first lemma is a trivial corollary of the Cauchy-Schwarz inequality,
estimates on E and φδ8 and the fact that v ÞÑ v lies in L2pMpvq dvq.

Lemma 5.2. For any ρ˚ P W 1,ppT2q, p ą 2 such that
ş

T2 ρ˚ “ 1 and δ0 ą 0 there exists
K ą 0 such that for all δ ě δ0, for any h

|QAphq| ď }Ch} }Ah}

|QCphq| ď
K

δ2
p}Ah} }Ch} ` }h} }Ch}q

|QACphq ´ rQACphq| ď
1

τ

`

}Ah}}Ch} ` 2}A2h}}ACh}
˘

| rQACphq| ď
K

δ2
`

}Ah}2 ` }h} }Ch} ` }h}}Ah}
˘

,

where terms on the left-hand sides are defined as in (5.2)-(5.3).

Now we estimate trilinear terms by norms involving h, g, rg and their derivatives.

Lemma 5.3. For any ρ˚ P L2pT2q such that
ş

T2 ρ˚ “ 1, η P p0, 1q4 and δ0 ą 0 there exists
K “ Kη ą 0 such that for all δ ě δ0 and any ph, g, rgq P pH0q

3,

|R0ph, g, rgq| ď
K

δ2
}Ah} minp}g}1´η1 }Cg}η1 }rg}, }g} }rg}1´η2 }Crg}η2q ,

|RAph, g, rgq| ď
K

δ2
}Ah} }g}1´η1 }Cg}η1 }rg}

`
K

δ2
}A2h} }rg}1´η2 }Crg}η2 }Ag} ,

|RCph, g, rgq| ď
K

δ2
}ACh} }Cg} }rg}1´η1 }Crg}η1

`
K

δ2
}ACh} }rg}1´η2 }Crg}η2 }g}η2 }Cg}1´η2 ,
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|RACph, g, rgq| ď
K

δ2
}A2h} }rg}1´η1}Crg}η1 }Cg}

`
K

δ2
}A2h} }rg}1´η2 }Crg}η2 }g}η2 }Cg}1´η2

`
K

δ2
}Ch} }g}1´η3 }Cg}η3 }rg}

`
K

δ2
}ACh} }rg}1´η4}Crg}η4 }Ag} .

where terms on the left-hand sides are defined as in (5.5)-(5.8).

Proof. Half of the estimate on R0 stems directly from bounds on } rE}L8pT2q. The other
half follows, setting p “ 2{η P p2,8q and defining q P p2,8q by 1{2 “ 1{p` 1{q, from

ˇ

ˇ

ˇ

A

Ah, rEg
Eˇ

ˇ

ˇ
ď K }Ah} } rE}LppT2q }g}L2pMdv,Lqpdxqq

ď K 1 }Ah} } rE}LppT2q }g}
1´η }Cg}η

where we have used bounds on φδ8 and Hölder and Sobolev inequalities and noticed that
2{q “ 1´ η. Then, one concludes thanks to bounds on } rE}LppT2q.

To estimate RA, we simply notice that

|RAph, g, rgq| ď |R0ph, g, rgq| ` }A2h} } rE}L8pT2q }Ag}.

As for the third estimate, the first term of RC is dealt with similarly using once again the
L8 bound on rE. However the second term requires a more careful distribution of spatial
derivatives, essentially as in the proof of the bound on }n}LppT2q of Proposition 4.1. Namely,
set p “ 2{η2 P p2,8q and define q P p2,8q by 1{p` 1{q “ 2, then

ˇ

ˇ

ˇ

A

CAh, g∇x
rE
Eˇ

ˇ

ˇ
ď K }ACh} }∇x

rE}LppT2q }g}L2pMdv,LqpT2qq

with

}g}L2pMdv,LqpT2qq ď K 1

˜

ż

R2

}gp¨, vq}
2
´

1´ 2
p

¯

L2pT2q
}Cgp¨, vq}

4
p

L2pT2q
Mpvq dv

¸
1
2

ď K2 }g}
1´

2
p }Cg}

2
p

by Sobolev embeddings, Hölder inequalities and L8 bounds on φδ8. The estimate is achieved
by relying on bounds on }∇x

rE}LppT2q.
We skip the estimate of RAC as it is completely similar. �

6. Linear warm-up

For expository purpose and to support our choice of exponents in the functional (2.4) we
first develop our strategy on the following equation

(6.1) Bth` Lτh “ 0 ,

supplemented with initial data h0. Recall that ´Lτ generates a semi-group of contractions
on H [37, 39]. Moreover since they form a core for Lτ it is sufficient to deal with Schwartz
initial data, for which all following computations are readily justified.
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As already expounded in Section 2 our goal is to prove that in each regime under suitable
conditions on parameters β P R3 and γ P p0,`8q3, the following functional

~h~t “ }h}2 ` γ1τ
β1 min

`

1, tτ
˘

}Ah}2

` γ2τ
β2 min

`

1, tτ
˘3
}Ch}2 ` 2γ3τ

β3 min
`

1, tτ
˘2
xAh,Chy ,

is decaying in time with dissipation rate at least

Dtphq “ τ´1}Ah}2 ` γ1τ
β1´1 min

`

1, tτ
˘

}A˚ ¨Ah}2

` γ2τ
β2´1 min

`

1, tτ
˘3
}ACh}2 ` γ3τ

β3 min
`

1, tτ
˘2
}Ch}2.

Note that in order to prove exponential decay it is then sufficient to invoke the following
entropy/dissipation inequality stemming directly from the Poincaré inequality of Proposi-
tion 3.1 and bounds on φδ8.

Lemma 6.1. For any pβ, γq P p0,`8q6 and any δ0 ą 0 there is a positive constant K such
that for any τ ą 0, any δ P pδ0,8q, any h P H0 and any t ě τ

K min
´

τ´1, τβ3 , τβ3´β2
¯ ”

}h}2 ` τβ1 }Ah}2 ` τβ2 }Ch}2
ı

ď Dγ, β, τ, tphq .

Proposition 6.2 (Diffusive regime). Under the following conditions on β P R3

(6.2) max

ˆ

1,
β1 ` β2

2

˙

ď β3 ď min p2β1 ` 1, β2 ´ 1q ,

for any τ0 ą 0 there exist γ P p0,`8q3, c0 ą 0, C0 ą 0 and θ̃ ą 0 such that for any
ρ˚ P H

´1pT2q such that
ş

T2 ρ˚ “ 1, any δ ą 0 and any τ P p0, τ0q
(1) for any h, for any t ě 0,

~h~t ě c0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

and

~h~t ď C0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

;

(2) for any h0 P H0 the solution to the linear Vlasov-Fokker-Planck equation (6.1)
starting from h0 satisfies for all t ě 0

~hpt, ¨, ¨q~2t ` θ̃

ż t

0
Dsphps, ¨, ¨qq ds ď }h0}

2 .

Proof. One may adapt Lemma 5.1 to (6.1) with resulting modifications being that there is
no electric field in time derivatives and in remainder terms no trilinear term, no rQAC and
no QC . In particular, only QA and half of QAC have non-zero contribution to remainders
and those may be bounded without resorting to φδ8 bounds. This leads to

1

2
~h~2t `

ż t

0
Dsphq ds ď

1

2
}h0}

2 `

ż t

0
Rsphq ds ,
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with
Rtphq “ γ1τ

β1 min
`

1, tτ
˘

}Ch} }Ah}

` γ3τ
β3´1 min

`

1, tτ
˘2 `
}Ah}}Ch} ` 2}A2h}}ACh}

˘

`
1

2
χtăτ

´

γ1τ
β1´1}Ah}2 ` 3γ2τ

β2´1
`

t
τ

˘2
}Ch}2 ` 4γ3τ

β3´1
`

t
τ

˘

}Ah} }Ch}
¯

where we have used notation χtăτ to denote the value at time t of the characteristic function
of r0, τq, namely 0 if t ě τ , 1 otherwise.

Now we want to ensure that Rt is controlled by an arbitrarily small fraction of Dt,
uniformly in time and in τ . This is obtained by repeated use of Young’s inequality on each
remainder terms, carefully dispatching powers of τ and time weights. To simplify the choice
of constants, we seek γj under the form εcj for some positive cj . As an example let us first
show how to control the term coming from QAC . We have

εc3τβ3´1 min
`

1, tτ
˘2
}Ah}}Ch}

“ εc3{2 τβ3´1´pβ3´1q{2 min
`

1, tτ
˘

´

τ´1{2}Ah}
¯ ´

εc3{2 τβ3{2 min
`

1, tτ
˘

}Ch}
¯

ď εc3{2 τ pβ3´1q{2 min
`

1, tτ
˘

Dtphq ,

and c3 ą 0 and β3 ě 1 is required for the right-hand side to be bounded by θεDtphq,
uniformly in time, for small τ , for some given θε P p0, 1q going to zero when ε goes to zero.
To repeat the procedure on all terms, we observe that more generally a bound

εcτβ min
`

1, tτ
˘α
K L

εÑ0
“ opεc

1

τβ
1

min
`

1, tτ
˘α1

K2 ` εc
2

τβ
2

min
`

1, tτ
˘α2

L2q

uniform with respect to K, L, t and τ ď τ0 requires α ě minptα1, α2uq. If α1 ‰ α2 and
α P rα1, α2s then there exists a unique θ P r0, 1s such that α “ θ α1 ` p1 ´ θqα2 and the
estimate also requires β ě θβ1 ` p1´ θqβ2. However once the above conditions are fulfilled
the estimate holds provided that c ą θc1 ` p1´ θqc2. The final upshot is that our claimed
estimate followd from

β1 ´ 1 ě ´1 , β2 ´ 1 ě β3 , β3 ´ 1 ě 1
2pβ3 ´ 1q ,

β1 ě
1
2pβ3 ´ 1q , β3 ´ 1 ě 2

3pβ3 ´ 1q ´ 1
3 , β3 ´ 1 ě 1

2pβ1 ` β2 ´ 2q ,

— which reduces to (6.2) — and
1
2pc1 ` c2q ă c3 ă minpc2, 2c1q .

We conclude by noting that the choice pc1, c2, c3q “ p1, 2, 7{4q fulfills the latter constraint.
So far we have omitted the very first constraint on ~ ¨ ~t. Yet a sufficient condition is

β3 ě
1
2pβ1 ` β2q , γ3 ă

?
γ1 γ2 ,

which is redundant with above requirements. �

The proof of Proposition 6.2 may be readily adapted to cope with the regime of evanescent
collisions, yielding the following result where constraints on β1, β2 and β3 are reversed to
ensure uniform bounds for arbitrarily large τs.

Proposition 6.3 (Evanescent collisions). Under the following conditions on β P R3

(6.3) min

ˆ

1,
β1 ` β2

2

˙

ě β3 ě max p2β1 ` 1, β2 ´ 1q .
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for any τ0 ą 0 there exist γ P p0,`8q3, c0 ą 0, C0 ą 0 and θ̃ ą 0 such that for any
ρ˚ P H

´1pT2q such that
ş

T2 ρ˚ “ 1, any δ ą 0 and any τ P pτ0,`8q

(1) for any h, for any t ě 0,

~h~t ě c0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

and

~h~t ď K0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

;

(2) for any h0 P H0 the solution to the linear Vlasov-Fokker-Planck equation (6.1)
starting from h0 satisfies for all t ě 0

~hpt, ¨, ¨q~2t ` θ̃

ż t

0
Dsphps, ¨, ¨qq ds ď }h0}

2 .

7. Strongly collisional regime

In view of Lemmas 5.2 and 5.3, to analyze terms that have been left over in the foregoing
section, we only need to consider

(7.1)

Qδt phq :“ τβ2 min
`

1, tτ
˘3
}Ah} }Ch} ` τβ2 min

`

1, tτ
˘3
}h} }Ch}

` τβ3 min
`

1, tτ
˘2
}Ah}2 ` τβ3 min

`

1, tτ
˘2
}h} }Ch}

` τβ3 min
`

1, tτ
˘2
}h} }Ah}

“:
1

δ2

5
ÿ

i“1

Si,tphq

and choosing some η P p0, 1q9 and rη1 P p0, 1q

(7.2) Rδ
t ph, g, rgq :“

1

δ2

´

T1,tph, g, rgqχtěτ ` rT1,tph, g, rgqχtďτ

¯

`
1

δ2

9
ÿ

i“2

Ti,tph, g, rgq

where
T1,tph, g, rgq “ }Ah} }g}1´η1 }Cg}η1 }rg} ,

rT1,tph, g, rgq “ }Ah} }g} }rg}1´rη1 }Crg}rη1 ,

T2,tph, g, rgq “ τβ1 min
`

1, tτ
˘

}Ah} }g}1´η2 }Cg}η2 }rg} ,

T3,tph, g, rgq “ τβ1 min
`

1, tτ
˘

}A2h} }rg}1´η3 }Crg}η3 }Ag} ,

T4,tph, g, rgq “ τβ2 min
`

1, tτ
˘3
}ACh} }Cg} }rg}1´η4 }Crg}η4 ,

T5,tph, g, rgq “ τβ2 min
`

1, tτ
˘3
}ACh} }rg}1´η5 }Crg}η5 }g}η5 }Cg}1´η5 ,
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and

T6,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}A2h} }rg}1´η6}Crg}η6 }Cg} ,

T7,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}A2h} }rg}1´η7 }Crg}η7 }g}η7 }Cg}1´η7 ,

T8,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}Ch} }g}1´η8 }Cg}η8 }rg} ,

T9,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}ACh} }rg}1´η9}Crg}η9 }Ag} .

We also need to take into account the electric field contributions in time derivatives by
augmenting ~ ¨ ~2γ, β, τ, t to Eγ, β, τ,δ, t defined by

Eγ, β, τ,δ, tphq “ ~h~2γ, β, τ, t ` δ2p1` γ1τβ1 min
`

1, tτ
˘

q}E}2L2 .

In the following, when dependencies in parameters are not crucial we may drop some indices
on this functional by writing simply Et in order to lighten notations.

Prior to carrying on our nonlinear analysis in the diffusive regime, for reading’s sake we
make a specific choice of β, namely β “ p0, 2, 1q, and fix a corresponding γ accordingly.
This choice is motivated by the following remark.

Remark 7.1 (Optimality of β). From Proposition 6.2 and Lemma 6.1, one may derive
exponential decay of ~hpt, ¨, ¨q~γ, β, τ, t when h solves (6.1), explicitly encoded by a rate
e´θτ

maxpβ3,´1,β3´β2qt for some uniform θ ą 0. To optimize the former decay rate, one must
minimize maxpβ3,´1, β3´β2q under constraints (6.2). The optimal choice requires actually
β3 “ 1, that forces β1 “ 0 and β2 “ 2. Indeed the existence of a β3 satisfying constraint (6.2)
is equivalent to

β1 ě 0 , β2 ě 2 , 3β1 ě β2 ´ 2 , β1 ď β2 ´ 2

which is compatible with pβ1 ` β2q{2 ď 1 only if β1 “ 0 and β2 “ 2. In turn, the
corresponding choice of β does satisfy (6.2).

Last preliminary results are provided by the following proposition.

Proposition 7.2 (τ À 1; β “ p0, 2, 1q). Set β “ p0, 2, 1q. For any τ0 ą 0 and any
γ P p0,8q3 satisfying corresponding conditions of Proposition 6.2, for any ρ˚ P W 1,ppT2q,
p ą 2, such that

ş

T2 ρ˚ “ 1, any δ0 ą 0 and any rη1 P p0, 1q, there exist η P p0, 1q9 and
K ą 0 such that for any t ě 0, any τ P p0, τ0q, any δ P pδ0,8q and any ph, g, rgq P pH0q

3

Qδt phq ď
K

δ2
Dtphq ,

Rδ
t ph, g, rgq ď

K

δ2
rDtphqs

1
2

„

pDtpgqq
1
2 ` τ

1
2´rη1

`

t
τ

˘´
3rη1
2 χtďτ }g}



rEtprgqs1{2 .

Proof. Besides obvious estimates we point out that Poincaré’s inequality implies that for
any h P H0

τ1{2 min
`

1, tτ
˘

}h} ď K rDtphqs
1{2
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uniformly in τ ď τ0, δ ě δ0, t ě 0. With this in hand one readily deduce for any h P H0

S1,tphq ` S3,tphq ď K τ2 min
`

1, tτ
˘2
Dtphq ,

S2,tphq ` S5,tphq ď K τ min
`

1, tτ
˘

Dtphq ,

S4,tphq ď KDtphq ,

hence proving the first estimate. Likewise one obtains for any ph, g, rgq P pH0q
3

T1,tph, g, rgq ď K min
`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

rT1,tph, g, rgq ď K τ1´rη1 Dtphq
1{2

”

τ´1{2 min
`

1, tτ
˘´3rη1{2

}g}
ı

Etprgq1{2 ,

T2,tph, g, rgq ` T8,tph, g, rgq ď KDtphq
1{2Dtpgq

1{2 Etprgq1{2 ,
and for i P t3, 4, 5, 6, 7, 9u

Ti,tph, g, rgq ď K τ1´2ηi min
`

1, tτ
˘

1´3ηi
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 .

This yields the second estimate by choosing ηi P p0, 1{3s for i P t3, 4, 5, 6, 7, 9u. �

Remark 7.3 (Follow-up on the optimality of β). Estimates of Proposition 7.2 will be used
to set up a contraction argument with β “ p0, 2, 1q for large enough δ. As pointed out in
Remark 7.1, this choice of β is motivated by our will to optimize decay rates. However one
may wonder whether with a different choice of β one could improve the foregoing estimates
and set up a contraction argument using smallness of τ and not largeness of δ, hence allowing
for asymptotically vanishing δ (possibly in a τ -dependent way). Unfortunately, the answer
is negative since our estimate of S4,t is actually independent of τ and β.

Proof of Theorem 1.2. To prove Theorem 1.2, we introduce

X “ t h P L8pR`;Hq | Ephq ă 8 u and Y “ t h P L8pR`;Hq | Fphq ă 8 u

endowed with norms
?
E and

?
F . For any R ą 0 we denote by XR and YR the closed balls

of center 0 and radius R of Banach spaces X and Y . We recall that E and F are defined by

Fphq “ Ephq ` θDphq
where

Ephq “ sup
tě0

Etphpt, ¨, ¨qq and Dphq “

ż 8

0
Dtphpt, ¨, ¨qq dt .

We fix R0 ą 0 and choose h0 P H0 such that }h0} ď R0 and for a suitable R ą 0 we
consider the map Φ : XR Ñ L8locpR`;Hq, rg ÞÑ h where h starts from h0 and solves the
linear equation

(7.3) Bth ` Lτh ´ E ¨ v “ Ẽ ¨A˚h

where E and rE are obtained through the Poisson equation from respectively h and rg.
Existence and uniqueness in CpR`;Hq for (7.3) may be shown for instance using arguments
[38, Proposition 5.1] (adapted to our space-periodic setting that does not involve a confining
potential) in two steps. First, when considered as given source terms, E ¨ v and Ẽ ¨ A˚h
satisfy the hypotheses of [38, Proposition 5.1] thanks to estimates

ż T

0
|xE ¨ v, ϕy| dt ď

K

δ2
}h}L8p0,T ;Hq }Aϕ}L2p0,T ;Hq

?
T
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and
ż T

0

ˇ

ˇ

ˇ

A

Ẽ ¨A˚h, ϕ
Eˇ

ˇ

ˇ
dt ď

KR

δ2
}h}L8p0,T ;Hq }Aϕ}L2p0,T ;Hq

ˆ
ż T

0
minp1, tτ q

´3η

˙1{2

for any ϕ P L2p0, T ;Hq such that Aϕ P L2p0, T ;Hq and η ą 0 small enough. Note that the
latter estimate is obtained in the same way R0 was bounded in Lemma 5.3. Then, by a
fixed point argument in Cp0, t0;Hq for a sufficiently small t0, one builds a unique solution to
(7.3). Since t0 can be chosen independently of the initial data one may repeat the argument
to eventually get a global solution.

Our goal is to show that when δ is large enough one may choose R sufficiently large
(independently of δ) such that ΦpXRq Ă YR and Φ is a strict contraction (with uniform
constant) for norms

?
E and

?
F . Since fixed points of Φ are exactly solutions of (2.3)

starting from h0, this will prove altogether the existence of a solution in YR, its uniqueness
in XR, uniform bounds on the solution and smooth dependence on h0. To extend the
uniqueness result one shall only need to remark that the above argument may be localized
in time and to use a continuity argument based on the fact that any solution belongs to a
suitable time-localized version of XR for sufficiently small time.

Let us be more precise on the order in which parameters are chosen. Positive parameters
τ0 and R0 are given data and we choose a first δ0 ą 0 arbitrarily, say δ0 “ 1. Then
we may set β “ p0, 2, 1q and a suitable γ is provided by Proposition 6.2, constants in
corresponding estimates being uniform in the range τ ď τ0, δ ě δ0. The parameter θ could
be chosen essentially arbitrarily but it is convenient to set θ “ rθ{2 where rθ is provided by
Proposition 6.2. It turns out that we may also choose R ą R0 arbitrarily, say R “ 2R0.

Step 1, ΦpXRq Ă YR. Now we show that we may choose δ10 ě δ0 such that for any δ ě δ10,
τ ď τ0 and }h0} ď R0, we do have that ΦpXRq Ă YR. Combining Propositions 6.2 and 7.2,
we obtain indeed that for any pτ, δ, h0q as above, for any rg P XR, h “ Φprgq satisfies for any
t ě 0, for some constants K 1 and K depending only on rη1 P p0, 1q

Etphptqq ` rθ

ż t

0
Dsphpsqq ds

ď }h0}
2 ` K 1

ż t

0

”

Qδsphpsqq ` Rδsphpsq, hpsq, rgpsqq
ı

ds

ď }h0}
2 `

K p1`Rq

δ2

˜

ż t

0
Dsphpsqq ds `

ż minpt,τq

0
τ1´2rη1

`

s
τ

˘´3rη1
}hpsq}2 ds

¸

hence, provided that p1`Rq{pδ10q2 is sufficiently small one has

Etphptqq ` θ

ż t

0
Dsphpsqq ds ď }h0}

2 `
K p1`Rq

δ2

ż minpt,τq

0
τ1´2rη1

`

s
τ

˘´3rη1
}hpsq}2ds ,

and choosing rη1 P p0,
1
3q yields for any t ě 0 and some constant K depending only on rη1

}hptq}2 ď }h0}
2 e

K p1`Rq τ2p1´rη1q

δ2

therefore for any t ě 0 and some constant K depending only on rη1

Fphq ď }h0}
2

˜

1`
K p1`Rq τ2p1´rη1q

δ2
e
K p1`Rq τ2p1´rη1q

δ2

¸
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which can be made smaller than R2 provided that p1`Rq{pδ10q2 is small enough. It follows
that Φ is well-defined from XR to YR.

Step 2, Contraction. Now we show that Φ is a strict contraction fromXR to YR. Provided
that p1`Rq{pδ10q is sufficiently small, for any pτ, δ, h0q as above, for any data prg1, rg2q P pXRq

2,
values h1 “ Φprg1q and h2 “ Φprg2q satisfy

pBt ` Lτ qph1 ´ h2q ` pE1 ´ E2q ¨ v “ p rE1 ´ rE2q ¨A
˚h1 ` rE2 ¨A

˚ph1 ´ h2q

(with obvious implicit notation for electric fields), thus, for some constant K, for any t ě 0,

Etpph1 ´ h2qptqq ` θ̃

ż t

0
Dspph1 ´ h2qpsqq ds ď

K p1`Rq

δ2
Fph1 ´ h2q

1
2 Eprg1 ´ rg2q

1
2

as may be derived using that h1 P YR and h2 P YR. Factoring out Fph1´h2q
1
2 , it follows that

Φ is Lipschitz from XR to YR and that its Lipshitz constant may be assumed arbitrarily
small provided that p1 ` Rq{pδ10q

2 is sufficiently small. This is sufficient to lead to the
well-posedness part of Theorem 1.2

Step 3, Exponential Decay. The large-time decay may then be deduced from the Poincaré
inequality. Indeed the foregoing arguments provide for any t2 ě t1 ě τ

Et2phpt2qq ` θ

ż t2

t1

Dsphpsqqds ď Et1phpt1qq ,

and thanks to Lemma 6.1, for some K ą 0, our choice of parameters yields uniformly for
pτ, δ, h0q as above that for all t ě τ

K τ Etphptqq ď Dtphptqq .

Thanks to a backward Grönwall-like argument, this leads to

Etphptqq ď e´θ
1 τ tEτ phpτqq ď K 1 e´θ

1 τ t}h0}

for any t ě τ and some uniform positive K 1 and θ1. This may be extended to all t using
the uniform boundedness of Etphptqq. Similar arguments prove the uniform stability with
respect to initial data.

8. The regime of evanescent collisions

Remark 8.1 (Optimality of β). From Proposition 6.3 and Lemma 6.1, one may exponential
decay in H of solutions to (6.1), explicitly encoded by a rate e´θτminpβ3,´1,β3´β2qt for some
uniform θ ą 0. In order to optimize the former decay rate under (6.3), first observe that the
latter constraint implies β3´ β2 ě ´1 hence minpβ3,´1, β3´ β2q “ minpβ3,´1q. Thus, we
only need to ensure that β3 ě ´1 and there is a large choice of β that meet this constraint
jointly with (6.3). Indeed for any ´2 ď β1 ď 0 one may choose β2 such that

max p3β1 ` 2,´β1 ´ 2q ď β2 ď β1 ` 2

and then a suitable β3 may be chosen according to

min

ˆ

1,
β1 ` β2

2

˙

ě β3 ě max p´1, 2β1 ` 1, β2 ´ 1q

and that defines a non empty interval of β3s.
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A natural guide towards a good choice of β could be the examination of the best analogue
of Proposition 7.2 in the regime where τ is large. However, another thing that also differs
from the strongly collisional regime is that the main obstruction here does not arise from
quadratic terms. Indeed one may prove the following estimates.

Proposition 8.2 (τ Á 1; β “ p´1,´1,´1q). Set β “ p´1,´1,´1q. For any τ0 ą 0
and any γ P p0,8q3 satisfying corresponding conditions of Proposition 6.3, for any ρ˚ P
W 1,ppT2q, p ą 2, such that

ş

T2 ρ˚ “ 1, any δ0 ą 0, there exists K ą 0 such that for any
t ě 0, any τ P pτ0,8q, any δ P pδ0,8q and any h P H0

Qδt phq ď
K

δ2
Dtphq .

Since we shall not make any use of the former proposition we skip its proof. Yet let
us point out that the involved uniform estimate enforces βj ď ´1, j “ 1, 2, 3. Indeed
constraints (6.3) implies β1 ď 0 and, under this condition, the best possible estimates

S1,tphq ď K τ
2β2`1´β3

2 min
`

1, tτ
˘2
Dtphq ,

S3,tphq ď K τ1`β3 min
`

1, tτ
˘2
Dtphq ,

provide uniform bounds only when 2β2 ` 1 ď β3 and β3 ď ´1, which jointly with (6.3)
yield the claimed constraint. Note also that if moreover one requires β3 ě ´1 then the only
possible choice is indeed β “ p´1,´1,´1q.

Unfortunately, in the regime τ Á 1, trilinear terms leads to a more stringent constraint
on δ and the foregoing choice β “ p´1,´1,´1q does not minimize trilinear constraints.
Indeed

T1,tph, g, rgq ď K τ1´
η1
2 pβ3`1qmin

`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

rT1,tph, g, rgq ď K τ
1`maxp1,´β3q´rη1β2

2 Dtphq
1{2

”

τ´1{2 min
`

1, tτ
˘´3rη1{2

}gptq}
ı

Etprgq1{2 ,

with 0 ă η1 ď 1 and 0 ă rη1 ď 1, provides bounds that grow superlinearly in τ unless β2 ě 0
and β3 ě ´1. Note in turn that in order not to exceed a linear growth in τ , the bound on
S3,t only requires β3 ď 0. Now let us observe that in the final argument rη1 is constrained
by rη1 ă

1
3 and that constraints (6.3) yield

3
2β3 `

1
2 ď β2 ď β3 ` 1 .

In turn minimizing
maxp1´ 1

6β2, β2 ´
1
2β3 `

1
2q

under these constraints proves that one cannot do better than a τ
14
15 -growth and that one

may hope to (almost) realize it only with

β “ p´
8

15
,
2

5
,´

1

15
q .

As the following proposition proves this turns out to be indeed possible.

Proposition 8.3 (τ Á 1; β “ p´ 8
15 ,

2
5 ,´

1
15q). Set β “ p´ 8

15 ,
2
5 ,´

1
15q. For any ε ą 0,

any τ0 ą 0 and any γ P p0,8q3 satisfying corresponding conditions of Proposition 6.3, for
any ρ˚ P W 1,ppT2q, p ą 2, such that

ş

T2 ρ˚ “ 1 and any δ0 ą 0, there exist η P p0, 1q9,
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rη1 P p0, 1q and K ą 0 such that for any t ě 0, any τ P pτ0,`8q, any δ P pδ0,8q and any
ph, g, rgq P pH0q

3

Qδt phq ď
K τ

14
15

δ2
Dtphq ,

Rδ
t ph, g, rgq ď

K τ
14
15`ε

δ2
rDtphqs

1
2

„

pDtpgqq
1
2 ` τ´

1
2
`

t
τ

˘´
3rη1
2 χtďτ }g}



rEtprgqs1{2 .

Proof. We have already shown how to bound S1,t and S3,t. Moreover S2,t may be bounded
as S1,t, and S4,t and S5,t as S3,t. Likewise

S4,tphq ď K τ
1
2 p1`β3qDtphq “ K τ

7
15 Dtphq .

We have already explained how to bound rT1,t, we only need to add that rη1 is chosen as
rη1 “

1
3 ´ 5ε if ε ă 1

15 , and arbitrarily otherwise. Besides

T1,tph, g, rgq ď K τ1´
η1
2 pβ3`1qmin

`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

T2,tph, g, rgq ď K τβ3´
η2
2 pβ3`1qDtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T8,tph, g, rgq ď K τ
1´η8
2 pβ3`1qDtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

which are shown to be sufficient by choosing η1 “ 1
7 and any η2, η8. At last

T3,tph, g, rgq ď K τ
1
2β1´

η3
2 β2`1 min

`

1, tτ
˘

1´3η3
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T4,tph, g, rgq ď K τ
1´η4
2 β2´

1
2β3`

1
2 min

`

1, tτ
˘

1´3η4
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T5,tph, g, rgq ď K τ
1
2β2´

1
2β3`

1
2`

η5
2 p1`β3´β2q min

`

1, tτ
˘

1´3η5
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T6,tph, g, rgq ď K τ´
1
2β1´

η6
2 β2`

1
2β3`

1
2 min

`

1, tτ
˘

1´3η6
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T7,tph, g, rgq ď K τ´
1
2β1`

1
2β3`

1
2`

η7
2 p1`β3´β2q min

`

1, tτ
˘

1´3η7
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T9,tph, g, rgq ď K τ´
p1`η9q

2 β2`β3`1 min
`

1, tτ
˘

1´3η9
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

which are themselves shown to be sufficient by choosing ηi, i P t3, 4, 5, 6, 7, 9u, arbitrarily
in p0, 13 s. �

With this in hand the proof of Theorem 1.3 follows as in Theorem 1.2.

9. Asymptotic models in the diffusive regime

This section is devoted to the proof of Theorem 1.4. So far we have aimed at global-in-
time estimates and therefore what exactly was the reference time scale was immaterial. Now
we turn to asymptotics that are uniform only locally in time thus we explicitly introduce
a reference time in the equations. Namely, after choosing an observation time tref “ trefpτq
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in a τ -dependent way, we observe that if f solves the original system then fref defined by
frefpt, x, vq “ fptref t, x, vq and href “ pfref ´ f8q{f8 are such that

(9.1)

$

’

’

’

&

’

’

’

%

1

trefpτq
Bthref ` Lτhref “ Eref ¨A

˚p1q ` Eref ¨A
˚href,

Eref “
1

δ2
∇x∆´1

x nref , nref “

ż

R3

href f8 dv.

with initial data h0.
We already know that for any τ0 ą 0, R0 ą 0 there exists δ0 and uniform positive

constants K and θ such that when δ ą δ0 and }h0} ď R0, for any t ě 0

}hrefptq}
2 ` min

`

1, trefτ t
˘

}Ahrefptq}
2 ` τ2 min

`

1, trefτ t
˘3
}Chrefptq}

2

`
tref
τ

ż t

0
}Ahrefpsq}

2ds ` tref τ

ż t

0
min

`

1, trefτ s
˘2
}Chrefpsq}

2ds

`
tref
τ

ż t

0
min

`

1, trefτ s
˘

}A2hrefpsq}
2ds ` tref τ

ż t

0
min

`

1, trefτ s
˘3
}AChrefpsq}

2ds

ď K }h0}
2

and

}hrefptq} ď K e´θ tref τ t}h0} .

The latter estimates shows that }hrefptq} converges to 0 uniformly on compacts of p0,`8s
provided that trefpτqτ

τÑ0
Ñ 8. The foregoing asymptotic regime is stationary. This proves

part piq of Theorem 1.4.

9.1. Asymptotically linear free-field regimes. In the opposite regime where trefpτqτ
τÑ0
Ñ

0 we show now that relevant asymptotic models are of evolution type or at least strongly
keep track of initial data. However they are linear and one can also drop out convective
terms at least in the velocity directions.

Namely, let us denote hlin the solution to

1

trefpτq
Bthlin ` v ¨∇xhlin ` Eδ8 ¨∇vhlin `

1

τ
A˚Ahlin “ 0

with initial data h0. Observe that for any t ě 0

}hlinptq}
2 ` 2

tref
τ

ż t

0
}Ahlinpsq}

2ds ď }h0}
2 .

Note that

1

trefpτq
Btphref ´ hlinq ` v ¨∇xphref ´ hlinq ` E

δ
8 ¨∇vphref ´ hlinq `

1

τ
A˚Aphref ´ hlinq

“ Eref ¨A
˚href ` Eref ¨A

˚p1q .
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This implies for any t ě 0

}phref ´ hlinqptq}
2 `

tref
τ

ż t

0
}Aphref ´ hlinqpsq}

2ds

ď tref τ

ż t

0

`

}Erefpsqhrefpsq}
2 ` }Erefpsq}

2
˘

ds

ď
Kη p1`R

2
0q

δ2
}h0}

2 ˆ

#

ptref τ tq
1´η when tref t ě τ

τ2p1´ηq when tref t ď τ
.

for any 0 ă η ă 1
3 . The trickiest part of the foregoing bound follows from

tref τ

ż t

0
}Erefpsqhrefpsq}

2 ds ď
Kη

δ2
tref τ

ż t

0
}Chrefpsq}

2η}hrefpsq}
2p1´ηq}hrefpsq}

2 ds

ď
Kη R

2p1´ηq
0

δ2
}h0}

2tref τ

ż t

0

min
´

1,
tref
τ s

¯2η
}Chrefpsq}

2η

min
´

1,
tref
τ s

¯2η ds

ď
Kη R

2
0

δ2
}h0}

2ptref τq
1´η

ˆ
ż t

0
min

`

1, trefτ s
˘´

2η
1´η ds

˙1´η

.

obtained by the same argument used to bound R0 in Lemma 5.3 and Hölder estimates.
The proof of the claim is then achieved by noticing that

ż t

0
min

`

1, trefτ s
˘´

2η
1´η ds ď K max

´

t, τ
tref

¯

.

Hence we are asymptotically close to the linear regime.
Now let us show that contributions of the linear field terms also vanish in these regimes.

Let us denote has the solution to
1

trefpτq
Bthas `

1

τ
A˚Ahas “ 0 ,

with initial data h0 P H, and assume Ch0 P H. Note that

}hasptq}
2 ` 2

tref
τ

ż t

0
}Ahaspsq}

2ds ď }h0}
2 .

and that, since C and A commute, Chas solves the same equation, hence satisfies a similar
estimate with initial data Ch0. Using that v “ A`A˚, a direct estimate provides

}phlin ´ hasqptq}
2 `

tref
τ

ż t

0
}Aphlin ´ hasqpsq}

2ds

ď K tref τ

ż t

0
}Chaspsq}

2ds

` Ktref

ż t

0
r}AChaspsq} ` }Ahaspsq}s }phlin ´ hasqpsq}ds

ď K 1
“

tref τ t }Ch0}
2 `

?
tref τ t

`

}h0}
2 ` }Ch0}

2
˘‰

.

Since such h0 form a dense set inH, the corresponding convergence, uniform in t on compact
sets of r0,8q,

}hlinptq ´ hasptq}
τÑ0
ÝÑ 0 provided trefpτq τ

τÑ0
Ñ 0

may be extended to any h0 P H. This proves part pivq of Theorem 1.4.
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At last observe that, on one hand, for any t ě 0, with n0 “
ş

R2 h0Mdv

}hasptq ´ n0} ď e´θ
tref
τ
t }h0 ´ n0}

for some uniform θ ą 0, which proves part piiiq of Theorem 1.4. On the other hand,
uniformly in t on compact sets of r0,8q,

}hasptq ´ h0}
τÑ0
ÝÑ 0 provided trefpτq

τ
τÑ0
Ñ 0

for any h0 P H. The latter follows through a density argument from the explicit estimate

}hasptq ´ h0} ď
trefpτq t

τ }A˚Ah0}

that holds when moreover A2h0 P H. This proves part pvq of Theorem 1.4.

9.2. Nonlinear diffusive regime. The remaining regime corresponds to the case where
tref τ is of order 1 and therefore in this section we set trefpτq “ τ´1. Note that with this
choice we already know that

ˆ
ż 8

0
}Ahrefptq}

2 dt
˙

1
2
ď K τ }h0}

and this implies that
ˆ
ż 8

0
}frefptq ´Mρrefptq}

2
L2pM´1qdt

˙

1
2
ď K 1 τ }h0} .

Our goal is to also identify some asymptotic limiting behavior for nref “ ρref´e
´φδ8 . Note

that the proof of Theorem 1.2 by a contraction argument also provides us with the fact the
map h0 ÞÑ href is Lipschitz from H0 to L8pR`;H0q, therefore this is also the case for the
map h0 ÞÑ nref from H0 to L8pR`;L2pT2qq. To prove convergence in L8locpR`;L2pT2qq

(without explicit decay rates) we may therefore restrict to a case where also hold Ah0 P H,
ACh0 P H, Ch0 P H and C2h0 P H. The gain we shall use is two-fold. Indeed one may
both drop out time weights in our arguments and upgrade it to higher regularity to obtain

}hrefptq}
2 ` }Ahrefptq}

2 ` }Chrefptq}
2 ` }AChrefptq}

2 ` τ2 }C2hrefptq}
2

`
1

τ2

ż t

0
}Ahrefpsq}

2ds `
1

τ2

ż t

0
}A2hrefpsq}

2ds

`
1

τ2

ż t

0
}AChrefpsq}

2ds `
1

τ2

ż t

0
}A2Chrefpsq}

2ds

`

ż t

0
}AC2hrefpsq}

2ds `

ż t

0
}Chrefpsq}

2ds `

ż t

0
}C2hrefpsq}

2ds

ď K
“

}h0}
2 ` }Ah0}

2 ` }Ch0}
2 ` }ACh0}

2 ` τ2 }C2h0}
2
‰

.

It is very important to note however that in order to do so we do not need to restrict further
δ0 in a way that would depend on the size of }Ah0}, }Ch0}, }ACh0} and }C2h0}. Otherwise
this would prevent us from extending the convergence to h0 P H0 by a density argument.
In contrast, we will be free to restrict τ0 in a way depending on above norms. We skip the
proof of the foregoing claim as lengthier but otherwise completely similar to estimates that
have been proved in detail above.
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Now, our starting point is the continuity equation (5.9), that here takes the form

Btnref `
1

τ
divxpjrefq “ 0

where we recall that

nref “

ż

R2

href f8dv , jref :“

ż

R2

v href f8dv .

Similarly, a momentum equation

(9.2) τBtjref `
1

τ
jref “ nrefE

δ
8 ` pρ8 ` nrefqEref ´∇xnref ´ divxpSrefq

may be obtained by multiplying (9.1) by v and integrating in the velocity variable, with

Sref “

ż

R2

pv b v ´ Iqhref f8dv .

To give some hints on computations involved in the foregoing derivation, we introduce
x ¨ ; ¨ yv to denote the spatially dependent scalar product on L2pf8 dvq and notice that

nref “ x1;hrefyv , jref “ xA˚p1q;hrefyv “ x1;Ahrefyv , Sref “ xpA˚q2p1q;hrefyv

as follows from v “ A` A˚, Ap1q “ 0 and commutation properties of A and A˚. Now the
key computations leading to the above are

xA˚p1q;Eref ¨A
˚p1` hrefqyv “ pρ8 ` nrefqEref ,

xA˚p1q;Eδ8 ¨Ahrefyv “ SrefE
δ
8 ,

xA˚p1q;A˚ ¨Ahrefyv “ jref ,

xA˚p1q; divxppA`A˚qhrefqyv “ divxpxA˚p1q; pA`A˚qhrefyvq ´ xA˚p1q; pA`A˚qhrefyv E
δ
8

“ divxpSref ` nref Iq ´ pSref ` nref IqEδ8 .

To proceed, with this in hands, the continuity equation may be turned into

Btnref ` divxpnrefE
δ
8 ` pρ8 ` nrefqEref ´∇xnrefq “ divxpdivxpSrefqq ` τdivxpBtjrefq .

Therefore we set

rnref “ nref ´ τdivxpjrefq and rEref “
1

δ2
∇x∆´1

x rnref

and introduce nas the solution to

Btnas ` divxpnasE
δ
8 ` pρ8 ` nasqEas ´∇xnasq “ 0

starting from n0, where Eas “ δ´2∇x∆´1
x nas. Note that the well-posedness of the equation

for nas may be obtained by a simpler version of the argument proving Theorem 1.2. More-
over we may ensure that }rn0} ď 2R0 by requiring τ0 }divxpj0q} ď R0 and thus restrict δ0
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in a way that depends only on R0 in order to deduce for any t ě 0

}prnref ´ nasqptq}
2 `

ż t

0
}∇xprnref ´ nasqpsq}

2ds

ď τ2 }divxpj0q}2

` K

ż t

0

”

τ2}divxpjrefqpsq}2L4pT2q }pE
δ
8 `

rErefpsqq}
2
L4pT2q

`}nrefpsq}
2 }p rEref ´ Erefqpsq}

2
L8pT2q

` τ2}∇2pjrefqpsq}
2 ` }divxpSrefqpsq}

2
ı

ds

ď K 1 τ2
“

}h0}
2 ` }Ah0}

2 ` }Ch0}
2 ` }ACh0}

2 ` τ2 }C2h0}
2
‰

since }divxpSrefq} ď K
`

}A2Chref} ` }A
2href}

˘

. This proves part piiq of Theorem 1.4.
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