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At low temperatures, a spin ice enters a Coulomb phase - a state with algebraic correlations and
topologically constrained spin configurations. In Ho2Ti2O7, we have observed experimentally that
this process is accompanied by a non-standard temperature evolution of the wave vector dependent
magnetic susceptibility, as measured by neutron scattering. Analytical and numerical approaches
reveal signatures of a crossover between two Curie laws, one characterizing the high temperature
paramagnetic regime, and the other the low temperature topologically constrained regime, which
we call the spin liquid Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two Curie laws appears to
be a general property of the emergent gauge field for a classical spin liquid, and ii) sheds light on
the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials;
iii) the mapping between gauge and spin degrees of freedom means that the susceptibility at finite
wave vector can be used as a local probe of fluctuations among topological sectors.

PACS numbers: 05.50.+q 05.70.Jk 75.10.Hk 75.10.Kt 75.25.-j

In spin liquid systems, where an absence of symmetry
breaking leads to a disordered phase, system spanning
correlations that are hidden from conventional probes can
be manifest in topological properties [1]. These extended
correlations typically requires measurement of non-local
quantities, such as the entanglement entropy [2, 3], which
may not immediately be accessible by experiment. The
quest for spin-charge separation [4] in models for high
temperature superconductivity has led to extensive stud-
ies of model quantum spin liquids [5, 6] and quantum
critical phenomena [7, 8], where topological order can be
identified. However, the interest in topology is not lim-
ited to quantum systems, as the constraints inherent to
geometrically frustrated magnets or classical dimer sys-
tems also lead to extremely rich many body behaviour.
“Topological order” may also be defined heuristically in
classical spin liquids with an absence of conventional or-
der, by a lack of ergodicity between sectors in config-
uration space with different topological invariants (see
e.g. Ref. [9]). The most familiar invariant is the “wind-
ing number” which can be used to define Z2 or integer
topological invariants in a variety of 2D and 3D sys-
tems. Interestingly, novel topological invariants unique
to three-dimensional have recently been identified [10],
which could have broad implications for classical spin liq-
uids in higher dimensions, with certain underlying emer-
gent gauge structures arising due to local constraints [11].

The correlations induced by local constraints have been

discussed in systems on the kagome lattice with both
discrete [12] and continuous symmetry [13], and for frus-
trated antiferromagnets with a pyrochlore structure [14–
16]. In these theoretical models, the physics of the
“Coulomb phase”, with dipolar correlations showing up
as pinch point singularities in reciprocal space [17–19],
is universally present. Among systems showing Coulomb
phase physics [20], spin ice models [21] have proved par-
ticularly fruitful testing grounds for the collective be-
haviour associated with topological constraints as the
associated spin ice materials are the only experimental
magnetic systems for which sharp pinch points have been
observed [18, 19, 22, 23]. An extensive manifold of low
energy states can be constructed by ensuring that a local
constraint - the ice rule - is obeyed on every tetrahedron
of the underlying pyrochlore lattice. The ice rule requires
that at low temperature, two spins point into and two out
of every tetrahedron, as shown in Fig. 1. This local diver-
gence free condition also generates the long range dipolar
correlations in the Coulomb phase, even within the con-
fines of the simplest model with nearest neighbour spin
interactions only.

In this paper, we show that whilst a spin ice is topo-
logically constrained, it is not topologically ordered as
it is able to fluctuate between topological sectors. We
show how the susceptibility can be used as an indicator of
these topological sector fluctuations (TSF), and present
a detailed comparison of our results with both bulk

ar
X

iv
:1

20
4.

62
66

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
7 

A
pr

 2
01

2



2

magnetometry and neutron scattering measurements on
Ho2Ti2O7 [24]. We compare the experimental data to
analytical and numerical expressions of the susceptibility,
where the emergence of TSF at low temperature appears
as a crossover between two Curie laws at specific wave
vectors Q in the structure factor S(Q). This study was
motivated in part by the experimental observation of an
unusual temperature dependence in the wave vector de-
pendent susceptibility [25] (see Fig. 4), one that is fully
explained by the theory presented here.

Topological sectors in spin ice: Let us first character-
ize a model system, of size L, with periodic boundaries
and only afterwards relate its properties to experimen-
tal observables. We study the nearest neighbour spin ice
model (NNSI) [21] with vector spins of unit length, ~Si
placed on the vertices of a pyrochlore lattice, constrained
to lie along the body centred crystal field directions of the
tetrahedra: ~Si = ±~di (see Fig. 1) and with ferromagnetic
exchange interaction J > 0. The model maps onto An-
derson’s Ising antiferromagnet with exchange constant
J ′ = −J/3 [26] through the definition of Ising pseudo-

spin variables σi = ~Si.~di. However it is the ferromagnetic
spin ice model that is physically realisable: the Ising py-
rochlore antiferromagnet with a single easy axis cannot
represent any real magnetic system as its Hamiltonian
breaks the cubic lattice symmetry [21]. The ensemble
of ground states satisfying the ice rules of two spins in
and two out, or

∑
i=1,4 σi = 0, on each tetrahedron is

a Coulomb phase [14, 15] and leads to the Pauling zero
point entropy [27, 28] (see Fig. 1). Here we consider
cubic systems with L3 unit cells and N = 16L3 spins.
Throughout the paper, as we have in mind comparisons
with Ho2Ti2O7, we take J = 1.8 K, the value found to
best parameterize thermodynamics measurements of this
spin ice material [24].

A micro state of the Coulomb phase can be classified
by a set of strings of alternating out, in, out ... spins
which wind through the system along each of the cubic
axes. That is, any spin ~Si with a downward (upward)
projection along a given cubic axis, always has at least
one nearest neighbour above and below it with the same
downward (upward) projection (see Fig. 1). Connecting
these spins draws a map of strings spanning the system
from top to bottom in the negative (positive) direction.
We define an individual string, which does not necessar-
ily close on itself, as an object spanning the system once
along one cubic axis, so that each string is composed of
4L spins. Hence each microstate has n−k (n+k ) strings
spanning in the negative (positive) direction along cubic

axis k̂, such that the total number, n0 = n−k + n+k = 4L2

equals the number of spins on a plane of the pyrochlore
lattice perpendicular to k̂. Each spin belongs to three
strings threading along x̂, ŷ and ẑ. Two strings thread-
ing through a tetrahedron in the same direction k̂ are
indistinguishable and can in fact be mapped onto the

world lines of bosons living in the d−1 dimensional space
perpendicular to the string direction[29–31]. One can de-
fine a topological sector for each configuration through a
winding vector ~w = (wk = n+k − n

−
k )k=x,y,z, whose com-

ponents are even integers taking values between ±4L2.

Excitations within the Coulomb phase are non-local
and limited to the flipping of a closed loop of spins iden-
tified in two categories (see Fig. 2): firstly a non-winding
loop of spins which closes within the system. This kind
of excitation moves the system between microstates of a
given topological sector, re-arranging the string network
without changing the winding number. Secondly, a wind-
ing loop which closes on itself after passing one or more
times through the periodic boundaries. Each passage
flips a string of spins and changes the topological sector
through a change in one component of the winding vector
by two. We define a topologically ordered system as one
that is restricted to a single topological sector.

In model systems the Coulomb phase space can be
sampled directly in simulations by using a non-local
worm algorithm [69]. The worm is a virtual sequence
of spins that burrows through the system until it closes
on itself becoming a loop excitation that maintains the
ice rules. In real materials, deconfined topological defects
provide local dynamics [32] and their creation and anni-
hilation allows for the sampling of different constrained
states. However, a finite concentration of such defects
destroys the Coulomb phase above length scales fixed by
their mean separation and the balance between main-
taining ergodicity and imposing the constraints is a fine
one.

The winding vector is a direct measure of the differ-
ence between upward and downward projections along
each cubic axis, making it proportional to the magneti-
zation: ~M = (4L/

√
3)~w. Magnetic fluctuations of a sys-

tem in the Coulomb phase are therefore a direct measure
of topological sector fluctuations: non-winding loop ex-
citations carry no magnetic moment, while winding ones
carry a magnetic fingerprint of the change in topological
sector. The phase space of constrained Pauling states
making up the Coulomb phase is therefore compatible
with an ensemble of gauge invariant topological sectors
with U(1) symmetry. Each sector is associated with an
extensive subset of states with constant magnetization
connected by non-winding loop excitations, while mag-
netic fluctuations correspond to a change in topological
sector. Susceptibility measurements could therefore be
used as a diagnostic of both the crossover from the high
temperature paramagnetic phase into the constrained
phase and of the extent of topological sector fluctuations
at low temperature. Applying a magnetic field along a
cubic axis, ẑ, breaks the symmetry and the system ap-
proaches the maximum winding state, ~w = (0, 0, 4L2)
singularly via a Kasteleyn transition [18, 29, 30, 33–35].
This is an example of a topological ordering transition, as
the system enters a state with fixed sector and constant
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winding vector. The susceptibility diverges on the high
temperature side but is strictly zero in the topologically
ordered phase. In the rest of the paper we develop the
notion of susceptibility as a diagnostic for TSF around
~w = 0, in zero field.
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FIG. 1: Top right: A portion of the pyrochlore lattice, made
of corner-sharing tetrahedra. All spins respect the ice-rules
- “two in two out”. The red spins form a string or worm in
the negative direction, while the green hexagon represents a
non-winding worm of 6 spins: flipping the former changes the
topological sector, the latter is a fluctuation within a sector.
Top right: The Husimi tree construction for the pyrochlore
lattice. Middle right: Mapping between spins with easy-axis
anisotropy respecting the symmetry constraints of the lattice
(right), and the corresponding pseudo-spins (left). Bottom:
Scattering function S(Q, T ) of the NNSI model at T = 1 K
for a system of 4000 spins, simulating Ho2Ti2O7 with Jeff =
1.8 K. The pinch points are evident at (0, 0, 2), (1, 1, 1) and
(2, 2, 2).

Analytics: We calculate both the magnetic suscep-
tibility and the pseudo-spin susceptibility on a Husimi
tree of corner sharing tetrahedra, which preserves the
coordinations of the pyrochlore lattice but neglects non-
winding loops (see Fig. 1). Although this is an approxi-

FIG. 2: Non-winding loop(blue) and string (red) which can
be flipped by winding loops of this length. The winding loop
excitation leads to a topological sector fluctuation. The (red)
string illustrates the effective finite size system sampled by
neutrons of wavelength λ.

mate method, previous work [29] suggests that it should
provide an excellent basis for describing magnetic fluc-
tuations, as it allows system spanning strings of flipped
spins and hence winding number fluctuations. The ap-
proach is reminiscent to the cluster variation method de-
veloped in [36]. Spins on the (n + 1)th shell (green in
Fig. 1) have three equivalent neighbours and one neigh-
bour on the nth shell (blue in Fig. 1). The total partition
function is built up recursively by summing over the de-
grees of freedom of the spins from the (n + 1)th shell,
while holding the spin on the nth shell fixed, with an
external field h along the z−axis breaking the up down
symmetry [37, 38]. In order to neglect boundary effects,
thermodynamic quantities such as the longitudinal sus-
ceptibility χ, are extracted from the centre of the tree:

χ ≡
(
∂mz

∂h

)
h→0

=
2β

3

1 + e2βJ

2 + e2βJ + e−6βJ
, (1)

where mz = 〈
∑
i S

z
i /N〉, 〈...〉 is a thermal average. Here

and throughout our susceptibility has dimensions of in-
verse temperature. To compare with experiment it must
be multiplied by 3C where C is the normal Curie con-
stant in the SI system : C = µ0µ

2NHo/3V ≈ 4 K for
Ho2Ti2O7, where µ0 is the vacuum permeability, µ the
magnetic moment operator for Ho3+, NHo the number of
Ho ions and V the system volume.

The asymptotic limits of χ(T ) [39, 40] reveal a
crossover between unconstrained and constrained, col-
lective paramagnetic regimes, with the Curie constant
scaled by a factor of two.

χ(T →∞) ∼ 1/3T χ(T → 0) ∼ 2/3T. (2)

The factor of 1/3 at high temperature is a necessary prop-
erty of a system with cubic space symmetry, familiar
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in the case of a Heisenberg paramagnet where an ap-
plied field couples to fluctuations in only one of the three
Cartesian components of the magnetization. Although
spin ice has local easy-axis anisotropy, it is isotopic in
linear response once the full symmetry of the system is
accounted for. This symmetry is a key property of spin
ice and is related to the almost perfect screening of the
long range interactions in the Coulomb phase of the dipo-
lar spin ice model [41]. Further insight into this low tem-
perature crossover can be gained from the pseudo-spin
susceptibility (cf. figure 1)

χ0 ≡
(
∂m0

∂h0

)
h=0

= 4β
1 + e−6βJ

4 + 6e2βJ − 2e−6βJ
, (3)

where m0 =
∑
i σi/N and where h0 is parallel to the

global pseudo-spin axis and thus conjugate to m0. The
asymptotic limits of χ0 are

χ0(T →∞) ∼ 1/T χ0(T → 0+) ∼ 2e−2βJ

3T
(4)

without the factor of 1/3 as all pseudo-spins are parallel
to the field. As the constraints are imposed, the pseudo-
spin moment vanishes on each tetrahedron and χ0 falls
to zero on the same temperature scale than the crossover
of χ between the two Curie laws for the system with real
spins (cf. figure 4.A). This reinforces our claim that this
crossover can be used as a signal of the system entering
the Coulomb phase, and as an indicator of topological
sector fluctuations at low temperature.

Comparison with Monte Carlo simulations gives excel-
lent agreement between analytics and numerics as shown
in Fig. 4.B, where we show both Tχ and Tχ0 from simu-
lations of the NNSI using the worm algorithm. The data
agree with the analytic prediction, within numerical er-
ror, over the entire range of temperature from 1000 K to
0.5 K, at which point the system enters into the asymp-
totic regime characterized by equations (2) and (4). A
closer look at Tχ as T → 0 taken from Ref. [39] gives an
estimate of Tχ = 0.66735 ± 0.0003, very close (but not
equal) to the 2/3 predicted by the Husimi tree. One can
conclude that as the non-winding loops, which are ab-
sent in the tree calculation, carry no magnetization this
is of little consequence for magnetic fluctuations, allow-
ing for an extremely accurate estimate of the magnetic
fluctuations between different topological sectors.

Moving from the model to real systems, there are no
periodic boundaries, so no winding of loops but any fi-
nite window will have strings running through it much
as in the periodic system. Although boundary effects
may change the string statistics [12], the same picture of
strings and closed internal loops should hold, motivating
detailed comparison between model systems and experi-
ment. In Fig. 3 we superimpose previously unpublished
experimental data from susceptibility measurements for
a powder sample of Ho2Ti2O7 taken between 3 and 15K.

The experimental moment was scaled to 96% of its full
value of µ = 10µB to get the best fit. Even when taking
into account this scale factor (which is close to unity) the
agreement between experiment, theory and simulation is
remarkably good, indicating that the bulk susceptibility
does indeed approach the TSF regime as the temperature
becomes of order J .

On the Curie-Weiss law: Unfrustrated ferro- or an-
tiferromagnets order on a temperature scale set by the
Curie-Weiss temperature, |ΘCW |, estimated from a high
temperature expansion for the magnetic susceptibility

(3χT )−1 ∝ 1− βΘCW . (5)

Expanding equation (1) to order O(β) one finds ΘCW =
2J for the NNSI. A standard picture of frustrated com-
pounds proposed by Ramirez [42] is that frustration will
hinder ordering down to a lower temperature T ∗ �
ΘCW , with T ∗ → 0 for a spin liquid, or cooperative
paramagnet. This is the case for spin ice, although un-
like an antiferromagnetic spin liquid, the susceptibility
approaches what we call the spin liquid Curie law, char-
acteristic of topological sector fluctuations, rather than
a constant value, as T approaches zero. The crossover
occurs over a very wide range of temperature, so that
while the TSF regime is reached around 1 K, the para-
magnetic Curie law is only reached above 100 K. This is
extremely important for comparison with experiment, as
100 K is far outside the spin ice temperature range for
real materials making an estimate of ΘCW by traditional
methods a difficult task. For example, putting J = 1.8
K, the canonical value Ho2Ti2O7 gives ΘCW = 3.8 K,
which is noticeably bigger than the estimate of ΘCW =
1.9 ± 0.1 K from the bulk magnetometry measurements
for Ho2Ti2O7 shown in Fig. 3 [24]. The reason is that the
rare-earth single ion Ho3+ starts to lose its Ising nature
and becomes more and more Heisenberg-like with easy-
axis anisotropy above ∼ 30K [43]. Although well above
the scale set by J , it is still in the crossover region and far
from the high temperature limit. In this crossover region,
the effective measured value of the Curie-Weiss temper-
ature thus depends on the temperature window used for
the fit. Of course this does not prevent an estimate of the
Curie-Weiss temperature, or the use of Ramirez’s crite-
rion mentioned above. We illustrate this in Fig (3) where
we plot 1/χ against temperature for the bulk susceptibil-
ity data together with theory and simulation. The data,
now scaled by an effective moment which is 96% of the
full moment, compares extremely well with a Curie-Weiss
law with ΘCW ∼ 1.9 K, but lies far from the true Curie-
Weiss law with ΘCW = 2J = 3.8 K.

Simulations of the scattering function S(Q, T ): The
scattering function S(Q, T ) measured from diffuse unpo-
larized neutron scattering intensity in the static approx-
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FIG. 3: 1/χ vs. T for bulk magnetometry measurements of
a powder sample of Ho2Ti2O7 (green triangles), Monte Carlo
simulation of the nearest neighbour spin ice (red dots) and an-
alytical result from the Husimi tree, equation (1) (blue line).
The dotted lines show Curie-Weiss laws for ΘCW ≡ 2J = 3.8
K (thin) and ΘCW = 1.9 K (thick). The susceptibility is
expressed in CGS units cm3.mol−1.

imation is defined as

S(Q, T ) ≡

〈∣∣∣∣∣
N∑
i=1

Si⊥ e
iQ·ri

∣∣∣∣∣
2〉

, (6)

where Si⊥ is the component of a spin at ri orthogo-
nal to the scattering vector Q(qx, qy, qz), and where 〈...〉
represents a thermal average at temperature T . Being
the Fourier transform of the thermally averaged two-spin
correlation function, S(Q, T ) is related to the wave vec-
tor dependent susceptibility, and in certain instances be-
comes an explicit function of the bulk susceptibility χ(T ).
For example in the paramagnetic phase, equation (6) be-
comes

S(Q, T →∞) =

〈
N∑
i=1

(
S2
i x′ + S2

i,y′
)〉

=
2N

3
, (7)

where x′ and y′ are the axis of the plane orthogonal to
Q. Hence, since χ = 1/3T in this regime, S(Q, T ) =
2NT χ(T ) = 2N/3 for all Q as T → ∞: that is, while
χ is coupled to only one spin component parallel to the
field, S(Q) is coupled to two components orthogonal to
the wave vector Q [70].

As one moves into the Coulomb phase and correla-
tions build up, S(Q, T ) develops a strong Q dependence
with, in particular, the appearance of the pinch points
[15, 17, 46] that are characteristic of the local diver-
gence free constraint imposed by the ice rules. A map
of S(Q, T ) generated from equation (6), in the (h, h, l)
plane of reciprocal space, for the NNSI as the Coulomb
phase is approached, is shown in Fig. (1). The wave vec-
tors are in units of 2π/a, where a is the side of a 16
site cubic unit cell. The pinch points, narrow regions of
intense diffuse scattering can be seen at the reciprocal

lattice vectors (0, 0, 2); (1, 1, 1); and (2, 2, 2), that is, at
Brillouin zone centres for the face centred cubic lattice of
the pyrochlore structure. Near the (0, 0, 2) pinch point
the scattering is expected to take the form

S(Q, T ) = C(T )
q̃2z + ξ−2ice (T )

q̃2z + q̃2x + q̃2y + ξ−2ice (T )
, (8)

where q̃x = qx, q̃y = qy, q̃z = qz − 2 × (2π/a) and where,
following Youngblood and Axe [46], ξice(T ) is a coher-
ence length for the Coulomb phase [15, 19]. The ampli-
tude C(T ), which is the value of S(Q) as one traverses
the singular point at q̃x = q̃y = 0, comes from transverse
magnetic fluctuations: spin fluctuations in the plane per-
pendicular to the wave vector q̃z that describes them.
It is therefore coupled to two spin components and so
should constitute two contributions from the bulk sus-
ceptibility χ. This expression predicts a ridge of intense
diffuse scattering of constant amplitude along the cubic
axis (q̃x = q̃y = 0), whose width is limited by ξ−2ice at the
pinch point: S(Q = (0, 0, l), T ) = C(T ) = 2NTχ which
scales as 4N/3 as T goes to zero, while at higher temper-
ature, as ξice(T ) becomes microscopic, the pinch point
broadens and one crosses back to isotropic homogeneous
paramagnetic scattering, with S(Q, T ) independent of Q
and scaling as ∼ 2N/3. As a summary, we expect

S(Q, T ) = 2NT χ(T )

{
∀Q T →∞
∀T ~̃q = 0

(9)

In Fig. 4.C we show simulation results for the NNSI for
3S(Q, T )/2N as a function of temperature for different
values of Q. For Q along (0, 0, l) the simulation results
confirm the above scenario to a high degree of accuracy,
as results for both (0, 0, 1) and (0, 0, 2) follow the theo-
retical expression given by the tree calculation within nu-
merical precision between T = 0.1 K and T = 1000 K. We
expect this argument to hold at any pinch point, as con-
firmed for (1,1,1) in Fig. 4.C. Away from the line of high
symmetry (0, 0, l) and from pinch points, the scattering
intensity fails to develop as the constraints are imposed,
but remains larger than the high temperature asymp-
tote. As seen from the data at (1, 1, 0) and (2, 2, 0), the
topological sector information is not contained in these
projections, or at least in a less straightforward way.

Pinch point scattering: Although Youngblood and
Axe predict constant amplitude along (0, 0, l) it is per-
haps surprising to find that this long wavelength expres-
sion holds all the way from the zone centre (pinch point)
to the zone boundary. The q̃ = (q̃x, q̃y, q̃z) independence
is a consequence of the collective paramagnetism yielding
diffuse, rather than either Bragg or critical scattering: at
finite q̃, away from the zone center along the cubic axis
(0, 0, l), one observes topological sector fluctuations in an
effective system of reduced size ∼ 2π/|q̃|, which has only
small finite size corrections to those in the thermody-
namic limit.
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FIG. 4: A: Temperature dependance of 3χT from Eq. 1 with real spins (top curve) and 3χ0T From Eq. (3) with pseudo-spins
(bottom curve) and with Jeff = 1.8 K. B: Comparison of the susceptibility of the NNSI model obtained by Monte Carlo
simulation with single spin flip dynamics compared with the analytical theory. The blue triangles are bulk susceptibility
measurements fitted to theory with a factor of 96% with respect to the expected value of the local magnetic moments of 10 µB .
We show for comparison the Curie-Weiss fit of figure 3 with ΘCW = 1.9 K (green line). The bulk data have been extracted
from figure F14.1 in [44] and the error bars are due to digitalization. C: Wave vector dependent susceptibility of the NNSI
model at selected Q points, again obtained by Monte Carlo simulation, and compared with the analytical theory. The data
for (0, 0, 2) and (0, 0, 1) have been obtained using both single spin flip dynamics and a worm algorithm has been added for
(1, 1, 1) to circumvent the low temperature ergodicity loss [45]. The nearest neighbor coupling has been set to J/kB = 1.8 K, as
estimated for Ho2Ti2O7, within the nearest neighbour approximation [24]. D: Temperature dependance of S(Q, T ) measured
experimentally (see text for details), compared with the analytical theory. The red line is a guide to the eye to illustrate that
this crossover could be misinterpreted as a power law within a finite temperature window (χ ∼ T−1.17 here). In each case the
intensity is scaled to the value of the susceptibility estimated from the Husimi tree at a single temperature between 30 and 100
K. There are no fitting parameters for the temperature axis.

Specifically, for q along ẑ, we are interested in fluc-
tuations in Mx ∝ wx and My ∝ wy. The strings of
alternating “out-in-out-in ...” spins along a given cubic
axis behave as random walkers in the plane perpendicu-
lar [47, 48], so that those oriented along the ŷ axis have
a ballistic trajectory in this direction, but make a diffu-
sive random walk in the (x̂ − ẑ) plane. For q along ẑ,
string correlations will therefore be lost when the exten-
sion of the string in the ẑ direction exceeds λ = 2π/|q|.
If the number of steps along the ŷ axis is ˜̀

y, the diffu-

sive orthogonal extension in the (x̂− ẑ) plane is ∼
√

˜̀
y.

For a string oriented along the ŷ axis, each tetrahedron
on its way provides 2 possible paths, alternatively along
the [101] and [101̄] axes. Hence such string makes an
almost isotropic random walk step in the (x̂ − ẑ) plane
after spanning 2 tetrahedra, along ±x̂ or ±ẑ approxi-
mately. Because there are 4 tetrahedra in a cubic cell,
a step length is a/2. Fixing the perpendicular exten-

sion (a/2)
√

˜̀
y = λ gives ˜̀

y ∼ (2λ/a)2, a number that

is always greater than unity, even at the zone bound-
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ary, where λ = a and ˜̀
y spans two cubic cells. Hence,

even at the zone boundary we are observing strings for a
system of large enough effective size to be essentially in
the asymptotic regime where one can observe topological
sector fluctuations. We are not comparing with a sys-
tem with periodic boundaries; the soft effective bound-
aries provided by finite scattering wave vector appear to
give similar results, allowing constant scattering ampli-
tude along the entire (0, 0, l) ridge.

To quantify this correlation, we can rewrite the sus-
ceptibility as

3χT =
1

N

∑
i,j

(〈Si · Sj〉 − 〈Si〉〈Sj〉) = 1 +
∑
i 6=0

〈Si · S0〉.

Obviously we don’t expect any q dependence in the in-
finite temperature limit. In the Coulomb phase on the
Husimi tree lattice, the total correlation between ith near-
est neighbors is 〈Si · S0〉 = 2/3i [37, 38]. χ = 2/3T is
recovered upon integration of all correlations, and we can
estimate that most of the correlations (98 %) are already
taken care by the first three nearest neighbors, i.e within
a sphere of radius r . a.

In pictorial terms (see Fig. (2), a neutron of wave-
length λ will not see closed loops on that scale, as they do
not change the two point correlation function g(r = λ),
or magnetic moment calculated over an area incorporat-
ing the loop, but they will detect fluctuations on a larger
scale (r > λ), which appear as fluctuations of strings as
a result of the anisotropic scaling of the string trajec-
tory. Hence the strings should give essentially uniform
scattering right up to the zone boundary.

Neutron scattering experiments on Ho2Ti2O7: We
now compare our theoretical and numerical findings with
experimental measurements of S(Q). In Fig. 4.D we
show S(Q) for several Q values in the (h, h, l) plane
from two different single crystal neutron scattering exper-
iments of Ho2Ti2O7 (that used different samples). Both
experiments were performed on the IN14 triple axis spec-
trometer at the ILL, Grenoble. In the first experiment
S(Q) was extracted from the measured unpolarized neu-
tron scattering cross section [49], while in the second it
was derived by combining nonequivalent components of
the tensor S(Q) measured by polarization analysis [19].
In each case the intensity is scaled to the value of the
susceptibility estimated from the Husimi tree at a single
temperature between 30 and 100 K. There are no fitting
parameters for the temperature axis. One can immedi-
ately see that the total intensity at, or near the zone
boundaries, (0, 0, 0.9) and (0, 0, 3) is in remarkably good
agreement with theory and simulation, and shows the
clear signature of a crossover between paramagnetic fluc-
tuations and topological sector fluctuations. However,
things are very different at the pinch point, (0, 0, 2). Af-
ter an initial increase above the Curie law below 30 K,
the value of the scattering intensity stagnates and even

decreases as the temperature dips below 3 K. This fail-
ure to follow the predictions of the NNSI appears despite
the fact that, experimentally the pinch points become
sharply developed at low temperature, indicating that
the topological constraints are imposed to an excellent
approximation[19].

A more detailed look at the evolution of the scattering
intensity along the ridge is shown in Fig. 5 where S(Q)
is plotted as a function of Q(0, 0, l 2π/a) from l ∼ 0.7 to
l = 4 and for temperatures between 50 and 1.7 K. This
data is extracted from polarized diffuse scattering mea-
surements made using the D7 spectrometer at the ILL,
Grenoble, which are described in Ref [19]. Again differ-
ent polarization channels have been combined so that the
total magnetic response is plotted. On the zone bound-
aries, with l = 1 and l = 3, the crossover between Curie
laws is clearly visible, while at the zone centre, l = 2 the
crossover fails to develop. Please note that [1.7 K ; 50 K]
is not a wide enough temperature window to see the full
factor of 2 between the two Curie laws. The variation be-
tween both Brillouin zone boundaries (l = 1 and 3) is due
to the Q dependence of the atomic form factor, which is
not present in the simulations. Without the form factor,
the scattering amplitude would be equal for l = 1 and 3,
in complete agreement with the numerical simulation.

This difference in behavior at the centre and zone
boundaries shows that the Pauling states with strings
spanning large distances are partially suppressed in the
real material, so that the topological sector fluctuations,
defined over large length scales, are less intense than
those expected from a pure ice rule system in which all
constrained microstates have the same statistical weight.
Indeed, as discussed in Ref. [50] the scattering in the
closely related spin ice material Dy2Ti2O7 tends towards
a pattern characteristic of closed 6-membered loops,
though retains weak pinch points and the 00l ridge. A
first possible explanation is suppression of long loops by
further neighbour exchange couplings [50]; another is the
closing of field lines - similar to strings - by the magnetic
dipole interaction, while a third and more interesting pos-
sibility, is condensation into resonating loops stabilized
by quantum fluctuations [51–53]. Interestingly, the bulk
susceptibility measurements from the powder sample are
more in line with the topological sector fluctuations of the
NNSI than the results for scattering at zero wave vector
(Fig. 4). This could be due to a difference between re-
sults for single crystals and powder samples [54] but it is
an interesting point that requires further investigation.
In Fig. 4 we also show the evolution of the scattering
intensity at points along the (h, h, 0) axis. The data for
h = 3/2 and h = 2 become similar to the numerical
scattering data from the NNSI when it is scaled to the
theoretical susceptibility at high temperature. As tem-
perature is reduced, the intensity increases slightly before
approaching a plateau, well below the theoretical predic-
tions for scattering along the cubic axis [001]. This is to
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be expected as the spin components perpendicular to this
low symmetry direction fail to capture the correlations of
the Coulomb phase, as can be read from equation (8).

This data presentation allows us to make some com-
ments regarding the relaxation of the system towards
equilibrium, which becomes very slow at low tempera-
ture (. 0.6 K), as indicated by field cooled, zero field
cooled splitting of the magnetization [55]. This can be
understood as a topological ergodicity breaking expected
in classical systems [9] where the rarefaction of topolog-
ical defects, that can be seen as monopoles in presence
of dipolar interactions [40, 56, 57], hinders the magnetic
relaxation in both numerical simulations and in experi-
ment [32, 55, 58, 59]. However the unpolarized neutron
scattering data points at (0, 0, 0.9) measured on IN14 fol-
low the analytical curve down to ∼ 0.1 − 0.2 K, which
suggests that equilibrium of large wave vector compo-
nents of the magnetization can be achieved in spin ice in
zero field down to temperatures significantly below the
ergodicity temperature of 0.6 K. Less can be said about
large length scales as loss of equilibrium does not appear
to be the mechanism for the dip in scattering intensity
along the (0, 0, l) ridge, at small wave vector. The de-
viation of S(Q) from the theoretical prediction, at the
zone centre occurs on the scale of 10 K, well above the
ergodicity temperature.
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FIG. 5: Neutron scattering amplitude along the ridge (0, 0, l)
taken from the second experiment [19], for temperatures be-
tween 50 K and 1.7 K. The lines are a guide to the eye.

Topological sectors in other systems: Finally, we ad-
dress the question of generality, as a similar enhancement
of paramagnetic fluctuations occurs in other topologically
constrained systems if one has access to the appropri-
ate variables. The enhanced fluctuations are a result
of the emergent gauge phenomena [60] that characterize
the Coulomb phase in magnetic pyrochlore and kagomé

systems [12–16]. The emergent field is subject to a lo-
cal divergence free constraint, leading to dipolar correla-
tions and the structure of topological sectors described
above. In spin ice models and materials the emergent
gauge field is proportional to the coarse grained field of
magnetic moments, or spin configuration. Hence it is
directly accessible through both bulk measurement and
through scattering experiments. The direct access to the
gauge field [19] makes spin ice of particular interest in
this context, as we have shown in the present paper. In
pyrochlore antiferromagnets the emergent gauge field is
a hidden property of the rule of satisfied units[61] and es-
sentially corresponds to an inverse mapping between an-
tiferromagnetically coupled spins and ferromagnetically
coupled pseudo-spins that resemble the spin ice degrees
of freedom and form an effective magnetic field within a
coarse grained description [14]. Hence the physics of the
emergent gauge field is common to both classes of sys-
tem. This is the case for the Heisenberg antiferromagnet:
within a Gaussian approximation, the susceptibility for
the pseudo degrees of freedom is enhanced by the same
factor of two as the susceptibility in spin ice, as one de-
scends into the Coulomb phase [16, 62]. The pseudo spin
degrees of freedom are not accessible through bulk mea-
surement, but magnetic scattering in Q space is related
to that for spin ice, with the topological constraints lead-
ing to a pinch point pattern. For nearest neighbour inter-
actions only, one finds lines of constant scattering ampli-
tude for the real spins, this time along the (h, h, 0) axes.
As further neighbour interactions are added, the intensity
dips at the Brillouin zone centre, even though the lowest
energy states remain within the topologically constrained
phase space. This result seems in complete analogy with
our experimental observations along the (0, 0, l) axis in
spin ice, giving weight to our interpretation in terms of
topological sector fluctuations of varying intensity, as the
effective length scale, ` ∼ 1/|Q| changes from the zone
centre to zone boundary.

The factor of two of this crossover is directly related
to the entropic weight of the different topological sectors
in the Coulomb phase [16, 62]. Hence it is not universal
and we can expect the spin liquid Curie laws in other
frustrated systems to have a different prefactor.

Conclusion: The local divergence free constraint of
the Coulomb phase in spin ice materials allows a decom-
position of the ground state ensemble in terms of topo-
logical sectors. Fluctuations between sectors is clearly
visible through susceptibility measurements, as the wind-
ing numbers characterizing the sectors are directly pro-
portional to the magnetization. This is only true in the
Coulomb phase and as the system settles into it, dipolar
spin correlations develop, giving a Curie law crossover
between paramagnetism and fluctuations characteristic
of the topological spin liquid phase. We have compared
analytical and numerical results for the nearest neigh-
bour spin ice model with bulk magnetometry measure-
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ments for a powder and neutron scattering measurements
through the structure function S(Q, T ) for a single crys-
tal of Ho2Ti2O7. We find quantitative agreement be-
tween theory and experiment for large Q, but near the
pinch point, at small wave vector the experimental scat-
tering intensity is suppressed compared with theory. We
have discussed how further nearest neighbour exchange
and dipole interactions, or quantum fluctuation, may hin-
der topological sector fluctuations on a large length scale.
Because such perturbations can be pertinent in real ma-
terials, especially dipolar interactions for spin ice com-
pounds, the success of the nearest neighbour model raises
interesting open questions. More experimental and theo-
retical work is required to understand these mechanisms
in details.

We believe this Curie law crossover is in fact a gen-
eral feature of many frustrated systems [38], apparent as
TSF in spin ice materials and encoded into the scattering
pattern of related antiferromagnets. As a consequence,
the standard Curie-Weiss picture at high temperature
appears to be incomplete and should be used with cau-
tion. Further work in this direction, and in particular
in potential quantum spin liquid compounds - Herbert-
smithite [63], Tb2Ti2O7 [64, 65], Yb2Ti2O7 [66, 67] -
would be particularly interesting.

It is remarkable that, in spin ice, a completely local
probe readily accessible by experiments is able to identify
fluctuations between topological sectors; i.e. the differ-
ence between “topological constraints” and “topological
order”. Until now, this task necessarily fell to non-local
probes, such as measures of the winding number, or the
topological entanglement entropy [2, 3]. In gapless U(1)
quantum liquids, the notion of topological entanglement
entropy is expected to be ill-defined [68]. In light of
the revelation that there may be other, yet undiscov-
ered topological invariants in related systems [10, 11], it
is interesting to speculate whether similar probes may
prove instrumental in characterizing this important class
of topological order in the future.
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