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LARGE-TIME BEHAVIOR OF SOLUTIONS TO
VLASOV-POISSON-FOKKER-PLANCK EQUATIONS: FROM

EVANESCENT COLLISIONS TO DIFFUSIVE LIMIT

MAXIME HERDA AND L.MIGUEL RODRIGUES

Abstract. The present contribution investigates the dynamics generated by the two-
dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady
inhomogeneous background of opposite charges. Our goal is to provide global in time
estimates that are uniform with respect to initial data taken in a bounded set of a
weighted L2 space, and where dependencies on the mean-free path τ and the Debye
length δ are made explicit. In our analysis the mean free path covers the full range
of possible values: from the regime of evanescent collisions τ Ñ 8 to the strongly
collisional regime τ Ñ 0. We pay a special attention to relax as much as possible the
τ -dependent constraint on δ ensuring exponential decay with explicit τ -dependent rates
towards the stationary solution. In the strongly collisional limit τ Ñ 0, we also examine
all possible asymptotic regimes selected by a choice of observation time scale. Here also,
our emphasis is on strong convergence, uniformity with respect to time and to initial
data in bounded sets of a L2 space. Our proofs rely on a thorough preliminary study
of the nonlinear elliptic equation defining stationary solutions and a careful tracking
and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.
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1. Introduction

In a periodic box T2 “ R2{Z2, we consider a large number of charged particles
subject to self-consistent electrostatic forces and interacting with a fixed background of
steady heavy particles with opposite charge as well as a thermal bath. The system can
be described at a kinetic level by a distribution function f : R` ˆ T2 ˆ R2 Ñ R`,
pt, x, vq ÞÑ fpt, x, vq obeying the Vlasov-Poisson-Fokker-Planck (VPFP) system which
reads in dimensionless form

(1.1)

$

’

’

’

&

’

’

’

%

Btf ` v ¨∇xf ´∇xφ ¨∇vf “
1

τ
divv pvf `∇vfq ,

´δ2∆xφ “ ρ´ ρh, ρ “

ż

R2

f dv

and is completed with the prescription of an initial data, fp0, ¨, ¨q “ f0.
The number density of background particles is given as ρh : T2 Ñ R` whereas φ :

R` ˆ T2 Ñ R is the electrostatic potential satisfying a Poisson equation. Interactions
with the thermal bath are modeled by the Fokker-Planck term at the right-hand side
of the first equation. The characteristic temperature of the bath is scaled to 1. The
respective total charges have also been scaled to 1,

ż

T2ˆR2

f0 “ 1 ,

ż

T2

ρh “ 1 ,

the constraint being preserved by the time evolution. The parameter τ denotes the scaled
mean free path between two "collisions" with the thermal bath. The scaled Debye length
δ measures the radius of electrostatic influence of an isolated particle. The asymptotics
δ Ñ 0 is called the quasineutral limit and the terminology quasineutral parameter is also
used for δ. While, as we clarify later on, our strategy has a clear counterpart in any
dimension, the precise outcome would be significantly modified by another dimensional
choice therefore we choose to restrict ourselves to the two dimensional setting.

The VPFP system, as expounded here or with some variants, including the considera-
tion of gravitational forces instead of electrostatic forces, has a long history. A derivation
of the model and references to even earlier derivations may already be found in a seminal
piece of work by Chandrasekhar [17]. Concerning the Cauchy problem in two dimensions,
first global well-posedness results were obtained by Neunzert, Pulvirenti and Triolo [49]
on R2 for bounded compactly-supported initial data, by the method of stochastic char-
acteristics; then by Degond [18] for a frictionless version of the system, on R2, for W 1,1

data with finite moments in velocity of more than second order, by relying mostly on
suitable maximum principles. Since then those results have been extended and improved
in various ways [58, 15, 51].

Our goal is to provide a description of the dynamics of solutions to Equation (1.1)
on every possible time scale, from initial data to exponential convergence towards a
stationary state, and in any regime of the collisional parameter τ . We also aim at
providing strong convergence results uniform with respect to initial data taken from
bounded sets. Our normalization already contains }f0}L1pT2ˆR2q “ 1. However to benefit
from a Hilbert structure we shall use a weighted L2 space embedded in L1 instead of L1
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itself. Namely we introduce the norm } ¨ }L2pM´1q defined by

}u}2L2pM´1q “

ĳ

T2ˆR2

|upx,vq|2

Mpvq dx dv

where M is the local Maxwellian

Mpvq “
1

p2πq
e´

1
2 |v|

2

.

The main advantage in this particular weight choice stems from the fact that the Fokker-
Planck operator is symmetric on L2pM´1q. Then we choose f0 ě 0 such that

}f0}L2pM´1q ď R0 ,

where R0 ě 1 is fixed but arbitrary and obtain bounds depending on R0 but not on f0
itself.

As a preliminary observation, note that stationary states pf8, φδ8q are characterized
by

$

’

&

’

%

v ¨∇xf8 ´∇xφ
δ
8 ¨∇vf8 “

1

τ
divv pvf8 `∇vf8q ,

´δ2∆xφ
δ
8 “ ρ8 ´ ρh , ρ8 “

ż

R2

f8 dv.

Since the Fokker-Planck operator is symmetric on L2pe´φδ8M´1q and the transport part
is skew-symmetric on this space, if for instance φδ8 is bounded and f8 P L2pM´1q then
the two parts must vanish separately when applied to f8. Therefore f8 is a global
Maxwell-Boltzmann distribution

(1.2) f8px, vq “Mpvqe´φ
δ
8pxq,

and the stationary equations reduce to

(1.3) ´δ2∆xφ
δ
8 “ e´φ

δ
8 ´ ρh .

Concerning the latter, we observe that

Lemma 1.1. For any ρh P H´1pT2q such that
ş

T2 ρh “ 1, for any δ ą 0, Equation (1.3)
possesses a unique weak solution φδ8 P H1pT2q and moreover

ş

T2 e
´φδ8 “ 1.

Our analysis involves a more detailed study of Equation (1.3). Though we have not
found in the literature directly applicable results, the first steps of our analysis of equi-
librium states is however by now essentially standard [28, 22, 19, 27, 20, 13, 25, 24].
It is noteworthy that the existence of nontrivial stationary states holds for most gen-
eralizations of (1.1). To prevent it, one essentially needs to look either at frictionless
versions, where the Fokker-Planck operator is replaced with a Laplacian in velocity, or at
equations on R2 with no background density ρh ” 0 and no confining potential [27, 20].
Correspondingly, in the former case, in various perturbative settings, self-similar decay
to zero at algebraic rates has been proven [16, 14, 52, 44].

In [12, 20], Bouchut and Dolbeault prove that in Rd, d ě 3 in presence of a confining
potential, when ρh ” 0, solutions f starting from initial data with finite mass, finite
energy, finite entropy and such that ∇xφ P L

8
locpp0,8q;L

8pRdqq, converge in L1pR2dq to
a global Maxwell-Boltzmann distribution as time goes to infinity. Their proof is likely to
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extend to the case under consideration and our focus is not in reproving such behavior
but in providing uniform bounds in the same space for the solution and the initial data,
and including exponential decay to equilibrium.

Obviously this encompasses asymptotic stability of equilibrium states. For the equa-
tion under consideration, Hwang and Jang [42] have already proved some asymptotic
stability results for the case where ρh ” 1 so that φδ8 ” 0, in a topology requiring
pf0´ f8q{

?
f8 to be small in H3pT2ˆR2q (instead of L2). Note that condition φδ8 ” 0

brings a lot of exceptional cancellations in the analysis and a considerable part of as-
ymptotic stability results for similar equations have been so far focused essentially on
this case. Our result contains asymptotic stability in L2 with explicit dependence on
parameters of exponential convergence rates, and arbitrary ρh, provided δ is sufficiently
large. Though we have not investigated this track, we anticipate that our strategy of
proof would also yield exponential asymptotic stability in L2 for any fixed δ provided
ρh ´ 1 is sufficiently small, in the spirit of [24]. During the completion of the present
contribution, also appeared by Bedrossian [2] an extension of [42], still with ρh ” 1
and high-regularity weighted L2 spaces (but with algebraic weights instead of Gaussian
ones), to a version of the system where collisions are more nonlinear and model self-
collisions instead of collisions with a thermal bath. More importantly to us, holding δ
fixed, Bedrossian provides a careful study of dependencies on the parameter τ in the limit
τ Ñ 8, benefiting both from Landau damping for the limiting Vlasov-Poisson system
[48, 8] and from mixing-enhanced dissipation. This extends to the full nonlinear regime
the former linearized analysis by Tristani [57] and is similar in spirit to [9, 3, 4, 10, 5]
that build on inviscid damping for shear flows of the Euler system [6, 7].

It is important to note however that our nonlinear parameter shall not be the distance
of the initial data to some equilibrium, that is essentially arbitrary here, but the inverse
of the quasineutral parameter. In particular even when ρh ” 1 our set of initial data
contains data that fail to satisfy Penrose stability criterion, that is known to play a
crucial role for the Vlasov-Poisson system both in the large-time limit [53, 32, 48, 8] and
in the quasineutral limit [34]. Though the currently available results [18] concerning the
approximation of solutions to (1.1) by those of the Vlasov-Poisson system are not precise
enough to justify relevant heuristic arguments, this strongly hints at the fact that one
cannot benefit from mixing properties at least initially and that one needs to take δ Ñ8

when τ Ñ8.
Though they do not state it in this precise way, the recent analysis by Hérau and

Thomann [38] proves precisely that for any fixed pτ,R0q there indeed exists a δ0pτ,R0q

such that when δ ą δ0pτ,R0q one may obtain global bounds for the solution, for the
version of the system set on R2, with a confining potential but with ρh ” 0. Our
main goal here is to provide explicit upper bounds for those δ0pτ,R0q. The analysis of
Hérau and Thomann scales badly with respect to τ , due to the anisotropic nature of
hypocoercivity/hypoellipticity. Indeed, their analysis uses directly decay estimates from
[36] (see also [37, 35]) for the linearization about a stationary solution. Yet using those
would prevent us from keeping track of the anisotropic nature of dissipation that helps
in improving estimates of δ0pτ,R0q. Moreover, as we discuss more precisely below, in
the limit τ Ñ 0, our optimization of involved hypocoercive Lyapunov functionals differs
from what would follow from an optimal treatment of the linearized problem !
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Main results. Let us state our main results concerning the latter, that we split in
cases including respectively either the strongly collisional regime or the the regime of
evanescent collisions.

Our first result concerns the diffusive regime, namely when τ is small.

Theorem 1.2 (Diffusive regime; τ À 1). For any τ0 ą 0, any R0 ą 1 and any ρh P
W 1,ppT2q, with p ą 2, such that

ş

T2 ρh “ 1, there exist δ0 ą 0, θ0 ą 0 and K ą 0 such
that for any τ P p0, τ0q, any δ P pδ0,8q,

‚ for any f0 such that

}f0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “ 1 ,

then Equation (1.1) posseses a (unique strong) solution f starting from f0, and
it satisfies for any t ě 0

}fpt, ¨, ¨q ´ f8}L2pM´1q ď K }f0 ´ f8}L2pM´1q e
´θ0 τ t

where f8 solve (1.2)-(1.3);
‚ for any f0, g0 such that

}f0}L2pM´1q ď R0 , }g0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “

ż

T2ˆR2

g0 “ 1 ,

then corresponding solutions f and g satisfy for any t ě 0

}fpt, ¨, ¨q ´ gpt, ¨, ¨q}L2pM´1q ď K }f0 ´ g0}L2pM´1q e
´θ0 τ t .

Actually we may ensure δ0 ď K p1`R
1{2
0 q for some suitable K depending on ρh. The

forcing by ρh indeed induces inhomogeneity in the bound.
Our second result concerns the regime of evanescent collisions, namely when τ is large.

Theorem 1.3 (Evanescent collisions; τ Á 1). For any ε ą 0, any τ0 ą 0, any R0 ą 1
and any ρh PW 1,ppT2q, with p ą 2, such that

ş

T2 ρh “ 1, there exist K0 ą 0, θ0 ą 0 and
K ą 0 such that for any τ P pτ0,8q, any δ P pK0τ

7{15`ε,8q,
‚ for any f0 such that

}f0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “ 1 ,

then Equation (1.1) posseses a (unique strong) solution f starting from f0, and
it satisfies for any t ě 0

}fpt, ¨, ¨q ´ f8p¨, ¨q}L2pM´1q ď K }f0 ´ f8}L2pM´1q e
´θ0

t
τ

where f8 solve (1.2)-(1.3);
‚ for any f0, g0 such that

}f0}L2pM´1q ď R0 , }g0}L2pM´1q ď R0 and
ż

T2ˆR2

f0 “

ż

T2ˆR2

g0 “ 1 ,

then corresponding solutions f and g satisfy for any t ě 0

}fpt, ¨, ¨q ´ gpt, ¨, ¨q}L2pM´1q ď K }f0 ´ g0}L2pM´1q e
´θ0

t
τ .
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We may ensure K0 ď K p1`R
1{2
0 q for some suitable K again depending on ρh.

Some comments are in order. Previous theorems prove that the combination of the
transport term that mixes space and velocity at typical time scale of size 1 with the
Fokker-Planck part that regularizes and dissipates in the velocity variable at time scale
τ do lead to both decay and regularity in all variables, regularization being somewhat
implicit in our statements, but clearly apparent in our proofs. This type of structure is
actually the prototype of systems leading to hypocoercive decay to equilibrium [37, 47,
59, 23, 21, 46] and hypoelliptic regularization [41, 45, 37, 35, 46]. Regularization allows
us to obtain exponential convergence starting from initial data in L2pM´1q and to prove
Lipschitz dependence on the initial data from the norm topology of L2pM´1q to the norm
topology of L8pR`;L2pM´1qq. The latter is somewhat in contrast with the analysis in
[33]. The presence of a constant K ě 1 allowing for some finite transient growth also
reflects both the non purely dissipative nature of our nonlinear system and our use of
regularizing effects. Indeed the dissipations of functionals involved in our proofs need
some time to control enough regularity to prevent the nonlinearity from inducing some
norm growth.

Real part of eigenvalues of the toy
model vs. τ , in logarithmic scale.

The dependence of decay rates in the colli-
sional parameter τ also stems from the multi-scale
anisotropic behavior of the system. As a simple but
enlightening toy model consider the system of two
ordinary differential equations

X 1ptq “ V ptq
V 1ptq “ ´Xptq ´ τ´1V ptq

that mixes X and V at scale 1 and dissipates ex-
plicitly V at scale τ , mimicking respectively trans-
port and collisions. For the toy model one readily
checks that the rate of exponential decay to zero
behaves as 1{p2τq in the limit τ Ñ 8 and as τ in
the limit τ Ñ 0`. This is consistent with our re-

sults for (1.1). Also note that our decay rates are directly related to the spectral gap of
self-adjoint operators

´τ ∆x ´
1

τ
divv pv ¨ `∇v¨q

on L2pM´1q, that exhibit the same asymptotic behaviors.

To comment on constraints on δ, let us start with a deliberately oversimplified analogy.
Retaining from the foregoing discussion only decay rates and assuming that regularity is
not an issue leads to the consideration of scalar differential equations y1ptq “ 1`yptq

δ2
yptq´

τyptq when τ À 1 and y1ptq “ 1`yptq
δ2

yptq´ 1
τ yptq when τ Á 1, the forcing by y{δ2 modeling

in particular the effect of the inhomogeneity of ρh. For those equations the ball of center
zero and radius R0 is uniformly attracted to zero respectively when δ ą

?
1`R0 τ

´1{2

and when δ ą
?

1`R0 τ
1{2. Though those equations fail to provide relevant predictions

for our system, they give an idea of the kind of conclusion that can be drawn when one first
derives bounds for the semi-group evolution, without tracking anisotropic dependences
in parameters, and then uses them at the nonlinear level. In the regime where τ À 1 it
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is obvious that the foregoing scalar equation is way too pessimistic to be relevant since
it overlooks the dissipation in v at rate τ´1 that helps to bound any term that involves
a derivative in v, including all contributions from the electric field, hence all nonlinear
terms ! It is a bit more surprising that it also fails to predict an accurate threshold in
the limit τ Ñ8.

It may be worth stressing that the necessity to impose δ Ñ8 when τ Ñ8 is a short-
time/nonlinear constraint and that for the evolution linearized about f8 one may obtain
uniform estimates assuming only that δ is large uniformly with respect to τ P p0,8q.
This follows directly from Proposition 7.2 and contrasts with Proposition 7.3.

To try a comparison with previous analyses involving an explicit discussion on the
parameter τ , let us extrapolate that when ρh ” 1 our constraint could be turned into

}f0 ´ f8}{δ
2 ď Kε minp1, τ´p

14
15`εqq for any ε ą 0 and some K, where } ¨ } is a suitable

norm. As already pointed out, in the limit τ Ñ 8 this compares unfavorably with the
recent analysis of Bedrossian [2] that only requires }f0 ´ f8} ď Kδ τ

´1{3 (with a norm
encompassing strong regularity however) when τ À 1, and whose cornerstones are Landau
damping and mixing-enhanced dissipation — a priori not available in our context — that
leads to a dissipation in τ´1{3, instead of τ´1, for inhomogeneities in the x variable. In
the limit τ Ñ 0 it would compare however extremely favorably with the analysis by Jin
and Zhu [43], that also appeared during the finalization of the present contribution and
that requires }f0´ f8}{δ2 ď K τ when τ À 1 (in a norm also requiring strong regularity
of the initial data). In particular their result does not allow to take limits when τ Ñ 0
for a fixed nontrivial pair pf0, δq.

Now we turn to asymptotic regimes. In the diffusive regime, constraints on δ are
uniform with respect to τ . Therefore for any sufficiently large fixed δ one may examine
model reductions in the limit τ Ñ 0. Those depend on the typical time scale chosen to
observe the solution. Therefore we introduce an observation time tref ” trefpτq and scale
f accordingly to obtain fref through frefpt, x, vq “ fptref t, x, vq. The following diagramm
may help the reader to visualize remarkable time scales appearing in our last main result.

trefpτq
pvq

|
τ

pivq piiiq
|

1{τ

piiq piq

Frozen
initial data Asymptotically thermalized regimes

Asymptotically free-field
linear regimes

Asymptotically
steady regime

Nonlinear low-field

Fokker-Planck
Homogeneous

regime

|

0
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Theorem 1.4 (Diffusive limits; τ Ñ 0).
Let us denote fref the rescaled solution provided by Theorem 1.2.

(i). With K depending only on R0, ρh and τ0, there holds for any t ě 0 and τ ď τ0

}frefpt, ¨, ¨q ´ f8p¨, ¨q}L2pM´1q
ď K }f0 ´ f8}L2pM´1q e

´θ0 trefτ t

so that, in L2pM´1q, uniformly with respect to times t taken in compacts of p0,8s,

frefpt, ¨, ¨q
τÑ0
ÝÑ f8

provided trefpτq τ
τÑ0
Ñ 8.

(ii). When trefpτq “ τ´1, with K depending only on R0, any ρh P W 2,ppT2q, with
p ą 2, and τ0, there holds for any τ ď τ0

}fref ´ ρrefM}L2pR`;L2pM´1qq
ď K τ }f0 ´ f8}L2pM´1q

τÑ0
ÝÑ 0

with ρref “
ş

R2 frefp¨, ¨, vqdv, and, in L8pR`;L2pT2qq,

ρrefpt, ¨, ¨q
τÑ0
ÝÑ ρas

where ρas P L
8pR`;L2pT2qq X L2pR`;H1pT2qq is the unique strong solution to

the drift-diffusion equation

(1.4)

#

Btρas ` divxpEas ρas ´∇xρasq “ 0 ,

Eas “ δ´2∇x∆´1
x pρas ´ ρhq ,

starting from ρ0 “
ş

R2 f0p¨, vqdv P L2pT2q.

(iii). In L2pM´1q uniformly with respect to times t taken in compacts of p0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ ρ0M

with ρ0 “
ş

R2 f0p¨, vqdv provided trefpτq τ
τÑ0
Ñ 0 and trefpτqτ´1

τÑ0
Ñ 8 .

(iv). When trefpτq “ τ , in L2pM´1q, uniformly with respect to times t taken in com-
pacts of r0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ fFP

where fFP is the unique strong solution to the homogeneous Fokker-Planck equa-
tion

(1.5) BtfFP “ divvpv fFP `∇vfFPq ,

starting from f0.

(v). In L2pM´1q, uniformly with respect to times t taken in compacts of r0,8q,

frefpt, ¨, ¨q
τÑ0
ÝÑ f0

provided trefpτqτ´1Ñ0 when τ Ñ 0 .
8



Note that our Lipschitz dependence on initial data also allows us to replace the
fixed initial data of the previous theorem with a τ -dependent family converging to f0
in L2pM´1q as τ Ñ 0.

In this theorem we prove strong convergence in each particular regime. In the asymp-
totically steady regime (i) we prove exponential convergence to the global Maxwellian
uniformly with respect to f0. Here uniformity in time necessarily excludes a neighbor-
hood of initial time since the asymptotic limit loses any trace of the initial data. Likewise,
in regimes (ii) and (iii) part of the initial data is asymptotically lost so that uniformity
near initial time may hold for the asymptotics of ρref but not for fref. There is a threshold
trefpτq “ τ´1 between asymptotic regimes where nonlinearity due to field effects play a
role ((i) and (ii)) and the asymptotically field-free linear regimes ((iii), (iv) and (v)).
For the latter regimes, moreover, the macroscopic density ρ is asymptotically stuck to its
initial data, which prevents uniformity in time to hold up to infinite time. Actually those
three regimes may be understood via the fact that solutions are asymptotically close to
the family of solutions rf to homogeneous Fokker-Plank equation

τ

trefpτq
Bt rf “ divvpv rf `∇v

rfq ,

starting from f0. As for the foregoing linear case, our proof does provide convergence
rates for those three asymptotically linear regimes when one assumes more regularity on
initial data.

At the threshold (ii) appears the most interesting limit, known as the low-field, para-
bolic or diffusion limit. Here the asymptotic dynamics for ρref is non-linear and capable
to connect initial data to large-time equilibrium, resulting in estimates uniform with re-
spect to time in r0,8s. Note moreover that System (1.4) inherits the same properties of
exponential convergence and uniform stability with respect to initial data as (1.1). As
for the large-time limit, our main goal here is not to prove that the limit holds but to
provide strong convergence in the same L2 space where the initial data is taken and uni-
form in time. Indeed the present limit has been extensively investigated over the years,
with first results obtained by Poupaud and Soler [54], then improved by Goudon [29] and
extended to higher dimensions [26] and multiple-species dynamics [60, 39]. In particular,
for various variants of (1.1), the limit is known to hold for initial data with finite mass,
finite energy and finite entropy (plus one moment in velocity when the system is set on
R2). Yet the convergence of ρ proved there is local in time and only weak in the spatial
variable, that is, it is proved in L8locpp0,8q;L

1 ´weakq. In particular those convergence
results cannot be used to transfer the large-time behavior of the limiting (1.4) to the
original (1.1). In contrast, assuming here that δ is sufficiently large, uniformly with re-
spect to τ , we prove that the convergence of ρref holds in L8pR`;L2pT2qq assuming that
f0 P L

2pM´1q. Moreover, as for asymptotically linear regimes, assuming more regularity
on the initial data, our proof also provides uniform convergence rates.

Strategy. We now provide some more details on our strategy. To begin with, though we
do consider initial data not necessarily close to f8, it is convenient for this forthcoming
analysis to write solutions in a seemingly perturbative form by introducing the following
new unknowns

h “
f ´ f8
f8

, ψ “ φ´ φδ8 .
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In terms of ph, ψq, System (1.1) becomes

(1.6) Bth` v ¨∇xh´∇xφ
δ
8 ¨∇vh`

1

τ
pv ´∇vq ¨∇vh`∇xψ ¨ v “ ∇xψ ¨ p∇v ´ vqh

coupled with the Poisson equation

(1.7) ´δ2∆ψ “ n ,

where the source is given by

n “

ż

R2

h f8dv .

Once sufficient bounds have been obtained on φδ8, one may rightfully replace in all
our statements canonical norms of L2pM´1q with the equivalent norm arising from its
interpretation as H :“ L2pT2 ˆR2, µq where µ is the measure with probability density
function f8. The space H is thus endowed with its canonical scalar product

x¨, ¨y : pf, gq ÞÝÑ

ż

T2ˆR2

f g dµ.

and we denote by } ¨ } the corresponding norm. The main advantage is that now at
the linearized level the transport term becomes skew-symmetric for the new structure
whereas the Fokker-Planck operator remains symmetric. We stress that h0f8 is mean-
free and so will remain hpt, ¨, ¨qf8 for later times t. Hence we introduce the following
subspace of H

H0 “

"

h P H such that x1;hy “

ż

T2ˆR2

h dµ “ 0

*

where 1 denotes the constant function with value 1.
As is customary in the field, in particular following the memoir of Villani [59], we shall

write estimates proving hypocoercivity using an abstract formulation of the equations.
To do so we introduce the following unbounded operators on H

A “ ∇v ,

B “ v ¨∇x ´ p∇xφ
δ
8q ¨∇v .

Let us mention that in order to clarify computations using vectors or higher-order tensors
we sometimes use Einstein summation convention on repeated indices. In this way, we
also introduce Lτ defined as

Lτ “
1

τ
A˚iAi `B

where we use the superscript ˚ to denote coordinate-wise formal adjoint in H. On this
example our convention explicitly reads

A˚ “ v ´∇v , B˚ “ ´B .

The perturbative form (1.6)-(1.7) is then equivalently written

(1.8)

$

’

&

’

%

Bth ` Lτh ´ E ¨A˚p1q “ E ¨A˚h ,

E “ δ´2∇x∆´1
x n , n “

ż

R2

h f8dv .

10



In this abstract form preservation of mass follows from Ap1q “ 0, B˚p1q “ 0, and the
non-linear part of the system lies on the right-hand side of the first equation.

Commutators play a crucial role in the analysis so that we define and evaluate

C “ rA,Bs “ ∇x ,
rB,Cs “ Hesspφδ8q∇v ,
rAi, A

˚
j s “ δij ,

where Hesspφδ8q is the Hessian matrix of φδ8 and δij is the Kronecker symbol. At the
linearized level, good dissipative terms arise from

xh;Lτhy “
1

τ
}Ah}2 and xABh;Chy`xAh;CBhy “ }Ch}2´

A

Ah;Hesspφδ8qAh
E

that are involved in computations of time derivatives of respectively }h}2 and xAh,Chy,
when h solves (1.8). Incidentally, we point out that, forK,L two vector-valued operators,
we shall repeatedly use KL to denote the matrix-valued operator with coefficients KiLj .
For instance the operator yielding the Hessian in the velocity variable is denoted AA or
A2.

We will prove all parts of Theorems 1.2 and 1.3 — existence, uniqueness, stability
with respect to initial data, regularization and exponential convergence — at once by
interpreting (1.8) as the research of a fixed point for a strict contraction on a functional
space that encodes regularization and decay and that quantifies precisely dependences on
τ . This function space is designed from functionals Eγ, β, τ, δ and Fθ

γ, β, τ, δ built as follows.
First we consider the following weighted Sobolev norm

~h~2γ, β, τ, t “ }h}2 ` γ1τ
β1 min

`

1, tτ
˘

}Ah}2

` γ2τ
β2 min

`

1, tτ
˘3
}Ch}2 ` 2γ3τ

β3 min
`

1, tτ
˘2
xAh,Chy ,

and a corresponding dissipation

Dγ, β, τ, tphq “ τ´1}Ah}2 ` γ1τ
β1´1 min

`

1, tτ
˘

}A˚ ¨Ah}2

` γ2τ
β2´1 min

`

1, tτ
˘3
}ACh}2 ` γ3τ

β3 min
`

1, tτ
˘2
}Ch}2.

The presence of cross terms in ~h~γ, β, τ, t is related to the above mentioned commutator
computation. Let us also mention that we have chosen to use weights with pure powers
of τ instead of, for instance, some minima of two powers, principally to facilitate reading.
However it forces us to split the discussion between regimes τ Á 1 and τ À 1.

Note that an estimation of ~hpt, ¨, ¨q~γ, β, τ, t in terms of ~h0~γ, β, τ, 0 “ }h0} when h
solves (1.8) would encode hypoelliptic regularization. Powers of the time variable should
be appreciated with this in mind as they are associated with classical gain of regularity
afforded by the kinetic Fokker-Planck operator; see for instance [59, Appendix A.21].
Furthermore, if one proves that solutions to (1.8) satisfy for any t2 ě t1 ě τ

~hpt2q~
2
γ, β, τ, t2 ` θ

ż t2

t1

Dγ, β, τ, sphpsqq
2ds ď ~hpt1q~

2
γ, β, τ, t2

for some θ ą 0, then by using Poincaré inequality one deduces exponential decay with
rates scaling as minpτ´1, τβ3 , τβ3´β2q. Hence closing such form of estimates will prove at
the same time hypoelliptic regularization and hypocoercitive decay.
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In Section 5 we first show what choices of parameters γ and β are available for the
reduced toy system Bth`Lτh “ 0 that may be though as a δ “ 8 version of System (1.8).
We may then analyze for the original problem what is, among available parameters for
the toy system, the optimal choice to relax as much as possible the constraint on δ and
still obtain the same entropy/dissipation relations. Since the way in which we prove
corresponding nonlinear a priori estimates lends itself to a strict contraction formulation
this will lead to Theorems 1.3 and 1.2. Actually in our study of (1.8) we rather use

Eγ, β, τ, δ, tphq “ ~h~2γ, β, τ, t ` δ2p1` γ1τβ1 min
`

1, tτ
˘

q}E}2L2

to offer a better account of electric-field contributions. Our goal is then essentially to
build solutions such that

Fθ
γ, β, τ, δphq ď K }h0}

2

for some constant K, where

(1.9) Fθ
γ, β, τ, δphq “ Eγ, β, τ, δphq ` θDγ, β, τ, δphq

with
Eγ, β, τ, δphq “ sup

tě0
Eγ, β, τ, δ, tphpt, ¨, ¨qq,

and

Dγ, β, τ, δphq “

ż 8

0
Dγ, β, τ, tphpt, ¨, ¨qq dt

for a suitable choice of θ ą 0, β P R3 and γ P p0,`8q3 under the weakest possible
constraint on δ and uniformly with respect to pτ, h0q taken in relevant spaces. It turns
out that our choices are β “ p0, 2, 1q when τ À 1 and β “ p´8{15, 2{5,´1{15q when
τ Á 1, and we amply comment on motivations of these choices along the proof. We stress
however here that the latter choice differ from the choice β “ p´1,´1,´1q optimal for
the linearized dynamics when τ Á 1.

Once Theorem 1.2 and 1.3 have been proved, corresponding estimates or higher-order
versions of those may be used to bound error terms in diffusive asymptotics, leading to
Theorem 1.4.

Perspectives. To conclude this introduction, we draw now a few perspectives.

Optimality. Probably the most interesting question left open by our analysis is the ques-
tion of optimality of the constraint on δ. Unfortunately our analysis provides almost no
hint concerning possible scenarios for transient growth without bound on bounded sets
of initial data.

Higher dimensions. Our strategy, consisting mainly in optimizing in parameters classical
hypocoercive/hypoelliptic estimates, is robust enough to be adapted to most situations,
with different outcome however, the optimization requiring a case-by-case analysis. It
is important to note yet, that, in dimension 3, our analysis would not allow us to start
from L2 initial data. This is due to insufficiently strong regularization mechanisms. To
give a few insights, hold in mind that as encoded in our functionals, regularization of
one space derivative costs initial blow-up t´3{2 and of one velocity derivative costs t´1{2
blow-up, that E is one derivative smoother than h in spatial variables, and that HspTdq

is embedded in L8pTdq provided s ą d{2. By using these elements an analysis that
12



would treat E ¨ A˚h as a perturbative term, starting from L2 initial data, as we do,
would require t ÞÑ tp3{2qˆppd{2q`η´1q`1{2 to be locally integrable (for some η ą 0) which is
possible only if d “ 2 and 0 ă η ă 1{3. The same heuristic suggests that in dimension 3
one needs to start with a spatial derivatives and b velocity derivatives with pa, bq so that
3a` b ą 1{2. See [38] for some related discussions and a 3-dimensional analysis starting
with more than 1{2-derivatives in all variables.

Whole space. We anticipate that an extension of our analysis to the whole space R2 in
the presence of a confining potential, as in [38], would not require significant changes.
More interesting would be an extension to R2 for the same system, as in [42]. It may
seem in contradiction with the fact that at several places we use a spectral gap argument
for ´∆x on T2 in the form of Poincaré inequalities. To bypass this difficulty one needs to
be able to include lower-order terms in the dissipation to provide a direct control on the
macroscopic density n (without using ∇xn). At least when ρh ” 1, the coupling by the
Poisson equation allows us to carry out this plan. Indeed, a direct computation shows
that

ż

E ¨∇xn “ ´
1

δ2
}∇xp´∆xq

´
1
2n}2L2 “ ´

1

δ2
}n}2L2

and, in the case where ρh ” 1, the foregoing term appears in the time derivative of
ż

j ¨∇xn

so that we only need to add those two terms to our functionals and correctly tune
parameters. Involved extra computations are expected to be similar to those performed
in Section 8. Interestingly enough, the approach shares some similarities with the method
developed by Dolbeault, Mouhot and Schmeiser [21] to obtain hypocoercive estimates in
L2 for equations that do not exhibit hypocoercive regularization. Indeed for the kinetic
Fokker-Planck equation Btf ` v ¨∇xf “ divvpv f `∇vfq their method consists in adding

ż

j ¨ pI´ a∆xq
´1∇xn ,

(where a is some explicit universal constant) to the usual L2 energy functional.

Other extensions. Many other extensions would require a similar case study : other
collisional operators, multiple-species dynamics, coupling with magnetic fields etc.

High-field, hyperbolic limit. To complete the picture, let us discuss another famous as-
ymptotic limit of (1.1), the so-called high-field or hyperbolic limit. It consists in taking
the limit τ Ñ 0 with δ2 “ τ´1 on a time scale tref independent of τ . In this regime non-
linear terms dominate diffusive effects and we are asymptotically lead to an hyperbolic
equation on the macroscopic density. The limit is now rigorously established [50, 30].
But the regime is somewhat orthogonal to our focus since it brings us to an equation
that could lead to shock formation in finite time. It seems rather unclear if our approach
could improve anything to our understanding of this limit. Yet it would be interesting
to gain some insight on what happens asymptotically for quasineutral parameters of in-
termediate size, between the low-field and high-field regimes, or, even for the high-field
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regime, to elucidate what happens on other time scales. Any progress is likely to re-
quire a significantly more nonlinear version of our arguments, for instance involving the
time-dependent measure of density e´φpt,¨qM instead of the stationary f8.

Outline. The rest of the paper is devoted to proofs of our three main theorems. In
Section 2, we investigate the well-posedness of Equation (2.1) and gather estimates on
its solution φδ8, which provides estimates on the steady state f8. Then, in Section 3,
we glean estimates on E in terms of h when it is obtained from the Poisson equation
of (1.8). In Section 4, we gather some preliminary pieces of information on solutions to
the system obtained by freezing nonlinear terms. In Section 5, to support our choice of
exponents β in the functional F , we close estimates for Bth`Lτh “ 0, a δ “ 8 version of
(1.8). Theorems 1.2 and 1.3 are then proved in Section 6 and 7. Finally, the last section
is devoted to the proof of Theorem 1.4.

2. The Poisson-Boltzmann equation

In this section we provide well-posedness and regularity results for

(2.1) ´δ2∆xφ
δ
8 “ e´φ

δ
8 ´ ρh .

Consistently with our global analysis we insist on uniformity of estimates with respect
to δ when δ is bounded away from zero. This turns out to be crucial so as to control all
our norms and relative inequalities since they depend on δ through φδ8.

As a key example note the following form of the Poincaré inequality in H0.

Proposition 2.1. There exist a positive constant K such that for any h P H0 and any
δ ą 0, one has

}h}2 ď K }eφ
δ
8}L8pT2q }e

´φδ8}L8pT2q

`

}Ah}2 ` }Ch}2
˘

.

The foregoing inequality is actually a straightforward consequence of the tensorization
of the classical Poincaré inequality on the torus with the Gaussian Poincaré inequality.
The reader is referred to [1, Chapter 4] for a detailed argument.

In the present section our arguments are relatively classical and strongly echo those
in [11, 19, 13] and even more those in [40, Section 3]. In particular the existence part
follows by identifying (2.1) with an Euler-Lagrange equation. To do so we set nh “ ρh´1
so that nh is mean-free and introduce the functional

Jpφq “
δ2

2

ż

T2

|∇xφ|
2 `

ż

T2

φnh ` ln

ˆ
ż

T2

e´φ
˙

on

H0 “

"

φ P H1pT2q

ˇ

ˇ

ˇ

ˇ

ż

T2

φ “ 0

*

.

The functional J is coercive, bounded from below and strictly convex provided that
ρh P H

´1pT2q. The main observation leading to strict convexity is that from the Holder
inequality stems for any θ P r0, 1s and φ1, φ2 P H0,

ż

T2

e´θφ1´p1´θqφ2dx ď
ˆ
ż

T2

e´φ1dx
˙θ ˆż

T2

e´φ2dx
˙1´θ

.
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In turn, since by Jensen’s inequality, for any φ P H0

ln

ˆ
ż

T2

e´φ
˙

ě ln
´

e´
ş

T2 φ
¯

“ 0 ,

coercivity and boundedness from below are explicitly derived from

(2.2) Jpφq ě
δ2

2

ż

T2

|∇xφ|
2 ´ K }nh}H´1pT2q

ˆ
ż

T2

|∇xφ|
2

˙1{2

` ln

ˆ
ż

T2

e´φ
˙

that holds for some constant K and any φ P H0. The Euler-Lagrange equation associated
with J is actually

´δ2∆xφδ “
e´φδ

ş

T2 e´φδ
´ ρh .

Yet, solutions φδ P H0 to the foregoing equation are in one-to-one correspondence with
solutions φδ8 P H1pT2q to Equation (2.1) through

(2.3) φδ8 “ φδ ` ln

ˆ
ż

T2

e´φδ
˙

, φδ “ φδ8 ´

ż

T2

φδ8 ,

(since Equation (2.1) implicitly contains
ş

T2 e
´φδ8 “ 1).

Proposition 2.2 (Existence, uniqueness and regularity).

(1) For any ρh P H´1pT2q such that
ş

T2 ρh “ 1, for any δ ą 0, Equation (2.1)
possesses a unique weak solution φδ8 P H1pT2q and this solution is such that
ş

T2 e
´φδ8 “ 1.

(2) Moreover there exists a positive constant K such that for any such ρh and any
δ ą 0, the corresponding solution φδ8 satisfies

δ2}∇φδ8}2L2pT2q `

ˇ

ˇ

ˇ

ˇ

ż

T2

φδ8

ˇ

ˇ

ˇ

ˇ

ď K}ρh ´ 1}2H´1pT2q .

(3) If additionally, for some p P r1,`8s, ρh P LppT2q then

}e´φ
δ
8}LppT2q ď }ρh}LppT2q .

(4) In particular, for any p P p1,`8q, there exists Kp ą 0 such that for any
ρh P L

ppT2q such that
ş

T2 ρh “ 1 and any δ ą 0, the unique solution φδ8 to
Equation (2.1) satisfies

}∇2
xφ

δ
8}LppT2q ď

Kp

δ2
}ρh}LppT2q

and
}φδ8}L8pT2q ď

Kp

δ2
}ρh}LppT2q .

Proof. Existence and uniqueness follow from the properties of J expounded above through
a direct minimization of the strictly convex functional J . Then the bound in H1 stems
from (2.2) and Jp0q “ 0 by noticing that

ż

T2

φδ8 “ ln

ˆ
ż

T2

e´φδ
˙

ě 0 .
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Concerning Lp estimate of e´φδ8 , the formal argument proceeds by multiplying the
equation by ´e´pp´1qφδ8 and integrating to derive

pp´ 1qδ2
ż

T2

|∇xφ
δ
8|

2 e´pp´1qφ
δ
8 `

ż

T2

e´pφ
δ
8 “

ż

T2

e´pp´1qφ
δ
8 ρh

that implies
}e´φ

δ
8}

p
LppT2q

ď }e´φ
δ
8}

p´1
LppT2q

}ρh}LppT2q

by Hölder’s inequality, from which the bound follows by simple computations. This may
be turned into a sound argument by testing instead against ´e´pp´1qmaxptφδ8,ηuq and
letting η Ñ ´8.

From here the W 2,p bound stems directly from the equation and classical elliptic
regularity properties — in Calderón-Zygmund form — for which we refer the reader to
[55, 56] or [31]. The L8 bound then follows from the bound on

ş

T2 φ
δ
8 and a Sobolev

embedding applied to φδ8 ´
ş

T2 φ
δ
8. �

The foregoing proposition provides an L8 bound on eφδ8 that blows up exponentially
in δ´2 in the quasi-neutral regime δ Ñ 0. Though this will be sufficient for our general
argument and thus we do not pursue this line of investigation here, let us mention for
precision’s sake that the bound on eφδ8 may be dramatically improved if ρh is bounded
away from zero.

Proposition 2.3 (Higher regularity). Let s P N, s ě 2, q P p1,8s and p P p1,8q.
There exists a positive constant K “ Kp,q,s and an integer αs such that for any ρh P
W s´2,ppT2q X L8pT2q such that

ş

T2 ρh “ 1 and any δ ą 0, the unique solution φδ8 to
Equation (2.1) satisfies

(2.4) }∇s
xφ

δ
8}LppT2q ď

K

δ2

ˆ

1` }e´φ
δ
8}

s´2
2

L8

˙

´

1` }φδ8}
αs
W 2,q

¯

`

1` 1
δs´2

˘

}ρh}W s´2,p .

Proof. We proceed by induction. The induction estimate

δ2}∇k`2φδ8}LppT2q ď K}∇kρh}LppT2q ` K}e´φ
δ
8}L8pT2qp1` }φ

δ
8}

k´1
W 2,qpT2q

q}φδ8}Wk,ppT2q

is obtained essentially by differentiating the equation and applying suitable Sobolev in-
equalities in Gagliardo-Nirenberg’s form. Namely, the elementary block leading to the
foregoing estimates is that if 1 ď ` ď k and σ P pN˚q` is such that |σ| “ k then

}
ź̀

j“1

Bσjφδ8}LppT2q ď
ź̀

j“1

}Bσjφδ8}Lpj pT2q

ď K
ź̀

j“1

}φδ8}
1´

σj
k

W 2,qpT2q
}∇kφδ8}

σj
k

LppT2q
“ }φδ8}

`´1
W 2,qpT2q

}∇kφδ8}LppT2q

ď K p1` }φδ8}
k´1
W 2,qpT2q

q }φδ8}Wk,ppT2q

where pj “ p k{σj . Actually some of the derivatives needs first to be replaced with finite
differences to justify formal manipulations, but we skip those classical details. �
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From now on we shall always assume but never repeat that φδ8 is obtained from ρh
through Equation (2.1) and we shall keep the dependence on norms of ρh implicit. Also
for concision’s sake we shall use without mention estimates of the present section.

3. The Poisson equation

We glean here estimates on E in terms of h when E “ ´∇ψ and

´δ2∆ψ “ n , n “

ż

R2

hp¨, vq f8p¨, vqdv

whenever h P H0. They are naturally obtained from classical estimates on the Poisson
equation on one side and estimates on n in terms of h on the other side. We recall that
} ¨ } denotes the canonical L2pdµq norm for the measure dµ “ f8dxdv, that does depend
on δ and ρh.

Proposition 3.1.

(1) For any s P N, ρh P HspT2q such that
ş

T2 ρh “ 1 and δ0 ą 0 there exists Ks ą 0
such that for all δ ě δ0, for any h, n “

ş

R2 hp¨, vq f8p¨, vqdv satisfies

}∇s
xn}L2pT2q ď Ks

ÿ

kďs

}∇k
x h}

and if moreover h P H0 and E is the corresponding electric field

}∇s`1
x E}L2pT2q ď

Ks

δ2

ÿ

kďs

}∇k
x h} .

(2) For any ρh P H1pT2q such that
ş

T2 ρh “ 1, p P p1,8q and δ0 ą 0 there exists
Kp ą 0 such that for all δ ě δ0, for any h, n “

ş

R2 hp¨, vq f8p¨, vqdv satisfies

}n}LppT2q ď Kp }h}
2
p }∇xh}

1´ 2
p

and if moreover h P H0 and E is the corresponding electric field

}∇xE}LppT2q ď
Kp

δ2
}h}

2
p }∇xh}

1´ 2
p .

(3) For any ρh P L2pT2q such that
ş

T2 ρh “ 1, p P p1,8q and δ0 ą 0 there exists
Kp ą 0 such that for all δ ě δ0 and any h P H0, the corresponding electric field
E satisfies

}E}LppT2q ď
Kp

δ2
}h} .

(4) For any ρh P L2pT2q such that
ş

T2 ρh “ 1, η P p0, 1s and δ0 ą 0 there exists
Kη ą 0 such that for all δ ě δ0 and any h P H0, the corresponding electric field
E satisfies

}E}L8pT2q ď
Kη

δ2
}h}1´η }∇xh}

η .
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Proof. The Sobolev estimate on the macroscopic density stems from an integration of
the point-wise

|∇snpxq|2 ď K
ÿ

kďs

|∇s´k
x pe´φ

δ
8qpxq|2 eφ

δ
8pxq

ż

R2

|∇k
xhpx, vq|

2 f8px, vqdv

that follows from direct differentiation and Jensen’s inequality (for the square function).
The Lebesgue estimate on the macroscopic density follows from

}n}LppT2q ď }e´φ
δ
8}L8pT2q

ż

T2

}hp¨, vq}LppT2qMpvqdv

ď Kp}e
´φδ8}L8pT2q

ż

T2

}hp¨, vq}
2
p

L2pT2q
}∇xhp¨, vq}

1´ 2
p

L2pT2q
Mpvqdv

ď Kp}e
´φδ8}L8pT2q }e

φδ8}L8pT2q }h}
2
p }∇xh}

1´ 2
p

that is derived by triangle inequality, some Sobolev embeddings and the Hölder inequal-
ities. Remaining estimates are then deduced from classical elliptic regularity. Note in
particular that for any 1 ď p ă 2 ă q ď 8 there exists Kp,q such that

}E}L8pT2q ď Kp,q}n}
θp,q
LppT2q

}n}
1´θp,q
LqpT2q

where θp,q P p0, 1q is defined by 1{2 “ θp,q{p` p1´ θp,qq{q. �

4. Frozen equations

As preliminaries to nonlinear final arguments, in the following section, we gather some
pieces of information on solutions to the system obtained by freezing nonlinear terms,
namely

(4.1) Bth ` Lτh´ E ¨ v “ rE ¨A˚g ,

where

E “ δ´2∇x∆´1
x n , n “

ż

R2

h f8dv ,

and rE and g are given sources, rE being derived from some given rg P H0 through

rE “ δ´2∇x∆´1
x rn , rn “

ż

R2

rg f8dv .

We first collect algebraic identities describing each elementary piece of the final energy
estimate.

Lemma 4.1. Any smooth localized h solving (4.1) satisfies

1

2

d
dt

`

}h}2 ` δ2}E}2L2

˘

`
1

τ
}Ah}2 “ R0ph, g, rgq ,

1

2

d
dt

`

}Ah}2 ` δ2}E}2L2

˘

`
1

τ
p}Ah}2 ` }A2h}2q “ QAphq `RAph, g, rgq ,

1

2

d
dt
}Ch}2 `

1

τ
}ACh}2 “ QCphq `RCph, g, rgq ,

d
dt
xAh,Chy ` }Ch}2 “ QACphq `RACph, g, rgq ,

18



with quadratic terms given by
QAphq “ ´ xCh,Ahy

QCphq “

A

Hesspφδ8qAh,Ch
E

` x∇xpE ¨ vq, Chy

QACphq “ ´
1

τ

`

xAh,Chy ` 2
@

A2h,ACh
D˘

` rQACphq

where
rQACphq “

A

Hesspφδ8qAh,Ah
E

` xE,Chy ` x∇xpE ¨ vq, Ahy

and trilinear terms

R0ph, g, rgq “

A

Ah, rEg
E

RAph, g, rgq “

A

Ah, rEg
E

`

A

A2h, rEAg
E

RCph, g, rgq “

A

ACh, rECg
E

`

A

CAh, g∇x
rE
E

RACph, g, rgq “

A

A2h, rECg
E

`

A

A2h, g∇x
rE
E

`

A

Ch, rEg
E

`

A

ACh, rEAg
E

.

For latter use we also observe that if more frozen nonlinear terms of the same form
were added to (4.1), this would only result in adding more trilinear terms of the same
form in the foregoing identities. Namely, if rE ¨A˚g is replaced with rE1 ¨A

˚g1` rE2 ¨A
˚g2,

then accordingly trilinear terms R#ph, g, rgq are turned into R#ph, g1, rg1q`R#ph, g2, rg2q.

Proof. We evaluate the time derivative of }h}2, }Ah}2, }Ch}2 and xAh, Chy. Using (4.1),
we need to compute three kinds of terms, involving respectively Lτ , E ¨v and the nonlinear
product rE ¨ A˚g. Trilinear remainders R0, RA, RC and RAC are exclusively obtained
from the latter while dissipation terms and quadratic remainders come from other terms.

To obtain the first energy equality we use the skew-symmetry of B to derive

´xLτh, hy “ ´
1

τ
xA˚Ah, hy “ ´

1

τ
}Ah}2,

To proceed we use the continuity equation

(4.2) Btn ` divxpjq “ 0 , j :“

ż

R2

v h f8dv

obtained by multiplying the first equation of (4.1) by f8 and integrating with respect
to the velocity variable. By the Poisson equation, written in terms of a potential ψ such
that E “ ´∇ψ, and (4.2) we obtain

xE ¨ v, hy “

ż

T2

j¨E dx “ ´

ż

T2

ψ Btn dx “ ´δ2
ż

T2

∇xψ¨Bt∇xψ dx “ ´
1

2
δ2

d
dt
}E}2L2 .

The second equation follows from similar computations using that C “ rA,Bs and
I “ rA,A˚s, which implies

}A˚ ¨Ah}2 “
@

A˚iAih,A
˚
jAjh

D

“ xAjA
˚
iAih,Ajhy

“ xδijAih,Ajhy ` xAjAih,AiAjhy

“ }Ah}2 ` }A2h}2 .
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This leads to

´ xALτh, Ahy “ ´
1

τ
}A˚Ah}2 ´ xABh, Ahy

“ ´
1

τ
p}Ah}2 ` }A2h}2q ´ xCh, Ahy ,

and we also observe that

xAipEj vjq, Aihy “ xEi, Aihy “ xA˚i pEiq, hy “ xv ¨ E, hy ,

which we recognize as a term already computed. The trilinear term RA is
A

Aih, Aip rEj A
˚
j gq

E

“

A

Aih, AiA
˚
j
rEjgq

E

“

A

Aih, rEig
E

`

A

AiAjh, rEj Aig
E

.

Concerning the third equation we first compute

´xCi Lτh, Cihy “ ´
1

τ
xAj Cih, Aj Cihy ` xrB,Cish, Cihy ,

and use that rB,Cs “ Hesspφδ8qA. The remainder term RC is
A

Cih, Ci p rEj A
˚
j gq

E

“

A

Cih, pBxi
rEjqA

˚
j g
E

`

A

Cih, rEj CiA
˚
j g
E

.

Finally, for the fourth equality, we only explain how a few typical terms are derived,
other following by the same kind of arguments. To this purpose note that

´xABh, Chy ´ xAh, CBhy “ ´}Ch}2 ` xAh, rB,Cshy

and

´xAA˚ ¨Ah, Chy ´ xAh, CA˚ ¨Ahy “ ´ xAh, Chy ´ 2
@

A2h, ACh
D

.

�

In the following lemmas, we indicate how to estimate each right-hand side term of the
foregoing lemma. The first lemma is a trivial corollary of the Cauchy-Schwarz inequality
and estimates on E and φδ8.

Lemma 4.2. For any ρh PW 1,ppT2q, p ą 2 such that
ş

T2 ρh “ 1 and δ0 ą 0 there exists
K ą 0 such that for all δ ě δ0, for any h

|QAphq| ď }Ch} }Ah}

|QCphq| ď
K

δ2
p}Ah} }Ch} ` }h} }Ch}q

|QACphq ´ rQACphq| ď
1

τ

`

}Ah}}Ch} ` 2}A2h}}ACh}
˘

| rQACphq| ď
K

δ2
`

}Ah}2 ` }h} }Ch} ` }h}}Ah}
˘

.

Now we estimate trilinear terms by norms involving h, g, rg and their derivatives.
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Lemma 4.3. For any ρh P L2pT2q such that
ş

T2 ρh “ 1, η P p0, 1q4 and δ0 ą 0 there
exists K “ Kη ą 0 such that for all δ ě δ0 and any ph, g, rgq P pH0q

3,

|R0ph, g, rgq| ď
K

δ2
}Ah} minp}g}1´η1 }Cg}η1 }rg}, }g} }rg}1´η2 }Crg}η2q ,

|RAph, g, rgq| ď
K

δ2
}Ah} }g}1´η1 }Cg}η1 }rg}

`
K

δ2
}A2h} }rg}1´η2 }Crg}η2 }Ag} ,

|RCph, g, rgq| ď
K

δ2
}ACh} }Cg} }rg}1´η1 }Crg}η1

`
K

δ2
}ACh} }rg}1´η2 }Crg}η2 }g}η2 }Cg}1´η2 ,

|RACph, g, rgq| ď
K

δ2
}A2h} }rg}1´η1}Crg}η1 }Cg}

`
K

δ2
}A2h} }rg}1´η2 }Crg}η2 }g}η2 }Cg}1´η2

`
K

δ2
}Ch} }g}1´η3 }Cg}η3 }rg}

`
K

δ2
}ACh} }rg}1´η4}Crg}η4 }Ag} .

Proof. Half of the estimate on R0 stems directly from bounds on } rE}L8pT2q. The other
half follows, setting p “ 2{η P p2,8q and defining q P p2,8q by 1{2 “ 1{p` 1{q, from

ˇ

ˇ

ˇ

A

Ah, rEg
Eˇ

ˇ

ˇ
ď K }Ah} } rE}LppT2q }g}L2pMdv,Lqpdxqq

ď K 1 }Ah} } rE}LppT2q }g}
1´η }Cg}η

where we have used bounds on φδ8 and Hölder and Sobolev inequalities and noticed that
2{q “ 1´ η. Then, one concludes thanks to bounds on } rE}LppT2q.

To estimate RA, we simply notice that

|RAph, g, rgq| ď |R0ph, g, rgq| ` }A2h} } rE}L8pT2q }Ag}.

As for the third estimate, the first term of RC is dealt with similarly using once again
the L8 bound on rE. However the second term requires a more careful distribution of
spatial derivatives, essentially as in the proof of the bound on }n}LppT2q of Proposition 3.1.
Namely, set p “ 2{η2 P p2,8q and define q P p2,8q by 1{p` 1{q “ 2, then

ˇ

ˇ

ˇ

A

CAh, g∇x
rE
Eˇ

ˇ

ˇ
ď K }ACh} }∇x

rE}LppT2q }g}L2pMdv,LqpT2qq
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with

}g}L2pMdv,LqpT2qq ď K 1

˜

ż

R2

}gp¨, vq}
2
´

1´ 2
p

¯

L2pT2q
}Cgp¨, vq}

4
p

L2pT2q
Mpvq dv

¸
1
2

ď K2 }g}
1´

2
p }Cg}

2
p

by Sobolev embeddings, Hölder inequalities and L8 bounds on φδ8. The estimate is
achieved by relying on bounds on }∇x

rE}LppT2q.
We skip the estimate of RAC as completely similar. �

5. Linear warm-up

For expository purpose and to support our choice of exponents in the functional (1.9)
we first develop our strategy on the following equation

(5.1) Bth` Lτh “ 0 ,

supplemented with initial data h0. Recall that ´Lτ generates a semi-group of contrac-
tions on H [35, 37]. Moreover, Schwartz functions form a core for Lτ and all following
computations are readily justified for Schwartz initial data so that up to a density ar-
gument it is immaterial to do as if all computations were performed in the classical
sense.

As already expounded in the introduction our goal is to prove that in each regime under
suitable conditions on parameters β P R3 and γ P p0,`8q3, the following functional

~h~γ, β, t “ }h}2 ` γ1τ
β1 min

`

1, tτ
˘

}Ah}2

` γ2τ
β2 min

`

1, tτ
˘3
}Ch}2 ` 2γ3τ

β3 min
`

1, tτ
˘2
xAh,Chy ,

is decaying in time with dissipation rate at least

Dγ, β, tphq “ τ´1}Ah}2 ` γ1τ
β1´1 min

`

1, tτ
˘

}A˚ ¨Ah}2

` γ2τ
β2´1 min

`

1, tτ
˘3
}ACh}2 ` γ3τ

β3 min
`

1, tτ
˘2
}Ch}2.

Proposition 5.1 (Diffusive regime). Under the following conditions on β P R3

(5.2) max

ˆ

1,
β1 ` β2

2

˙

ď β3 ď min p2β1 ` 1, β2 ´ 1q ,

for any τ0 ą 0 there exist γ P p0,`8q3, c0 ą 0, C0 ą 0 and θ̃ ą 0 such that for any
ρh P H

´1pT2q such that
ş

T2 ρh “ 1, any δ ą 0 and any τ P p0, τ0q
(1) for any h, for any t ě 0,

~h~t ě c0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

and

~h~t ď C0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

;

22



(2) for any h0 P H0 the solution to the linear Vlasov-Fokker-Planck equation (5.1)
starting from h0 satisfies for all t ě 0

~hpt, ¨, ¨q~2γ, β, t ` θ̃

ż t

0
Dγ, β, sphps, ¨, ¨qq ds ď }h0}

2 .

Proof. One may adapt Lemma 4.1 to (5.1) with resulting modifications being that there is
no electric field in time derivatives and in remainder terms no trilinear term, no rQAC and
no QC . In particular, only QA and half of QAC have non-zero contribution to remainders
and those may be bounded without resorting to φδ8 bounds. This leads to

1

2
~h~2γ, β, t `

ż t

0
Dγ, β, sphq ds ď

1

2
}h0}

2 `

ż t

0
Rγ, β, sphq ds ,

with

Rγ, β, tphq “ γ1τ
β1 min

`

1, tτ
˘

}Ch} }Ah}

` γ3τ
β3´1 min

`

1, tτ
˘2 `
}Ah}}Ch} ` 2}A2h}}ACh}

˘

`
1

2
χtăτ

´

γ1τ
β1´1}Ah}2 ` 3γ2τ

β2´1
`

t
τ

˘2
}Ch}2 ` 4γ3τ

β3´1
`

t
τ

˘

}Ah} }Ch}
¯

where we have used notation χtăτ to denote the value at time t of the characteristic
function of r0, τq, namely 0 if t ě τ , 1 otherwise.

Now we want to ensure that Rγ, β, t is controlled by an arbitrarily small fraction of
Dγ, β, t, uniformly in time and in τ . To do so, we seek γj under the form εcj for some
positive cj and observe that a bound

εcτβ min
`

1, tτ
˘α
K L

εÑ0
“ opεc

1

τβ
1

min
`

1, tτ
˘α1

K2 ` εc
2

τβ
2

min
`

1, tτ
˘α2

L2q

uniform with respect to K, L, t and τ ď τ0 requires α ě minptα1, α2uq. If α1 ‰ α2 and
α P rα1, α2s then there exists a unique θ P r0, 1s such that α “ θ α1 ` p1 ´ θqα2 and
the estimate also requires β ě θβ1 ` p1 ´ θqβ2. However once the above conditions are
fulfilled the estimate holds provided that c ą θc1 ` p1 ´ θqc2. With this in hands, one
deduces our claimed estimate from

β1 ´ 1 ě ´1 , β2 ´ 1 ě β3 , β3 ´ 1 ě 1
2pβ3 ´ 1q ,

β1 ě
1
2pβ3 ´ 1q , β3 ´ 1 ě 2

3pβ3 ´ 1q ´ 1
3 , β3 ´ 1 ě 1

2pβ1 ` β2 ´ 2q ,

— which reduces to (5.2) — and
1
2pc1 ` c2q ă c3 ă minpc2, 2c1q .

We conclude by noting that the choice pc1, c2, c3q “ p1, 2, 7{4q fulfills the latter constraint.
So far we have omitted the very first constraint on ~ ¨ ~t. Yet a sufficient condition is

β3 ě
1
2pβ1 ` β2q , γ3 ă

?
γ1 γ2 ,

which is redundant with above requirements. �

The proof of Proposition 5.2 may be readily adapted to cope with the regime of
evanescent collisions, yielding the following result.
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Proposition 5.2 (Evanescent collisions). Under the following conditions on β P R3

(5.3) min

ˆ

1,
β1 ` β2

2

˙

ě β3 ě max p2β1 ` 1, β2 ´ 1q .

for any τ0 ą 0 there exist γ P p0,`8q3, c0 ą 0, C0 ą 0 and θ̃ ą 0 such that for any
ρh P H

´1pT2q such that
ş

T2 ρh “ 1, any δ ą 0 and any τ P pτ0,`8q
(1) for any h, for any t ě 0,

~h~t ě c0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

and

~h~t ď K0

´

}h}2 ` τβ1 min
`

1, tτ
˘

}Ah}2 ` τβ2 min
`

1, tτ
˘3
}Ch}2

¯

;

(2) for any h0 P H0 the solution to the linear Vlasov-Fokker-Planck equation (5.1)
starting from h0 satisfies for all t ě 0

~hpt, ¨, ¨q~2γ, β, t ` θ̃

ż t

0
Dγ, β, sphps, ¨, ¨qq ds ď }h0}

2 .

6. Strongly collisional regime

In view of Lemmas 4.2 and 4.3, to analyze terms that have been left over in the
foregoing section, we only need to consider

(6.1)

Qδt phq :“ τβ2 min
`

1, tτ
˘3
}Ah} }Ch} ` τβ2 min

`

1, tτ
˘3
}h} }Ch}

` τβ3 min
`

1, tτ
˘2
}Ah}2 ` τβ3 min

`

1, tτ
˘2
}h} }Ch}

` τβ3 min
`

1, tτ
˘2
}h} }Ah}

“:
1

δ2

5
ÿ

i“1

Si,tphq

and choosing some η P p0, 1q9 and rη1 P p0, 1q

(6.2) Rδ
t ph, g, rgq :“

1

δ2

´

T1,tph, g, rgqχtěτ ` rT1,tph, g, rgqχtďτ

¯

`
1

δ2

9
ÿ

i“2

Ti,tph, g, rgq

where
T1,tph, g, rgq “ }Ah} }g}1´η1 }Cg}η1 }rg} ,

rT1,tph, g, rgq “ }Ah} }g} }rg}1´rη1 }Crg}rη1 ,

T2,tph, g, rgq “ τβ1 min
`

1, tτ
˘

}Ah} }g}1´η2 }Cg}η2 }rg} ,

T3,tph, g, rgq “ τβ1 min
`

1, tτ
˘

}A2h} }rg}1´η3 }Crg}η3 }Ag} ,

T4,tph, g, rgq “ τβ2 min
`

1, tτ
˘3
}ACh} }Cg} }rg}1´η4 }Crg}η4 ,

T5,tph, g, rgq “ τβ2 min
`

1, tτ
˘3
}ACh} }rg}1´η5 }Crg}η5 }g}η5 }Cg}1´η5 ,
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and

T6,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}A2h} }rg}1´η6}Crg}η6 }Cg} ,

T7,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}A2h} }rg}1´η7 }Crg}η7 }g}η7 }Cg}1´η7 ,

T8,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}Ch} }g}1´η8 }Cg}η8 }rg} ,

T9,tph, g, rgq “ τβ3 min
`

1, tτ
˘2
}ACh} }rg}1´η9}Crg}η9 }Ag} .

We also need to take into account the electric field contributions in time derivatives by
augmenting ~ ¨ ~2γ, β, τ, t to Et defined by

Etphq “ ~h~2γ, β, τ, t ` δ2p1` γ1τβ1 min
`

1, tτ
˘

q}E}2L2 .

Prior to carrying on our nonlinear analysis in the diffusive regime, for reading’s sake we
make a specific choice of β, namely β “ p0, 2, 1q, and fix a corresponding γ accordingly.
This choice is motivated by the following remark.

Remark 6.1 (Optimality of β). From Proposition 5.1, one may derive, through Poincaré’s
inequality, exponential decay of ~hpt, ¨, ¨q~γ, β, τ, t when h solves (5.1), explicitly encoded
by a rate e´θτmaxpβ3,´1,β3´β2qt for some uniform θ ą 0. To optimize the former decay rate,
one must minimize maxpβ3,´1, β3 ´ β2q under constraints (5.2). The optimal choice
requires actually β3 “ 1, that forces β1 “ 0 and β2 “ 2. Indeed the existence of a β3
satisfying constraint (5.2) is equivalent to

β1 ě 0 , β2 ě 2 , 3β1 ě β2 ´ 2 , β1 ď β2 ´ 2

which is compatible with pβ1 ` β2q{2 ď 1 only if β1 “ 0 and β2 “ 2. In turn, the
corresponding choice of β does satisfy (5.2).

Last preliminary results are provided by the following proposition.

Proposition 6.2 (τ À 1; β “ p0, 2, 1q). Set β “ p0, 2, 1q. For any τ0 ą 0 and any
γ P p0,8q3 satisfying corresponding conditions of Proposition 5.1, for any ρh PW 1,ppT2q,
p ą 2, such that

ş

T2 ρh “ 1, any δ0 ą 0 and any rη1 P p0, 1q, there exist η P p0, 1q9 and
K ą 0 such that for any t ě 0, any τ P p0, τ0q, any δ P pδ0,8q and any ph, g, rgq P pH0q

3

Qδt phq ď
K

δ2
Dtphq ,

Rδ
t ph, g, rgq ď

K

δ2
rDtphqs

1
2

„

pDtpgqq
1
2 ` τ

1
2´rη1

`

t
τ

˘´
3rη1
2 χtďτ }g}



rEtprgqs1{2 .

Proof. Besides obvious estimates we point out that Poincaré’s inequality implies that for
any h P H0

τ1{2 min
`

1, tτ
˘

}h} ď K rDtphqs
1{2
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uniformly in τ ď τ0, δ ě δ0, t ě 0. With this in hands one readily deduce for any h P H0

S1,tphq ` S3,tphq ď K τ2 min
`

1, tτ
˘2
Dtphq ,

S2,tphq ` S5,tphq ď K τ min
`

1, tτ
˘

Dtphq ,

S4,tphq ď KDtphq ,

hence proving the first estimate. Likewise one obtains for any ph, g, rgq P pH0q
3

T1,tph, g, rgq ď K min
`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

rT1,tph, g, rgq ď K τ1´rη1 Dtphq
1{2

”

τ´1{2 min
`

1, tτ
˘´3rη1{2

}g}
ı

Etprgq1{2 ,

T2,tph, g, rgq ` T8,tph, g, rgq ď KDtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

and for i P t3, 4, 5, 6, 7, 9u

Ti,tph, g, rgq ď K τ1´2ηi min
`

1, tτ
˘

1´3ηi
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 .

This yields the second estimate by choosing ηi P p0, 1{3s for i P t3, 4, 5, 6, 7, 9u. �

Remark 6.3 (Follow-up on the optimality of β). Estimates of Proposition 6.2 will be used
to set up a contraction argument with β “ p0, 2, 1q for large enough δ. As pointed out in
Remark 6.1, this choice of β is motivated by our will to optimize decay rates. However
one may wonder whether with a different choice of β one could improve the foregoing
estimates and set up a contraction argument using smallness of τ and not largeness
of δ, hence allowing for asymptotically vanishing δ (possibly in a τ -dependent way).
Unfortunately, the answer is negative since our estimate of S4,t is actually independent
of τ and β.

Proof of Theorem 1.2. To prove Theorem 1.2, we introduce

X “ t h P L8pR`;Hq | Ephq ă 8 u and Y “ t h P L8pR`;Hq | Fphq ă 8 u

endowed with norms
?
E and

?
F . For any R ą 0 we denote by XR and YR the closed

balls of center 0 and radius R of Banach spaces X and Y . We recall that E and F are
defined by

Fphq “ Ephq ` θDphq
where

Ephq “ sup
tě0

Etphpt, ¨, ¨qq and Dphq “

ż 8

0
Dtphpt, ¨, ¨qq dt .

We fix R0 ą 0 and choose h0 P H0 such that }h0} ď R0 and for a suitable R ą 0 we
consider the map Φ : XR Ñ L8locpR`;Hq, rg ÞÑ h where h starts from h0 and solves the
linear equation

(6.3) Bth ` Lτh ´ E ¨ v “ Ẽ ¨A˚h

where E and rE are obtained through the Poisson equation from respectively h and
rg. Existence and uniqueness in CpR`;Hq for (6.3) may be shown for instance using
arguments [36, Proposition 5.1] (adapted to our space-periodic setting that does not
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involve a confining potential) in two steps. First, when considered as given source terms,
E ¨ v and Ẽ ¨A˚h satisfy the hypotheses of [36, Proposition 5.1] thanks to estimates

ż T

0
|xE ¨ v, ϕy| dt ď

K

δ2
}h}L8p0,T ;Hq }Aϕ}L2p0,T ;Hq

?
T

and
ż T

0

ˇ

ˇ

ˇ

A

Ẽ ¨A˚h, ϕ
Eˇ

ˇ

ˇ
dt ď

KR

δ2
}h}L8p0,T ;Hq }Aϕ}L2p0,T ;Hq

ˆ
ż T

0
minp1, tτ q

´3η

˙1{2

for any ϕ P L2p0, T ;Hq such that Aϕ P L2p0, T ;Hq and η ą 0 small enough. Then, by a
fixed point argument in Cp0, t0;Hq for a sufficiently small t0, one builds a unique solution
to (6.3). Since t0 can be chosen independently of the initial data one may repeat the
argument to eventually get a global solution.

Our goal is to show that when δ is large enough one may choose R sufficiently large
(independently of δ) such that ΦpXRq Ă YR and Φ is a strict contraction (with uniform
constant) for norms

?
E and

?
F . Since fixed points of Φ are exactly solutions of (1.8)

starting from h0, this will prove altogether the existence of a solution in YR, its uniqueness
in XR, uniform bounds on the solution and smooth dependence on h0. To extend the
uniqueness result one shall only need to remark that the above argument may be localized
in time and to use a continuity argument based on the fact that any solution belongs to
a suitable time-localized version of XR for sufficiently small time.

Let us be more precise on the order in which parameters are chosen. Positive pa-
rameters τ0 and R0 are given data and we choose a first δ0 ą 0 arbitrarily, say δ0 “ 1.
Then we may set β “ p0, 2, 1q and a suitable γ is provided by Proposition 5.1, constants
in corresponding estimates being uniform in the range τ ď τ0, δ ě δ0. The parameter
θ could be chosen essentially arbitrarily but it is convenient to set θ “ rθ{2 where rθ is
provided by Proposition 5.1. It turns out that we may also choose R ą R0 arbitrarily,
say R “ 2R0.

Step 1, ΦpXRq Ă YR. Now we show that we may choose δ10 ě δ0 such that for any
δ ě δ10, τ ď τ0 and }h0} ď R0, we do have that ΦpXRq Ă YR. Combining Propositions 5.1
and 6.2, we obtain indeed that for any pτ, δ, h0q as above, for any rg P XR, h “ Φprgq
satisfies for any t ě 0, for some constants K 1 and K depending only on rη1 P p0, 1q

Etphptqq ` rθ

ż t

0
Dsphpsqq ds

ď }h0}
2 ` K 1

ż t

0

”

Qδsphpsqq ` Rδsphpsq, hpsq, rgpsqq
ı

ds

ď }h0}
2 `

K p1`Rq

δ2

˜

ż t

0
Dsphpsqq ds `

ż minpt,τq

0
τ1´2rη1

`

s
τ

˘´3rη1
}hpsq} ds

¸

hence, provided that p1`Rq{pδ10q2 is sufficiently small one has

Etphptqq ` θ

ż t

0
Dsphpsqq ds ď }h0}

2 `
K p1`Rq

δ2

ż minpt,τq

0
τ1´2rη1

`

s
τ

˘´3rη1
}hpsq}ds ,
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and choosing rη1 P p0,
1
3q yields for any t ě 0 and some constant K depending only on rη1

}hptq} ď }h0}
2 e

K p1`Rq τ2p1´rη1q

δ2

therefore for any t ě 0 and some constant K depending only on rη1

Fphq ď }h0}
2

˜

1`
K p1`Rq τ2p1´rη1q

δ2
e
K p1`Rq τ2p1´rη1q

δ2

¸

which can be made smaller than R2 provided that p1 ` Rq{pδ10q
2 is small enough. It

follows that Φ is well-defined from XR to YR.
Step 2, Contraction. Now we show that Φ is a strict contraction from XR to YR.

Provided that p1 ` Rq{pδ10q is sufficiently small, for any pτ, δ, h0q as above, for any data
prg1, rg2q P pXRq

2, values h1 “ Φprg1q and h2 “ Φprg2q satisfy

pBt ` Lτ qph1 ´ h2q ` pE1 ´ E2q ¨ v “ p rE1 ´ rE2q ¨A
˚h1 ` rE2 ¨A

˚ph1 ´ h2q

(with obvious implicit notation for electric fields), thus, for some constant K, for any
t ě 0,

Etpph1 ´ h2qptqq ` θ̃

ż t

0
Dspph1 ´ h2qpsqq ds ď

K p1`Rq

δ2
Fph1 ´ h2q

1
2 Eprg1 ´ rg2q

1
2

as may be derived using that h1 P YR and h2 P YR. Factoring out Fph1´h2q
1
2 , it follows

that Φ is Lipschitzian from XR to YR and that its Lipshitz constant may be assumed
arbitrarily small provided that p1 ` Rq{pδ10q

2 is sufficiently small. This is sufficient to
lead to the well-posedness part of Theorem 1.2

Step 3, Exponential Decay. The large-time decay may then be deduced from the
Poincaré inequality. Indeed the foregoing arguments provide for any t2 ě t1 ě τ

Et2phpt2qq ` θ

ż t2

t1

Dsphpsqqds ď Et1phpt1qq ,

and for some K ą 0, our choice of parameters yields uniformly for pτ, δ, h0q as above that
for all t ě τ

K τ Etphptqq ď Dtphptqq .

This leads to
Etphptqq ď e´θ

1 τ tEτ phpτqq ď K 1 e´θ
1 τ t}h0}

for any t ě τ and some uniform positive K 1 and θ1. This may be extended to all t using
the uniform boundedness of Etphptqq. Similar arguments prove the uniform stability with
respect to initial data.

7. The regime of evanescent collisions

Remark 7.1 (Optimality of β). From Proposition 5.2, one may also derive, through
Poincaré’s inequality, exponential decay in H of solutions to (5.1), explicitly encoded
by a rate e´θτminpβ3,´1,β3´β2qt for some uniform θ ą 0. In order to optimize the former
decay rate under (5.3), first observe that the latter constraint implies β3´β2 ě ´1 hence
minpβ3,´1, β3 ´ β2q “ minpβ3,´1q. Thus, we only need to ensure that β3 ě ´1 and
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there is a large choice of β that meet this constraint jointly with (5.3). Indeed for any
´2 ď β1 ď 0 one may choose β2 such that

max p3β1 ` 2,´β1 ´ 2q ď β2 ď β1 ` 2

and then a suitable β3 may be chosen according to

min

ˆ

1,
β1 ` β2

2

˙

ě β3 ě max p´1, 2β1 ` 1, β2 ´ 1q

and that defines a non empty interval of β3s.

A natural guide towards a good choice of β could be the examination of the best
analogue of Proposition 6.2 in the regime where τ is large. However, another thing that
also differs from the strongly collisional regime is that the main obstruction here does
not arise from quadratic terms. Indeed one may prove the following estimates.

Proposition 7.2 (τ Á 1; β “ p´1,´1,´1q). Set β “ p´1,´1,´1q. For any τ0 ą 0
and any γ P p0,8q3 satisfying corresponding conditions of Proposition 5.2, for any ρh P
W 1,ppT2q, p ą 2, such that

ş

T2 ρh “ 1, any δ0 ą 0, there exists K ą 0 such that for any
t ě 0, any τ P pτ0,8q, any δ P pδ0,8q and any h P H0

Qδt phq ď
K

δ2
Dtphq .

Since we shall not make any use of the former proposition we skip its proof. Yet let
us point out that the involved uniform estimate enforces βj ď ´1, j “ 1, 2, 3. Indeed
constraints (5.3) implies β1 ď 0 and, under this condition, the best possible estimates

S1,tphq ď K τ
2β2`1´β3

2 min
`

1, tτ
˘2
Dtphq ,

S3,tphq ď K τ1`β3 min
`

1, tτ
˘2
Dtphq ,

provide uniform bounds only when 2β2 ` 1 ď β3 and β3 ď ´1, which jointly with (5.3)
yield the claimed constraint. Note also that if moreover one requires β3 ě ´1 then the
only possible choice is indeed β “ p´1,´1,´1q.

Unfortunately, in the regime τ Á 1, trilinear terms leads to a more stringent constraint
on δ and the foregoing choice β “ p´1,´1,´1q does not minimize trilinear constraints.
Indeed

T1,tph, g, rgq ď K τ1´
η1
2 pβ3`1qmin

`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

rT1,tph, g, rgq ď K τ
1`maxp1,´β3q´rη1β2

2 Dtphq
1{2

”

τ´1{2 min
`

1, tτ
˘´3rη1{2

}gptq}
ı

Etprgq1{2 ,

with 0 ă η1 ď 1 and 0 ă rη1 ď 1, provides bounds that grow superlinearly in τ unless
β2 ě 0 and β3 ě ´1. Note in turn that in order not to exceed a linear growth in τ , the
bound on S3,t only requires β3 ď 0. Now let us observe that in the final argument rη1 is
constrained by rη1 ă

1
3 and that constraints (5.3) yield

3
2β3 `

1
2 ď β2 ď β3 ` 1 .

In turn minimizing
maxp1´ 1

6β2, β2 ´
1
2β3 `

1
2q
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under these constraints proves that one cannot do better than a τ
14
15 -growth and that

one may hope to (almost) realize it only with

β “ p´
8

15
,
2

5
,´

1

15
q .

As the following proposition proves this turns out to be indeed possible.

Proposition 7.3 (τ Á 1; β “ p´ 8
15 ,

2
5 ,´

1
15q). Set β “ p´ 8

15 ,
2
5 ,´

1
15q. For any ε ą 0,

any τ0 ą 0 and any γ P p0,8q3 satisfying corresponding conditions of Proposition 5.2, for
any ρh P W 1,ppT2q, p ą 2, such that

ş

T2 ρh “ 1 and any δ0 ą 0, there exist η P p0, 1q9,
rη1 P p0, 1q and K ą 0 such that for any t ě 0, any τ P pτ0,`8q, any δ P pδ0,8q and any
ph, g, rgq P pH0q

3

Qδt phq ď
K τ

14
15

δ2
Dtphq ,

Rδ
t ph, g, rgq ď

K τ
14
15`ε

δ2
rDtphqs

1
2

„

pDtpgqq
1
2 ` τ´

1
2
`

t
τ

˘´
3rη1
2 χtďτ }g}



rEtprgqs1{2 .

Proof. We have already shown how to bound S1,t and S3,t. Moreover S2,t may be bounded
as S1,t, and S4,t and S5,t as S3,t. Likewise

S4,tphq ď K τ
1
2 p1`β3qDtphq “ K τ

7
15 Dtphq .

We have already explained how to bound rT1,t, we only need to add that rη1 is chosen as
rη1 “

1
3 ´ 5ε if ε ă 1

15 , and arbitrarily otherwise. Besides

T1,tph, g, rgq ď K τ1´
η1
2 pβ3`1qmin

`

1, tτ
˘´1

Dtphq
1{2Dtpgq

1{2 Etprgq1{2 ,

T2,tph, g, rgq ď K τβ3´
η2
2 pβ3`1qDtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T8,tph, g, rgq ď K τ
1´η8
2 pβ3`1qDtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

which are shown to be sufficient by choosing η1 “ 1
7 and any η2, η8. At last

T3,tph, g, rgq ď K τ
1
2β1´

η3
2 β2`1 min

`

1, tτ
˘

1´3η3
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T4,tph, g, rgq ď K τ
1´η4
2 β2´

1
2β3`

1
2 min

`

1, tτ
˘

1´3η4
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T5,tph, g, rgq ď K τ
1
2β2´

1
2β3`

1
2`

η5
2 p1`β3´β2q min

`

1, tτ
˘

1´3η5
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T6,tph, g, rgq ď K τ´
1
2β1´

η6
2 β2`

1
2β3`

1
2 min

`

1, tτ
˘

1´3η6
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T7,tph, g, rgq ď K τ´
1
2β1`

1
2β3`

1
2`

η7
2 p1`β3´β2q min

`

1, tτ
˘

1´3η7
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,

T9,tph, g, rgq ď K τ´
p1`η9q

2 β2`β3`1 min
`

1, tτ
˘

1´3η9
2 Dtphq

1{2Dtpgq
1{2 Etprgq1{2 ,
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which are themselves shown to be sufficient by choosing ηi, i P t3, 4, 5, 6, 7, 9u, arbitrarily
in p0, 13 s. �

With this in hands the proof of Theorem 1.3 is achieved as was proved Theorem 1.2.

8. Asymptotic models in the diffusive regime

This section is devoted to the proof of Theorem 1.4. So far we have aimed at global-in-
time estimates and therefore what exactly was the reference time scale was immaterial.
Now we turn to asymptotics that are uniform only locally in time thus we explicitly
introduce a reference time in the equations. Namely, after choosing an observation time
tref “ trefpτq in a τ -dependent way, we observe that if f solves the original system then
fref defined by frefpt, x, vq “ fptref t, x, vq and href “ pfref ´ f8q{f8 are such that

(8.1)

$

’

’

’

&

’

’

’

%

1

trefpτq
Bthref ` Lτhref “ Eref ¨A

˚p1q ` Eref ¨A
˚href,

Eref “
1

δ2
∇x∆´1

x nref , nref “

ż

R3

href f8 dv.

with initial data h0.
We already know that for any τ0 ą 0, R0 ą 0 there exists δ0 and uniform positive

constants K and θ such that when δ ą δ0 and }h0} ď R0, for any t ě 0

}hrefptq}
2 ` min

`

1, trefτ t
˘

}Ahrefptq}
2 ` τ2 min

`

1, trefτ t
˘3
}Chrefptq}

2

`
tref
τ

ż t

0
}Ahrefpsq}

2ds ` tref τ

ż t

0
min

`

1, trefτ s
˘2
}Chrefpsq}

2ds

`
tref
τ

ż t

0
min

`

1, trefτ s
˘

}A2hrefpsq}
2ds ` tref τ

ż t

0
min

`

1, trefτ s
˘3
}AChrefpsq}

2ds

ď K }h0}
2

and
}hrefptq} ď K e´θ tref τ t}h0} .

The latter estimates shows that }hrefptq} converges to 0 uniformly on compacts of p0,`8s
provided that trefpτqτ

τÑ0
Ñ 8. The foregoing asymptotic regime is stationary. This proves

part piq of Theorem 1.4.

8.1. Asymptotically linear free-field regimes. In the opposite regime where trefpτqτ
τÑ0
Ñ

0 we show now that relevant asymptotic models are of evolution type or at least strongly
keep track of initial data. However they are linear and one can also drop out convective
terms at least in the velocity directions.

Namely, let us denote hlin the solution to
1

trefpτq
Bthlin ` v ¨∇xhlin ´ Eδ8 ¨∇vhlin ´

1

τ
A˚Ahlin “ 0

with initial data h0. Observe that for any t ě 0

}hlinptq}
2 ` 2

tref
τ

ż t

0
}Ahlinpsq}

2ds ď }h0}
2 .
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Note that
1

trefpτq
Btphref ´ hlinq ` v ¨∇xphref ´ hlinq ´ E

δ
8 ¨∇vphref ´ hlinq ´

1

τ
A˚Aphref ´ hlinq

“ Eref ¨A
˚href ` Eref ¨A

˚p1q .

This implies for any t ě 0

}phref ´ hlinqptq}
2 `

tref
τ

ż t

0
}Aphref ´ hlinqpsq}

2ds

ď tref τ

ż t

0

`

}Erefpsqhrefpsq}
2 ` }Erefpsq}

2
˘

ds

ď
Kη p1`R

2
0q

δ2
}h0}

2 ˆ

#

ptref τ tq
1´η when tref t ě τ

τ2p1´ηq when tref t ď τ
.

for any 0 ă η ă 1
3 . The trickiest part of the foregoing bound follows from

tref τ

ż t

0
}Erefpsqhrefpsq}

2 ds ď
Kη

δ2
tref τ

ż t

0
}Chrefpsq}

2η}hrefpsq}
2p1´ηq ds

ď
Kη

δ2
}h0}

2p1´ηqtref τ

ż t

0

min
´

1,
tref
τ s

¯2η
}Chrefpsq}

2η

min
´

1,
tref
τ s

¯2η ds

ď
Kη R

2
0

δ2
}h0}

2ptref τq
1´η

ˆ
ż t

0
min

`

1, trefτ s
˘´

2η
1´η ds

˙1´η

.

obtained by the same argument used to bound R0 in Lemma 4.3 and Hölder estimates.
The proof of the claim is then achieved by noticing that

ż t

0
min

`

1, trefτ s
˘´

2η
1´η ds ď K max

´

t, τ
tref

¯

.

Hence we are asymptotically close to the linear regime.
Now let us show that contributrions of the linear field terms also vanish in these

regimes. Let us denote has the solution to
1

trefpτq
Bthas ´

1

τ
A˚Ahas “ 0 ,

with initial data h0 P H, and assume Ch0 P H. Note that

}hasptq}
2 ` 2

tref
τ

ż t

0
}Ahaspsq}

2ds ď }h0}
2 .

and that, since C and A commute, Chas solves the same equation, hence satisfies a similar
estimate with initial data Ch0. Using that v “ A`A˚, a direct estimate provides

}phlin ´ hasqptq}
2 `

tref
τ

ż t

0
}Aphlin ´ hasqpsq}

2ds

ď K tref τ

ż t

0
}Chaspsq}

2ds

` Ktref

ż t

0
r}AChaspsq} ` }Ahaspsq}s }phlin ´ hasqpsq}ds

ď K 1
“

tref τ t }Ch0}
2 `

?
tref τ t

`

}h0}
2 ` }Ch0}

2
˘‰

.
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Since such h0 form a dense set in H, the corresponding convergence, uniform in t on
compact sets of r0,8q,

}hlinptq ´ hasptq}
τÑ0
ÝÑ 0 provided trefpτq τ

τÑ0
Ñ 0

may be extended to any h0 P H. This proves part pivq of Theorem 1.4.
At last observe that, on one hand, for any t ě 0, with n0 “

ş

R2 h0Mdv

}hasptq ´ n0} ď e´θ
tref
τ
t }h0 ´ n0}

for some uniform θ ą 0, which proves part piiiq of Theorem 1.4. On the other hand,
uniformly in t on compact sets of r0,8q,

}hasptq ´ h0}
τÑ0
ÝÑ 0 provided trefpτq

τ
τÑ0
Ñ 0

for any h0 P H. The latter follows through a density argument from the explicit estimate

}hasptq ´ h0} ď
trefpτq t

τ }A˚Ah0}

that holds when moreover A2h0 P H. This proves part pvq of Theorem 1.4.

8.2. Nonlinear diffusive regime. The remaining regime corresponds to the case where
tref τ is of order 1 and therefore in this section we set trefpτq “ τ´1. Note that with this
choice we already know that

ˆ
ż 8

0
}Ahrefptq}

2 dt
˙

1
2
ď K τ }h0}

and this implies that
ˆ
ż 8

0
}frefptq ´Mρrefptq}

2
L2pM´1qdt

˙

1
2
ď K 1 τ }h0} .

Our goal is to also identify some asymptotic limiting behavior for nref “ ρref ´ e´φ
δ
8 .

Note that the proof of Theorem 1.2 by a contraction argument also provides us with
the fact the map h0 ÞÑ href is Lipschitz from H0 to L8pR`;H0q, therefore this is also
the case for the map h0 ÞÑ nref from H0 to L8pR`;L2pT2qq. To prove convergence in
L8locpR`;L2pT2qq (without explicit decay rates) we may therefore restrict to a case where
also hold Ah0 P H, ACh0 P H, Ch0 P H and C2h0 P H. The gain we shall use is two-fold.
Indeed one may both drop out time weights in our arguments and upgrade it to higher
regularity to obtain

}hrefptq}
2 ` }Ahrefptq}

2 ` }Chrefptq}
2 ` }AChrefptq}

2 ` τ2 }C2hrefptq}
2

`
1

τ2

ż t

0
}Ahrefpsq}

2ds `
1

τ2

ż t

0
}A2hrefpsq}

2ds

`
1

τ2

ż t

0
}AChrefpsq}

2ds `
1

τ2

ż t

0
}A2Chrefpsq}

2ds

`

ż t

0
}AC2hrefpsq}

2ds `

ż t

0
}Chrefpsq}

2ds `

ż t

0
}C2hrefpsq}

2ds

ď K
“

}h0}
2 ` }Ah0}

2 ` }Ch0}
2 ` }ACh0}

2 ` τ2 }C2h0}
2
‰

.
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It is very important to note however that to do so we do not need to restrict further δ0
in a way that would depend on the size of }Ah0}, }Ch0}, }ACh0} and }C2h0}. Otherwise
this would prevent us from extending the convergence to h0 P H0 by a density argument.
In contrast, we will be free to restrict τ0 in a way depending on above norms. We skip the
proof of the foregoing claim as lengthier but otherwise completely similar to estimates
that have been proved in detail above.

Now, our starting point is the continuity equation (4.2), that here takes the form

Btnref `
1

τ
divxpjrefq “ 0

where we recall that

nref “

ż

R2

href f8dv , jref :“

ż

R2

v href f8dv .

Similarly, a momentum equation

(8.2) τBtjref `
1

τ
jref “ nrefE

δ
8 ` pρ8 ` nrefqEref ´∇xnref ´ divxpSrefq

may be obtained by multiplying (8.1) by v and integrating in the velocity variable, with

Sref “

ż

R2

pv b v ´ Iqhref f8dv .

To give some hints on computations involved in the foregoing derivation, we introduce
x ¨ ; ¨ yv to denote the spatially dependent scalar product on L2pf8 dvq and notice that

nref “ x1;hrefyv , jref “ xA˚p1q;hrefyv “ x1;Ahrefyv , Sref “ xpA˚q2p1q;hrefyv

as follows from v “ A ` A˚, Ap1q “ 0 and commutation properties of A and A˚. Now
the key computations leading to the above are

xA˚p1q;Eref ¨A
˚p1` hrefqyv “ pρ8 ` nrefqEref ,

xA˚p1q;Eδ8 ¨Ahrefyv “ SrefE
δ
8 ,

xA˚p1q;A˚ ¨Ahrefyv “ jref ,

xA˚p1q; divxppA`A˚qhrefqyv “ divxpxA˚p1q; pA`A˚qhrefyvq ´ xA˚p1q; pA`A˚qhrefyv E
δ
8

“ divxpSref ` nref Iq ´ pSref ` nref IqEδ8 .

To proceed, with this in hands, the continuity equation may be turned into

Btnref ` divxpnrefE
δ
8 ` pρ8 ` nrefqEref ´∇xnrefq “ divxpdivxpSrefqq ` τdivxpBtjrefq .

Therefore we set

rnref “ nref ´ τdivxpjrefq and rEref “
1

δ2
∇x∆´1

x rnref

and introduce nas the solution to

Btnas ` divxpnasE
δ
8 ` pρ8 ` nasqEas ´∇xnasq “ 0

starting from n0, where Eas “ δ´2∇x∆´1
x nas. Note that the well-posedness of the equa-

tion for nas may be obtained by a simpler version of the argument proving Theorem 1.2.
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Moreover we may ensure that }rn0} ď 2R0 by requiring τ0 }divxpj0q} ď R0 and thus
restrict δ0 in a way that depends only on R0 in order to deduce for any t ě 0

}prnref ´ nasqptq}
2 `

ż t

0
}∇xprnref ´ nasqpsq}

2ds

ď τ2 }divxpj0q}2

` K

ż t

0

”

τ2}divxpjrefqpsq}2L4pT2q }pE
δ
8 `

rErefpsqq}
2
L4pT2q

`}nrefpsq}
2 }p rEref ´ Erefqpsq}

2
L8pT2q

` τ2}∇2pjrefqpsq}
2 ` }divxpSrefqpsq}

2
ı

ds

ď K 1 τ2
“

}h0}
2 ` }Ah0}

2 ` }Ch0}
2 ` }ACh0}

2 ` τ2 }C2h0}
2
‰

since }divxpSrefq} ď K
`

}A2Chref} ` }A
2href}

˘

. This proves part piiq of Theorem 1.4.
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