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Abstract

One of the most remarkable examples of emergent quasi-particles, is that of the ”fractionalization”
of magnetic dipoles in the low energy configurations of materials known as ”spin ice”, into free and
unconfined magnetic monopoles interacting via Coulomb’s 1/r law [Castelnovo et. al., Nature, 451,
42-45 (2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges really does
exist at low temperature in these materials and this discovery provides a new perspective on otherwise
largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we
present detailed results describing the diffusive dynamics of monopole particles starting both from
the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble.
The diffusive quasi-particle dynamics of real spin ice materials within ”quantum tunneling” regime
is modeled with Metropolis dynamics, with the particles constrained to move along an underlying
network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac
monopoles.

1 Introduction

Spin ice materials[1, 2] form part of a series of rare-earth oxide insulator R2M2O7 with space group
Fd3m where R3+ is a magnetic (Dy3+ and Ho3+) and M4+ a non-magnetic (Ti4+ or Sn4+) ion. The
cations sit on the vertices of two interpenetrating pyrochlore lattices formed by corner-sharing tetrahedra
(see figure 1). The well-established members of this family are Dy2Ti2O7 , Ho2Ti2O7 and Ho2Sn2O7,
the latter being less studied as it is only available in polycrystalline form. Other potential candidates
are Dy2Sn2O7 or Pr2Sn2O7, while related members of the series with rather different properties include
Tb2Ti2O7 and Tb2Sn2O7. The total angular momentum J = L+ S is a good quantum number for rare
earth elements and the electronic ground states are determined by Hund’s rules.

The free ion Dy3+ (resp. Ho3+) then has a 16-fold (resp. 17-fold) degeneracy that is lifted by the
surrounding crystal field; the corresponding energy levels have been estimated by neutron time-of-flight
spectroscopy [3], revealing an almost pure ground state doublet.

As the first excited states are separated from the doublet by an energy scale of ∆ ≈ 2 − 300K (see
Table 2.), the low temperature behaviour of these materials can be approximated by classical Ising spins
with a very large magnetic moment (≈ 10µB), oriented along the line connecting the centers of two
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[R] [R
3+

] S L J

Dy [Xe] 4f10 6s2 [Xe] 4f9 5/2 5 15/2

Ho [Xe] 4f11 6s2 [Xe] 4f10 2 6 8

Table 1: Ground state electronic configuration of the atom [R={Dy,Ho}], the free ion [R3+], and
the corresponding quantum numbers S,L and J

GS gJ µ ∆(meV) ∆ (K)

Dy |15/2,±15/2〉 4/3 ≈ 10µB ∼ 0.033 ∼ 380

Ho |8,±8〉 5/4 ≈ 10µB ∼ 0.020 ∼ 240

Table 2: Crystal field level: The ground states |J, Jz〉 (GS), the Landé factor gJ , the estimated magnetic

moment µ = gJ J µB and the energy level of the first excited state ∆.
(

gJ = 1 + J(J+1)−L(L+1)+S(S+1)
2J(J+1)

)
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. (1)

σi = ±1 is an Ising pseudo-spin with chosen convention that σi = 1 corresponds to the moment pointing
out of a down tetrahedron (see figure 1).

The physics of spin ice is captured to a good approximation by an effective model with nearest
neighbour ferromagnetic interactions between the moments which, together with the strong crystal field,
gives rise to a frustrated ferromagnetic system:

H = −3Jeff
∑

〈i,j〉
Si · Sj = Jeff

∑

〈i,j〉
σi σj . (2)

Harris & al.[1] showed that the low energy phase space of this system is identical to the Pauling model
for ice [4], which shows extensive ground state entropy in which states satisfy the Bernal-Fowler ice rules
and which has been measured, both in ice ([5]) and spin ice ([6]). The nearest neighbour spin ice (NNSI)
Hamiltonian also maps onto an Ising antiferromagnet for the pseudo spins [7, 8] (see equation (2)); a
model first derived by Anderson to describe spinel materials [9] . The equivalence between these three
nearest neighbour models is illustrated in figure 2.

The Bernal - Fowler ice rules requiring two magnetic moments to enter and two to leave each tetrahe-
dron constitute a topological constraint, with the result that the Pauling states make up an ensemble of
gauge invariant topological sectors with U(1) symmetry. A consequence of such constraints in this and in
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Figure 1: Pyrochlore lattice: The spins are located on the corner of every tetrahedra and are fixed
along their local [111] axis represented by the dashed lines. There are two types of tetrahedra that we shall
call the down tetrahedra (bottom left with the four spins) and the up tetrahedra. Each down tetrahedra
is connected to four up ones, and vice-versa. The cube represents a unit cell with 8 tetrahedra (four of
each kind) and 16 spins, and defines the [100] (x), [010] (y) and [001] (z) axes. We introduce the length

of the unit cell a ≈ 10 Å as well as the distance between nearest neighbour rnn =
√
2
4 a ≈ 3.5 Å and

between the centres of two connected tetrahedra rd =
√
3
4 a ≈ 4.3 Å. The smallest close loop encompasses

6 spins (see green dotted loop).

related systems is the development of algebraic correlations [10, 11, 12, 13, 14]: consider the magnetisation
of a tetrahedron α: M(rα) =

∑

i∈α Si and define a coarse-grained field M(r) = 1
V

∑

α∈V M(rα) averaged
over a volume V large enough to make M(r) a smoothly varying function. The proof of algebraic correla-
tions requires a two-stage argument based on the frustrated 2 in - 2 out ground states. On this manifold
of states, the Gibbs free energy G is purely entropic and can be expressed as a functional of {M(r)}. For
a tetrahedron respecting the ice-rules, M(rα) can only take 6 values proportional to (±1, 0, 0), (0,±1, 0)
or (0, 0,±1). Hence computing the entropy density for a volume V is similar to the problem of a random
polymer made of monomers fixed on a cubic lattice and whose extremities are separated by M(r). A
large value of |M(r)| requires most of the spins/monomers to be aligned along this direction, allowing
only a relatively small number of configurations. On the other hand, zero magnetisation fixes a minimum
number of degrees of freedom. Hence the Gibbs free energy and its Fourier transform are expressed to
lowest order and up to a constant as

G [{M(r)}] =
T

V

∫

d3r
1

2
K |M(r)|2 (3)

⇔ G̃
[{

M̃(k)
}]

= T
∑

k

1

2
K

∣

∣

∣
M̃(k)

∣

∣

∣

2

(4)
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Figure 2: Models equivalent to nearest neighbour spin ice: The different mappings between
Anderson’s model for antiferromagnetic spinels, spin ice and water ice: the white spheres are the hydrogen
atoms and the red one is the oxygen. A spin pointing inside (resp. outside) the tetrahedron corresponds
to a down (resp. up) spin in the Anderson model and a short covalent bond (resp. long H-bond) for
water ice.

which gives a temperature independent Gaussian probability e−G/T and 〈M̃µ(−k)M̃ν(k)〉 = δµν/K.
However this argument neglects the non-local influence of the ice-rules. If we regard the spins as local
fluxes of magnetisation then these constraints impose a flux conservation for each tetrahedron (2 spins
in and 2 spins out); from a coarse-grained point of view, it is equivalent to a divergence free condition.

∇ ·M(r) = 0 ⇔ k · M̃(k) = 0 (5)

which imposes M̃(k) to be orthogonal to k and thus

〈M̃µ(−k)M̃ν(k)〉 =
1

K

(

δµν − kµkν
|k|2

)

(6)

where the Greek indices µ, ν are Cartesian coordinates labels. After a final Fourier transform back to
real space, we obtain the desired correlations

〈Mµ(0)Mν(r)〉 ∝
1

K

δµν − 3 r̂µr̂ν
r3

where r̂µ =
rµ
|r| (7)

This result deserves a few comments. First of all, we have lost the details of the pyrochlore lattice as
soon as we used a coarse-grained field and this result can be generalised to models others than spin ice
[10, 11, 12, 13, 14], the only hypothesis being

• a Coulomb phase gauge theory imposed by equation (4);

• a divergence free condition, consequence of the ice-rules constraints (5).

The magnetisation field M(r) is then analagous to a magnetic field without monopoles which explains the
specific form of the correlations similar to those generated by a dipole-dipole interaction. One might think
that the 1/r3 dependence, in a 3d crystal should lead to a logarithmic divergence in the susceptibility and
logarithmic peaks in scattering function. This is not, however the case as the dipolar angular dependance
of the correlation function results in a cancellation of the divergent part when integrated over all space.
The correlations can be observed experimentally however through the development of narrowing pinch

points [15] in the diffuse scattering profile [16, 17, 18].
It is clear that the NNSI model already contains extremely rich phenomenology related to the con-

strained Coulomb phase with U(1) gauge symmetry, which is the basis for monopole physics. Most
notably, single spin flip excitations create a pair of topological defects; pairs of tetrahedra with 3 in -
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1 out and 3 out - 1 in . The defects are expected to have an effective entropic interaction [14], but
once created can move at zero energy cost. They therefore posses some but not all the characteristics of
neutral magnetic monopole pairs. In order to see the emergence of true magnetic quasi-particles one has
to go beyond the NNSI through the inclusion of dipolar interactions, as is considered in the next section.

2 The dipolar spin ice model

Dipolar interactions are of particular importance [19, 20] for the rare earth ions Ho3+ and Dy3+ at the
heart of spin ice physics: as the exchange coupling between the ions is due to 4f electrons, buried behind
5s and 5p layers1, it is very weak (∼ 1K) in comparison with other ferromagnets (for example J ∼ 102

K for metallic iron). The magnetic moments in spin ice being very large, the dipolar interactions,
that are negligible on short length scale for iron, are on the same energy scale as the exchange here.
A quantitative description has therefore to take both interactions into account while to an excellent
approximation moments can be described by Ising degrees of freedom orientated along the body centers
of the tetrahedtra. This separation of scales leads to the dipolar spin ice (DSI) Hamiltonian [20]

H = −J
∑

〈i,j〉
Si · Sj + D r3nn

∑

i>j

[

Si · Sj

|rij |3
− 3 (Si · rij) (Sj · rij)

|rij |5

]

, (8)

where J,D and rnn ≈ 3.5 Å are respectively an antiferromagnetic exchange coupling, the dipole-dipole
coupling and the nearest neighbour distance between rare earth ions, which has been shown to provide
a comprehensive quantitative description of spin ice materials. Here, J is a free parameter, while D is
defined through the dipolar interaction

D =
µ0 µ2

4π r3nn
≈ 1.4K, (9)

for Dy2Ti2O7. A numerical estimate of J has been obtained by comparison between Monte Carlo simula-
tions and experimental data for the specific heat in Dy2Ti2O7 [20] or of neutron scattering on Ho2Ti2O7

[21] and Ho2Sn2O7 [22]. Uncertainties in the estimated values for the Stanates remain high; around
50% for Ho2Sn2O7 because of the unavailability of single crystals. The dipolar contribution turns out to
be indispensable for understanding certain magnetic field induced transitions [23, 24, 25, 26] as well as
the quantitative feature of magnetic monopole excitations [27]. However, a remarkable property of this
Hamiltonian is that the extensive degeneracy of an effective nearest neighbour model is almost main-
tained, as the nearest neighbour contribution to the dipolar interaction is the same for all Pauling states
and the long ranged part of the interaction is almost perfectly screened[28, 29]. The dipolar interaction
between neighbouring spins 1 and 2 defined in figure 2 is given by:

D r3nn

[

S1 · S2

|r12|3
− 3 (S1 · r12) (S2 · r12)

|r12|5

]

=
5D

3
σ1σ2. (10)

By symmetry, the result is the same for all pairs of spins in a tetrahedron. Hence the NN term of
the dipolar interaction is equivalent to an exchange term and the nearest neighbour spin ice (NNSI)
Hamiltonian is recovered as follows

H = −3Jeff
∑

〈i,j〉
Si · Sj = Jeff

∑

〈i,j〉
σi σj where Jeff = Dnn + Jnn =

5D

3
+

J

3
(11)
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D Dnn J Jnn Jeff

Dy [20] 1.41 2.35 −3.72 −1.24 ≈ 1.1

HoTi [21] 1.41 2.35 −1.65 −0.52 ≈ 1.8

HoSn [22] 1.41 2.35 ∼ 1.0 ∼ 0.33 ∼ 2.7

Table 3: Nearest neighbour interactions: Exchange, dipolar and effective anti-ferromagnetic cou-
plings in Kelvin.

Values for the spin ice materials is summarised in table 3. below.
The origin of this approximate screening, the so called projective equivalence, [29] can be seen phys-

ically by considering a further abstraction of the DSI to the dumbbell model [30], which highlights the
remarkable symmetry properties of dipoles on the pyrochlore lattice. In this model the point dipoles of
the DSI are extended into magetically charged dumbbells, as shown in figure (3), whose ends sit on the
centers of the tetrahedra, forming a diamond lattice of magnetically neutral sites for all Pauling states.
Projective equivalence is clearly exact for this model and the error incurred in DSI, which turn out to be
quadrupolar corrections only[29] is due to the difference between point and extended dipoles.

Figure 3: Dumbbell model: Each magnetic dipole is seen as two charges sitting on the vertices of the
diamond lattice (dashed lines). 2 in - 2 out is a vacuum whereas 3 in - 1 out is a positive charge.

3 Magnetic monopoles and classical ”Dirac strings”

Within the dumbbell model, the ensemble of Pauling states provide a quasi-particle vacuum for neutral
pairs of topological defects. Once created, the 3 in - 1 out and 3 out - 1 in defects break magnetic
charge neutrality on each duel lattice, so that, when separated, the defects should interact via Coulombs
law. Hence, one can see by construction that fractionalization of the dipolar dumbbells into deconfined
magnetic Coulomb charges occurs when the ice rules are broken: in this sense these quasi-particles are
magnetic monopoles. To show that, thanks to projective equivalence, the same is true to an excellent

1The 6s layer is empty because Ho3+ and Dy3+ lost three electrons.
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approximation in the DSI, we have followed [30] and simulated a DSI system. The long range interactions
have been treated using the Ewald method [31, 32, 23], where the slowly converging sum of all dipolar
interactions between spins is replaced by two strongly convergent series. Periodic boundary conditions
ensures correct convergence. Starting with a random 2 in - 2 out configuration, we can create and force
the diffusion of a single pair of monopoles by flipping spins and then compute the energy of the system
for each configuration. After averaging over a large number of initial microstates and paths of diffusion,
we obtain the potential of interaction between two monopoles of opposite charges shown in figure 5. For
a distance r = x rd where rnn is the distance between two vertices on the diamond lattice (see figure 1) ,
the Coulomb potential can be written [30]

V (r) = −µ0

4π

Q2

r
=

Vmin

x
, where Q =

2µ

rd
, (12)

and where

Vmin = −µ0

4π

4µ2

3
2r

2
nn

1
√

3
2 rnn

= −8

3

√

2

3
D ≈ −3.07 K, (13)

with, from equation (9), D ≈ 1.41 K. Vmin is the energy gained, with respect to the vacuum, by the
creation of a nearest neighbour pair of monopoles. This potential V for the dumbbell model is compared
with our numerical results for DSI in figure 5. As we have periodic boundaries, the pair of monopoles
under consideration will also feel the presence of its image charges separated by at least one system
size. While this is convenient for simulating a real system (as is done later in this paper), it leads to
a finite size bias to the Coulomb energy here, where we consider a single pair of monopoles. This bias
remains negligible for small x but can be observed at larger x and scales away with system size. This is
illustrated in 5 for two system sizes L = 4 (green crosses) and L = 8 (red dots). For the larger system
size the 1/x behaviour is clearly observed and the data respects the energy scale fixed by Vmin to a
good approximation. The data plotted here are averaged over at least 100 simulations, so that the small
differences between our results and Coulomb’s law reflect the limits of accuracy of the dumbbell model,
which are of order 1/r5. The only fitting parameter in the figure is the reference energy scale for the
DSI, which translates the numerical data along the y−axis. Similar results are obtained in reference [30].
However while they computed the energy of separation between monopoles for a single configuration, we
have performed a statistical average, which produces some statistical noise, but confirms that this is a
general property of the ensemble of constrained Pauling states.
Table 4. summarises the main parallels between the dumbbell and DSI models.

Dipolar Spin Ice Dumbbell / Monopoles

2 in - 2 out ground state vacuum

3 in - 1 out defects (local excitations) quasi-particles (monopoles)

dipolar interactions between Coulomb interactions between

magnetic dipoles magnetic monopoles

pyrochlore lattice diamond lattice

canonical ensemble grand canonical ensemble

Table 4: Mapping from the dipolar spin ice to the dumbbell model
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Figure 4: Emergence of monopoles a) The magnetic ions (Ho3+ or Dy3+) lie on the sites of the
pyrochlore lattice and are constrained to the bonds of the diamond lattice (dashed lines). Local topological
excitations 3 in - 1 out or 3 out - 1 in correspond to magnetic monopoles with positive (blue sphere) or
negative (red sphere) charges respectively. b) The diamond lattice provides the skeleton for the network
of Dirac strings with the position of the monopoles restricted to the vertices. The orientation of the Dirac
strings shows the direction of the local field lines in H.

The theoretical basis for magnetic monopoles in the DSI model is thus clearly established. We
particularly stress that the scale of the Coulomb interaction is set bymagnetic constants: the permeability
of free space, µ0, and the nearest neighbour distance on the diamond lattice. Hence the quasi-particles
behave quantitatively as magnetically charged particles. However, two fundamental differences still exists
between these particles and Dirac monopoles: firstly they correspond to divergences in the magnetic
intensity H, or magnetic moment M, rather than in the magnetic induction, so that ∇·B = ∇·(H+M) =
0 and they do not require a modification of Maxwell’s equations. Secondly, their magnetic charge is not
quantified. The magnetic charge on a Dirac monopole is quantified through a quantum conjugation
relation with the fundamental electronic charge [33, 34]. This is clearly not the case in spin ice and in
fact the charge can be continuously varied by modifying the nearest neighbour distance between spins by
applying external pressure [30]. However, on all length scales above the atomic scale, a 3 in - 1 out defect
appears to be a local sink in M and therefore a source of field lines in H. Furthermore we can assign
to them a positive or negative charge when immersed in a magnetic field [35] that is conserved through
the creation and annihilation of neutral monopole pairs. As the Coulomb potential is not confining2 in
3d, these quasi-particles provide an example of fractionalisation in high dimensions: the point dipoles of
the DSI appear to be separated into free poles of opposite sign that are free to wander independently
through the system. They are therefor classical analogues of Dirac monopoles and spin ice provides the
first 3d experimental realisation of deconfined magnetic monopoles.

In the theory of Dirac, monopoles of a neutral pair of charges are connected by a tensionless Dirac
string of overturned dipoles, taken in the the continuum limit. The string, which corresponds to nodes
in the wave function for the pair of particles, should be unobservable. Classical analogues of Dirac
strings exist in DSI and in the dumbbell model [30], which correspond to the magnetic moments in the

2having a Coulomb gas on a lattice prevents the divergence for r → 0+. The energy of deconfinement is finite and equals

to |Vmin| on average.
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Figure 5: Coulomb potential: Effective interaction (in Kelvin) between a pair of monopoles in the
dipolar spin ice model as a function of the distance between them in units of nearest neighbour distance
between monopoles. The system sizes are 4 × 4 × 4 unit cells, i.e. 1024 spins (green crosses) and
8 × 8 × 8 unit cells, i.e. 8192 spins (red dots). The solid line is the Coulomb potential expected from
the dumbbell model V (x) = Vmin/x. As we are on the diamond lattice, the smallest possible distance
between monopoles is x = 1. The data are the average of over more than 100 samples.

constrained 2 in - 2 out states. That is, by creating and separating a pair of monopoles one flips a series
of moments, defining one possible Dirac string connecting them. Starting from a disordered 2 in - 2 out

state, the path taken to create the monopoles and place them at positions A and B is not unique and
the arbitrariness provides a classical analogue of the quantum uncertainty of Dirac monopole trajectoires
in space. Further to this analogy, within the dumbbell model, as long as the dumbbells are taken to
have point magnetic charges at each end (the dumbbells can also be thought of as infinitesimally thin
magnetic needles, touching at the centres of the tetrahedra), the magnetic flux associate with each dipole
is confined to infinitely narrow elements joining the charges on each dumbbell, so that the network of
classical Dirac strings is also invisible. This of course is a mathematical abstraction; in the DSI, we have
point dipoles on the vertices of the tetrahedra and because of this difference (because of corrections to
projective equivalence in fact), the string network is observable. Indeed, recent experiments have reported
the observation of ”Dirac strings”[17, 36]. As far as dynamics are concerned, the Dirac string network
plays a crucial role: moving a monopole involves a spin flip, so that the quasi-particles leave a wake of
re-arranged links in the network of Dirac strings as they move, with 3 in - 1 out and 3 out - 1 in defects
moving in opposite directions over the network (see figure 4). This directionality makes the dynamics
highly constrained compared with the diffusing electric charge of an equivalent electronic Coulomb gas.
At equilibrium and in zero field this constraint simply renormalizes the diffusion constant but in a
rapid quench the constraints lead to glassy behaviour [37] reminiscent of other kinetically constrained
models[38]. We will return to the dynamics in finite field in the conclusion.

Given the accessibility of these magnetic quasi-particles, the development of an experimental signature
is of vital importance and interest and has recently given rise to considerable experimental activity[17, 36,
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18, 39]. In particular, recent experiments have measured the charge carried on free deconfined particles
via the magnetic Wien effect [40, 41]. Here, we will concentrate on magnetic relaxation, available from
measurements of magnetic response in weak ac magnetic fields [42, 43, 44, 45]. In the following section
we will show how these data can be used as a direct signature for diffusive monopole dynamics.

4 Dynamics in spin ice

In figure (6) we show the evolution of the magnetic relaxation time scale for Dy2Ti2O7 measured from bulk
a.c. susceptibility measurement [45]. The data show three distinct features: a high temperature regime
above 12 K, which, has been associated with thermal excitations of higher crystal field levels [46, 44, 47],
an intermediate temperature plateau regime between 3 and 10K and a regime with rapidly increasing
time scale below 3 K. Qualitatively similar behaviour has been observed in Holmium Titanate[48]. We
will use this data to illustrate that the low and intermediate temperature dynamics of spin ice can be
interpreted in terms of the stochastic dynamics of monopole quasi-particles. Given the separation of
energy scales in spin ice materials we follow the assumption that the dynamics in the low temperature
and the plateau regions are controlled by quantum tunneling events [44] taking the magnetic moments
directly from one Ising position to another through the existence of non-zero off-diagonal components of
the dipolar interaction from neighbouring spins, giving a small mixing of the magnetic states. Within this
picture an excitation requires thermal assistance to make an Ising spin flip, but the time scale for the flip
should be given by rate constant τ0, which is essentially temperature independent. The high temperature
limit of this model is then an Ising paramagnetic system evolving with temperature independent rate
constant, giving a plateau in the evolution of the relaxation time scale. The deviation from the plateaux
above 10 K is due to thermal mixing of the crystal field levels [46, 44, 49, 50, 51, 52] and will not be
discussed further here.

From figure (6) the tunneling rate, τ0 for Dy2Ti2O7, appears to be around 10−3 s , while for Ho2Ti2O7,
it is on the scale of τo ≈ 10−8 s [48]. These extremely slow, yet exponentially varying microscopic time
scales from one compound to another, seem consistent with a quantum tunneling process exponentially
dependent on the energy levels of the rare-earth ions CEF. Unfortunately, the complexity of these CEF
prevents quantitative estimates for the experimental inversion rate and the time scale τo remains a
fitting parameter in our theory. The quantum tunneling on these microscopic time scales should lead to
stochastic dynamics on all length scales and if a single micropscopic process dominates the dynamics, one
should be able to model the relaxation using an Arhenius law. For a more complex system, for example
one with long range interactions, one should be able to use the Metropolis dynamics of a Monte Carlo
simulation to model the evolution of the system. These techniques and the validity of the model, with
temperature independent τ0 are discussed in detail in the next section.

4.1 Arrhenius law and deconfined quasi-particles

The first quantitative analysis of spin ice dynamics [42] relates to Ho2Sn2O7 and Ho2Ti2O7. Here the
relaxation time, τ(T ) was fitted with an Arrhenius law in the freezing regime (T ≈ 1 K) with characteristic
energy barrier, Ef = 19.6 K and 27.5 K respectively. These numbers already suggest that a simple
Arrhenius law cannot give a complete description of the dynamics, as they do not correspond to any of
the energy scales appearing in the DSI:

• ∼ 200 K between the ground state doublet and the first excited crystal field levels;

• ∼ 4Jeff = 7.2 K for Ho2Ti2O7 and 4.4 K for Dy2Ti2O7, due to single spin flips within the NNSI
model;

• ∼ 3 K for the limit of infinite separation between monopoles (see figure 5).

10
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Figure 6: Experimental relaxation time τ for Dy2Ti2O7 vs temperature T from Snyder & al. [45],

courtesy of Peter Schiffer. The starting point of this work has been to shed new light on this result.

Above 12 K the spins are not exactly Ising anymore. The quasi-plateau between 2 and 12 K is divided in

two parts: the “high temperature” of the spin ice region above 4 K where one needs to consider double

defects 4 in or 4 out and a large monopole density, and the “low temperature” regime below 6 K where

our monopole model should hold. Below ∼ 2 K, the system becomes frozen.

Quantitative studies of Dy2Ti2O7 rule out such a simple thermally activated process [43, 45], as shown
in figure 7. Here, the data of Snyder & al. are fitted in the low temperature regime with an energy
barrier of Ef = 6Jeff ∼ 6.6 K, with Jeff = 1.11 K, the value estimated for Dy2Ti2O7 [20]. The Arrhenius
scaling is quantitatively good below 2 K, but fails completely to reproduce the quasi-plateau region. As
we have argued above, if the tunneling picture is correct, the plateau region, through its simplicity, offers
an anchor point for any fit and any procedure that does not fit here cannot contain the physics of the
problem.

Rather than fitting the low temperature freezing region one should therefore start by fitting the
data through the plateau region. By doing this we see the first evidence for deconfined quasi-particle
excitations. Following the idea that the quasi-plateau is in fact the tail of an exponential, thermally
activated process, we have plotted in figure 7 different Arrhenius laws τ0 exp(Ep/T ) where the energy
barrier is varied. The time scale τ0 is fixed by scaling to the experimental time at 4 K; a temperature
at which we expect the density of double defects (4 in and 4 out) to be negligible, leading to a direct
relationship between spin flips and monopole pair creation. From the figure one can see the main result
of this section: the experimental data are poorly reproduced by an energy barrier Ep = 4 Jeff, the cost
of a single spin flip within the NNSI model, but are quantitatively well fitted with Ep = 2 Jeff over the
region between 2.5 K and 5 K (see the lower panel of figure 7). This means that the lowest excitation
responsible for the dynamics of spin ice materials is not the energy cost of a single spin flip, but only
half of that i.e. the energy cost of a single topological defect. Within this effective temperature range,
the NNSI model seems sufficient to capture the physics, as suggested by polarized neutron scattering
[53]. Once a pair of defects is created, they can propagate freely and separately in the system, leading to
magnetic relaxation from independent (deconfined) objects.
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Figure 7: Deconfined monopoles: The experimental data of Snyder & al. [45] (× and dashed line) are

compared with different Arrhenius functions. Top: The quasi-plateau region is in quantitative agreement

with a thermally activated process with energy barrier Ep = 2 Jeff (red line) whereas the spin freezing

is well reproduced with Ep ≈ 6 Jeff (green line), but no unique function can fit the whole temperature

window. Bottom: The characteristic excitation is the creation of a unique defect (Ep = 2 Jeff, red line)

rather than a single spin flip (Ep = 4 Jeff, grey line). The fit is improved at higher temperature if we

include the energy scales due to double defects in a modified Arrhenius law (blue line).
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As shown in figure 7, some corrections to Arrhenious behaviour develop above 5 K, which we show in
the next section, is due to the excitation of 4 out and 4 in double defects, by constructing a variant of
the Arrhenius law, including all relevant energy scales for single spin flips within the context of the NNSI
model.

4.2 Multi-energy Arrhenius law

We use an independent tetrahedron picture, assuming that the probability of finding a tetrahedron in a
certain state is simply given by the Boltzmann weights of the two tetrahedra involved in any spin flip.
We label the different configurations 2 in - 2 out , 3 in - 1 out (or 3 out - 1 in ) and 4 in (or 4 out) 2,
3 and 4 respectively. In table IV.2 we show a list of all energy changes resulting from a single spin flip
shared between two tetrahedra, from which we can calculate the mean energy barrier ∆E.

Initial Final δE Probability

2|2 3|3 + 4 Jeff 1

2|3 3|2 0 3/4

3|4 + 8 Jeff 1/4

2|4 3|3 − 4 Jeff 1

3|3 2|2 − 4 Jeff 9/16

2|4 + 4 Jeff 6/16

4|4 +12 Jeff 1/16

3|4 4|3 0 1/4

2|3 − 8 Jeff 3/4

4|4 3|3 −12 Jeff 1

Table 5: Energy scales resulting from a single spin flip: Let us explain this table using the second
row as an example. It means that if we flip a spin that initially belongs to a tetrahedron 2 in - 2 out and
a tetrahedron 3 in - 1 out , then there is a probability of 3/4 simply to inverse the position of the defect
(3|2) at no energy cost, and a probability of 1/4 to create an additional pair of defects (3|4) that cost an
energy δE = +8 Jeff. The probabilities are a statistical average, whether the spin under consideration is
one of the three in spins of the 3 in - 1 out tetrahedron (δE = 0), or the fourth out spin (δE = 8 Jeff).

There are two points worth noting: the configurations (2|3) and (3|2) are different, which gives a
factor of 2 for their Boltzmann weight. More importantly, a single spin flip that actually creates a pair
of defects will effectively only cost one half of δE, because of the fractionalisation of the excitations, but
the process (3|3)→(2|4) really costs δE = +4 Jeff as it simply moves a charge. We find ∆E:

∆E(T ) =
2
(

6 e2βJeff

)2
+ 4

(

2 1
4 6 e

2βJeff 8
)

+ 6
(

1
16 8

2
)

+ 4
(

6
16 8

2
)

(6 e2βJeff)
2
+

(

2 1
4 6 e

2βJeff 8
)

+
(

1
16 8

2
)

+
(

6
16 8

2
)

Jeff

= 3
6 e4βJeff + 8 e2βJeff + 10

9 e4βJeff + 6 e2βJeff + 7
Jeff −−−→

T→0
2 Jeff, (14)

from which we recover the creation energy of a single defect in the low temperature limit. The modified
Arrhenius law τ0 exp(∆E(T )/T ) is plotted in figure 7 (blue curve). It is almost identical to the thermally
activated process with Ep = 2 Jeff (red line) below 4 K, but differs at higher temperature and follows
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the experimental data more closely up to ≈ 8 K. Quantitative differences develop above this limit as one
expects: above this temperature the thermally activated processes of the high temperature regime should
make their presence felt. Using the function τ0 exp(∆E/T ) clearly extends the range over which this phe-
nomenological model can describe the data and we believe that it convincingly confirms the validity of the
quantum tunneling model to describe the dynamics up to 8− 10K. We believe that this phenomenologi-
cal approach provides a very strong argument in favour of magnetic relaxation assisted by the thermally
activated creation of deconfined quasi-particles in spin ice and hence in favour of fractionalisation of
dipoles into free effective monopoles !

However as shown in 7, any Arrhenius function ultimately fails below 2-3 K, underestimating the time
scale in the low temperature region. Along the quasi-plateau the density of monopoles is high enough for
Debye screening to occur with the result that effective models based on the NNSI provide a convincing
description. As the temperature is lowered, their density is reduced and a quantitative description can
only be achieved by taking explicitly into account the long range Coulomb interactions. In this case,
simple Arrhenius behaviour is excluded and we must revert to numerical simulation.

5 Spin freezing

We have simulated the dynamics of both the DSI model and a Coulomb gas of magnetic monopoles
in the grand canonical ensemble occupying the sites of the diamond lattice, using a Metropolis Monte
Carlo algorithm. The Coulomb particles are excitations out of the quasi-particle vacuum provided by the
dumbbell model and their dynamics is constrained by the underlying network of Dirac strings. In both
cases we treat the long range interactions, either dipolar or Coulombic using the Ewald method [31, 32].

5.1 Dipolar spin ice

Simulation of the DSI model is relatively straightforward. We implement both nearest neighbour and
dipolar interactions, using the numerical values of J and D for Dy2Ti2O7 given in table I.3. We extract
the characteristic relaxation time τ , from the auto-correlation function

C(t) =
1

N

∑

i

Si(0) · Si(t), (15)

where N is the total number of spins (N = 16× 83 = 8192 here) and Si(t) is the value of the unit vector
representing the spin at the Monte Carlo time t. One Monte Carlo time step, for a system of size N
is defined as a single sweep through N moments chosen at random. For the initial conditions we take
a random configuration, which we let evolve at high temperature T = 10 K until equilibrium, defined
here as the time beyond which C(t) decays below 0.01. This defines t = 0 and C(t) is then computed
and stored for a given temperature. The Monte Carlo time is re-set to zero when C(t) decays beyond
0.001 and the temperature T is lowered by δT . The process is repeated until we reach T = 0.7 K when
numerical equilibration becomes difficult. The resulting auto-correlation is averaged over 200 samples in
order to give a smoothly decaying function down to C(t) . 0.03. The outcome is plotted in figure 8 for
T = 1.5 and 3 K.

C(t) relaxes almost exponentially, but with a small difference between short and long time scales.
Different time scales, τi=1,2, can be extracted by fitting the correlation function C(t) to an exponential
function, either over the interval C = 1 − 0.8 ( τ1) or over the interval C = 0.3 − 0.03 (τ2)(see dashed
lines in figure 8). The characteristic relaxation time τ , is taken to be the average of τ1 and τ2. The
Monte Carlo time is again scaled to that measured by Snyder & al. by equating the scales at 4 K,
τ(T = 4 K) = 2.99 ms, for which the density of double defects is negligible (. 1%), giving a quantitative
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Figure 8: Time correlation function C(t) for DSI for T = 1.5 (green) and 3 K (red) on a semi-log

scale. The x-axis is the Monte Carlo time t. The dashed lines are exponential fits for short and long

relaxation times.

equivalence between our Metropolis dynamics and the relaxation dynamics of the experiment, with one
Monte Carlo step = 2.5± 0.5 ms.

Preliminary results (not shown) were for the NNSI model using the Jeff from Table 3. The data agree
quantitatively with the analytic calculation, τ0 exp(∆E(T )/T ), (see figure (7)) over the temperature
range 0 − 10 K showing that our rather simple approach accurately describes the stochastic dynamics
of the NNSI model. Any deviation from this behaviour is therefore explicitly due to the long range
interactions of the DSI. Our results for τ vs T for the DSI are compared with the data of Snyder & al.

[45] in figure (9). We find remarkably good agreement between the numerical results and experiment over
the temperature range between 1 K and 10 K. In particular there is a substantial improvement over the
Arrhenius law of figure (7) below 3 K as we move into the low temperature regime with rapidly increasing
time scale. Although when one looks more closely there are still some systematic differences between the
data from the real and the numerical experiment, we believe that the general agreement shown in figure
(9) represents a considerable success for both the DSI and stochastic quantum tunneling hypothesis, in
which the tunneling rate is temperature independent. Further, the tunneling time scale is approximately
equal to the Monte carlo time scale fixed at 4 K, giving τ0 ∼ 2.5 miliseconds.

We start the investigation of exactly how the Coulomb interactions modify the spin ice dynamics by
calculating the evolution of topological defects as a function of temperature in both the NNSI and DSI
models. The evolution is shown in figure 10. In both cases the density of 3 in - 1 out and 3 out - 1 in

defects shoots rapidly to zero below 1 − 2 K, which corresponds to the low temperature regime, while
the double defect concentration goes to zero below the 5 − 6 K range. This confirms the picture that
the plateau region is due to the proliferation of a high density gas, while the low temperature region
with increasing time scale is driven by an exponential fall in the monopole concentration. It is therefore
clear from this picture that monopole physics should explain the agreement between real and numerical
experiments shown in figure (9). A second point to notice is that the monopole density falls to zero at
a noticeable higher temperature for the DSI than for the NNSI model which must surely be related to
the brutal slowing down of the dynamics compared with our analytical Arrhenius law calculation. To
investigate this slowing down further we move to the dumbbell model and a description of the problem
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Figure 9: Relaxation time scale from DSI The experimental data (×) are from Snyder & al. [45]

(•). The system size is N = 16000 spins. The details of the simulations are given in the text. The

bars do not represent the error bars on the value of τ ; rather they show the extreme values τ1 and τ2 at

each temperature. In order to see the improvement due to dipolar interactions, the modified Arrhenius

formula 14 is also plotted in blue.

uniquely in terms of monopoles.

5.2 Monopoles and strings

Within the monopole picture spin flips out of and into the constrained manifold correspond to cre-
ation/annihilation of pairs, while all other flips correspond to monopole hopping between nearest neigh-
bour sites of the diamond lattice. Hence in a Monte Carlo step one considers two nearest neighbour sites
at time t. The possible outcomes at time t+ 1 are:

• If there are no quasi-particles on these two sites, then we consider the creation of a pair of opposite
charges.

• If there is only one monopole, it can either move to the other site or stay where it is;

• If there are two opposite charges, they can annihilate;

• If there are two charges of the same sign, no movement is possible; as we have disallowed monopole
defects carrying double charges.

5.2.1 Chemical potential µ

Moving into the monopole picture means we change the Gibbs ensemble from which we select microstates.
In the magnetic picture the independent variables are T , magnetic field ~B (chosen to be zero throughout
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this paper) and the number of spins N , which is also fixed to the volume of the sample. In the monopole

picture, the number of quasi particles varies, so the independent variables are T , ~B = 0, the volume
V and µ the chemical potential for monopole pair creation. The relevant thermodynamic potential is
therefore the Grand Potential Φ = U − ST −Nµ, for which we have to define µ. We are, of course free
to choose any value of µ and arbitrary values will take us away from spin ice physics, but as the present
work is motivated by the experimental results of Snyder et. al. we need to choose the value of µ that
best corresponds to Dy2Ti2O7. In a first series of simulations we have estimated µ = µ1 numerically by
calculating the difference between the Coulomb energy gained by creating a single pair of neighbouring
magnetic monopoles of opposite sign ∆Umono < 0 in a vacuum and that required to produce a unique pair
of topological defects out of the 2 in - 2 out manifold in the DSI, ∆Udef > 0, giving a configurationally
averaged estimate µ1 ≡ ∆Umono − ∆Udef = −8.92 K. Note that while ∆Umono is simply Vmin from
equation (13), ∆Udef has to be computed by simulation, as projective equivalence is not exact for the
DSI. In a second series of simulations, µ2(T ) was taken as the value required to reproduce the same
defect concentration as in a simulation of dipolar spin ice at temperature T , as shown in figure 10. We
found that µ2 = µ1 within numerical error at T = 0.7K and varied by ≈3% only, over the temperature
range 1 − 4 K, showing that our procedures are consistent and underlining the fact that the chemical
potential used is not a free parameter. Rather, it is taken from detailed comparison with the DSI that
best describes Dy2Ti2O7, with parameters from Table 3. Note that in references [27, 54] we have used
an unconventional definition of µ, with a sign change compared to the above value. Here, we make
a definition compatible with conventional statistical mechanics such that, in a Monte Carlo move we
compute the change in δŨ = δUmono − µδN . As the value given, µ ≈ −8.9 K, is for a pair of particles,
δN = ±1 or zero.
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It is interesting to dwell further on µ and its composite parts at finite temperature, as their evolution
with T turns out to be at the origin of the rapid increase in the time scale at low temperature. We
can make a third estimate for the chemical potential; µ(T ) = ∆Umono(T ) − ∆Udef(T ) using the same
procedure as for µ1, but at finite temperature, where a pair of monopoles is created in a microstate
containing a finite concentration of monopoles corresponding to finite temperature T . To do this, we
simulated the DSI model, with N = 8192 spins in parallel with a ’slave’ Coulomb gas, i.e. for each single
spin flip the corresponding monopole configuration on the diamond lattice is updated accordingly, making
it possible to compare the energy of the spin configuration with its mirror in the dumbbell model at each
Monte Carlo step. As we are interested in the creation of monopoles, we have artificially suppressed
double defects in the DSI for all temperatures. Hence after equilibration at a given temperature T and
for each accepted creation of a pair of defects, we compute the energy difference between the Monte Carlo
move in the DSI model ∆Udef and the evolution in the slave Coulomb gas ∆Umono, which gives a value
of µ for this specific move. By averaging these values over the Monte Carlo time and for different initial
configurations, one finds the temperature evolution of these energies as well as their standard deviation,
plotted in figure 11.
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Figure 11: Creation of a pair of quasi-particles: Energy required in the dipolar spin ice model

(∆Udef , red •) or gained for a Coulomb gas (∆Umono, blue �) and the resulting chemical potential µ(T )

(N) as a function of temperature. The vertical bars are not error bars but the standard deviation of these

quantities. µ(T ) tends to the limit µ1 = −8.92 K (lower dashed line) at very low temperature. The other

dashed line is the analytical prediction of the energy gained by creating a pair of monopoles in a vacuum

Vmin = −3.07 K (see equation (12)). The temperature scale below 3 K is enlarged for a better display.

Much of the physics of spin ice at low temperature is included in this figure: the standard deviation
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of both ∆Udef(T ) (red) and ∆Umono(T ) (blue) are large above 1 K, up to ±40% of the mean values.
However, these quantities are highly correlated and their difference, giving rise to µ(T ) (black) is very
precisely defined with a standard deviation of ±4% at most. Furthermore, the extracted µ(T ) follows
closely the values for µ2, which was estimated more phenomenologically. This agreement, despite the
large fluctuations, illustrates the success of the monopole picture and of the dumbbell model in describing
the physics of spin ice: the energy of separation of two monopoles is given by the magnetic Coulomb
potential, including many body effects for a finite particle concentration and the energy of creation (and
annihilation, not shown here) is consistent with a Coulomb gas in the grand canonical ensemble. On
average, large energy cost ∆Udef (top of the red bars) correspond to small energy gain ∆Umono (top of
the blue bars) and vice-versa.

The data in figure (11) show two regimes of behaviour: from 10 K down to 2 K, corresponding to the
plateau region for relaxation times and below 2 K where the relaxation time rapidly increases. In the
higher temperature regime the mean values, 〈∆Udef〉 and 〈∆Umono〉 are roughly constant and 〈∆Udef〉 =
〈∆Umono〉 − 〈µ(T )〉 is close to the energy cost of a single spin flip in the NNSI model E = 4 Jeff = 4.44
K. Thus, apart from the fact that there is a quasi-continuous range of energy values to create monopoles
instead of a unique one and that the fluctuations in the energy scales are surprisingly large, the results
are consistent with the NNSI model, which explains why the NNSI provides a reasonable description of
spin ice down to 2 K. This equivalence between models with long and short range interactions is a direct
consequence of Debye screening [36, 14]. That is, throughout this regime, 〈∆Umono〉 (blue curve) is in
excess of the energy of deconfinement of a pair of monopoles in a vacuum, Vmin = −3.07 K (lower dashed
line, see equation (12)) and from the fluctuations one can see that pair creations providing less energy are
rare. Hence, a newly created pair is more stable than in a vacuum with the additional energy coming from
the build up of correlations within the Coulomb gas, favouring a neighbouring charge cloud of opposite
charge around each particle. As the temperature is reduced, screening becomes more marked so that low
energy events become increasingly rare, leading a maximum in the mean Coulomb energy gain on pair
creation, at around 2.5 K. However, below this temperature the monopole concentration drops rapidly
(see figure 10) so that the Debye screening is starved and there is a marked evolution of the energies in
figure (11). This appears to occur as the smallest values of ∆Umono disappear brutally and 〈∆Umono〉
increases rapidly towards Vmin. This evolution is accompanied by a surprising increase in 〈∆Udef〉 (red
line), ensuring that µ(T ) remains temperature independent. The increase in the mean energy required to
create a pair of topological defects as temperature decreases is clearly due to the absence of many body
screening effects from the mobile quasi-particles. The brutal non-Arrhenius spin freezing as one leaves
the plateau region at low temperature is therefore an avalanche effect : fewer monopoles hinders the
Debye screening, which reduces the number of creations of quasi-particles, which leads to less monopoles,
... If this slowing down is sharp but continuous, it is because the system remains thermally activated.
That is, as long as the material remains “hot” enough to allow the creation of a pair of monopoles out of
the vacuum, i.e. a single spin flip of energy ∆Udef = µ1 + Vmin ≈ 5.8 K, the system will remain dynamic
through the creation and diffusion of monopoles. Our simulations hit this limit for T ≈ 0.6 K and one
might expect equilibration in experiments to become dramatically difficult below this temperature. This
is exactly what Snyder & al. observed at 0.65 K for Dy2Ti2O7 in FC-ZFC measurements [45], although
magnetocaloric measurements [55] and recent muon spin resonance experiments[41] appear to measure
the dynamical properties of spin ice materials at considerably lower temperature where the intrinsic
monopole concentration, as predicted by the DSI or the dumbbell model would be considerably lower.

5.2.2 Dirac strings

The monopoles hop between nearest neighbour sites via the Metropolis Monte Carlo algorithm, giving
diffusive dynamics, but with the local constraint discussed in the introduction: in the spin model a 3 in -
1 out topological defect can move at low energy cost by flipping one of the three in spins, the direction
of the out spin being barred by an energy barrier of 8 Jeff that would result in a double defect and which
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is set to infinity in the Coulomb gas. An isolated monopole can therefore hop to 3 out of 4 of its nearest
neighbour sites only, dictated by an oriented network of constrained trajectories corresponding to the
ensemble of classical Dirac strings [30] of connected dipoles [33]. The positively charged monopoles move
in one sense along the network while the negative charges move in the opposite direction (see figure 4.b).
The network is dynamically re-arranged through the evolution of the monopole configuration. In fact the
characteristic time scale that we compare with experiment comes from the evolution of the network of
Dirac strings rather than from the monopoles themselves. That is, the magnetic relaxation experiment
of Snyder et. al. [45] ultimately measures spin dynamics, due monopole diffusion, rather than giving a
direct measure of the monopoles themselves. We define the string network by an integer σ = ±1 giving
the orientation of the Dirac string along each bond of the diamond lattice. The Dirac string network is
an image of the underlying spin structure for which we can define the auto-correlation function

C(t) =
1

N

∑

i

σi(0)σi(t). (16)

We start the simulation with the Dirac string network in an ordered configuration and let it evolve at
T = 4 K until equilibrium is reached. A high density of monopoles is generated, which move following
the criteria defined above and time step is defined as a sweep through N links of the monopole vacuum.
We compute C(t) averaged over 200 simulations following the same procedure as for the calculation of
spin-spin autocorrelation function in the DSI. The Monte Carlo time was again scaled to the experimental
time at T = 4 K and no other fitting parameters were used.

5.3 Comparison with experiment

In accordance with our analysis of figure 11, the characteristic time scale for relaxation of the Dirac
string network does indeed reproduce the sharp spin freezing observed experimentally [27]. Results are
shown in figure (12) in the interval below 4 K. Data from the Coulomb gas simulation is in very close
agreement with the Monte Carlo data for the DSI, confirming that the low temperature dynamics of the
DSI is driven by the dynamics of Coulombic quasi particles, so that a Coulomb gas in the grand canonical
ensemble really is the correct description of the system at low temperature. Also shown in the figure is the
modified Arrhenius formula 14 describing freezing in the NNSI. On this temperature scale the difference
between data for the NNSI and that for the DSI or the Coulomb gas is considerable, confirming that
the sharp, non-Arrhenius freezing at low temperature is due to the presence of long range interactions
between quasi-particles. The most significant effect here is the gradual suppression of Debye screening
below ∼ 2 K, provoking the avalanche effect which accelerates the disappearance of the monopoles below
this temperature. In addition we also expect the diffusive dynamics to be slowed by the formation of
neutral pairs, bound by the Coulomb interaction. However, as the Coulomb interaction is not confining
in three dimensions the monopole mobility should remain finite. Below 1.5 K the estimate of the time
scale for the Coulomb gas lies slightly below that for the DSI. This small difference provides a measure
of the approximation involved in passing from the spin system to the charged particles.

We show simulation results using both our definitions of the chemical potential. The data sets are
very close to each other, although a small systematic difference appears around 1 K, with data for the
fixed chemical potential, µ1 giving a slightly lower estimate for τ . This small deviation seems consistent
with the small evolution in µ(T ) vs T observed in figure (11).

Finally, when looked at with this level of precision, all numerical data falls below the experimental
data at low temperature. This small but systematic difference may indicate the limits of applicability
of both the DSI and our model of stochastic dynamics although more experiments need to be done to
quantify this remark. More recent analysis of the static properties of Dysprosium Titanate suggest that
the DSI can be improved by including further neighbour exchange[56], which will change fine details of
the dynamics. The approximation of having a single, temperature independent microscopic time scale,
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τ0, will also have its limitations which will also be manifested in the fine detail of the difference between
simulation and experiment.
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Figure 12: Spin freezing in Dy2Ti2O7: The experimental data (×) are from Snyder & al. [45]. The

Arrhenius law (blue line) represents the free diffusion of topological defects in the nearest neighbour

model. The relaxation time scale of the Dirac string network for the Coulomb gas has been obtained

for fixed chemical potential (N) and with µ varying slowly to match the defect concentration in dipolar

spin ice (�), whereas the dipolar spin ice relaxation time is given by •. As in figure 9 and as defined in

the text, the bars do not represent the error bars on the value of τ ; rather they show the extreme values

τ1 and τ2 at each temperature. The system size is 8 × 123 = 13824 sites on the diamond lattice for the

Coulomb gas and 8192 spins on the pyrochlore lattice for DSI simulations.

6 Conclusion

The recent discovery of monopole quasi-particles in spin ice models and materials provides a rare occasion
to think outside the magnetic box, while studying a set of magnetic materials. The theoretical[30, 36],
numerical[27, 54, 37] and experimental[17, 36, 41, 18] work so far presented in this field make this point
very clear. Here, the collective quasi-particle excitations are localized in real space, rather than reciprocal
space, despite the absence of quenched disorder. The quasi-particle vacuum has hidden internal degrees
of freedom with U(1) gauge symmetry and thanks to the unique role played by the dipole interactions
on the pyrochlore lattice structure, the excitations have both the topological and energetic properties of
magnetic charges. The correct description at low temperature is therefore that of a Coulomb (lattice)
gas in the grand canonical ensemble, whose properties are almost identical to those of its electronic
equivalent, an electrolyte of positive and negatively charged ions whose dynamics can be considered as
purely stochastic.
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There are some exceptions to this analogy, notably spin ice materials cannot support a dc monopole
current in the steady state[27]. This is because of the dynamical constraint that positive and negative
charges move in opposite directions over the underlying Dirac string network, changing the direction
of the network as they pass. The system only posses a finite number of monopole trajectories in each
direction before complete ordering of the network occurs. Or, in magnetic language, the sample can
provide a finite number of spin flips in a given direction before becoming magnetically ordered. This fact
seems difficult to reconcile with recent experiments[41], where the magnetic charge has been measured
through application of Onsager’s Wien effect [40] to Dysprosium Titanate. In an electrolyte, in the low
charge concentration limit, the electric current density, σ(E) increases linearly with electric field E, with
the result that the ratio σ(E)/σ(0) is a universal number containing E, T , charge q and fundamental
constants only. By treating muon relaxation rate in an equivalent way to the electric current, Bramwell
et. al. have been able to measure the magnetic charge Q ≈ 4.6µB A−1 in good agreement with the
theoretical prediction of Castelnovo et. al. [30]. How can this be, given that no permanent current can
exist ? One possible explanation is that, in weak fields and on short time scales, the constraints do not
qualitatively affect the dynamics. One can define a drift length scale for field X , ℓX = kBT/QX , where
X is the magnitude of a magnetic or electric field. Above this scale one should observe the deterministic
drift of the ions in the electrolyte and the effects of the constraints in the magnetic problem. In the
field and temperature range of the Wien effect experiment (T = 100− 200 mK, B ≈ 2 mT), ℓB ∼ 70 Å.
Given this large scale it seems reasonable that the magnetic and electric systems should show the same
behaviour within the experimental set up. Much work is required here to understand these points in
detail.

Spin ice dynamics at low temperature should be compared with the dynamics of a spin glass. In
the latter, the glassy behaviour is the result of a hierarchy of time scales, as manifested, for example in
the phenomenological random energy model [57]. Here the evolution steps occur with an exponentially
varying set of delay times. For spin ice, at least in zero field things are very different. We have modeled
the dynamics of the NNSI using a single time scale associated with the quantum tunneling of an Ising
spin τ0. This scale dictates two processes; a hopping move of an existing deconfined monopole by one
lattice spacing, or the creation (annihilation) of a nearest neighbour pair of particles, whose characteristic
time is dressed by the Boltzmann weight, τ = τo exp(−β∆E). At low temperature this becomes the
rate determining step, so that once created, the diffusing particles are actually extremely efficient at
decorrelating the system. For example, from figure (7), the characteristic Arrhenius time scale at 500
mK is τ ∼ 1 sec, while the microscopic time scale, τ0 is estimated to be about 2.5 miliseconds. That
is, the system decorrelates in 400 microscopic time steps thanks to the free diffusion of the deconfined
particles. In the presence of Coulomb interactions, the decorrelation times are longer as the microscopic
processes are dressed by a continuous range of energy scales coming from the Coulomb interaction, but
the basic picture is provided by the simpler nearest neighbour model where free particles move on an
essentially flat energy surface, making them efficient in decorrelating the system.

In this paper we have interpreted a magnetic relaxation experiment in terms of monopole dynamics.
A more fundamental approach is to design experiments that explicitly and directly test for monopole
dynamics. Up to press the only experiments which attempt this are those using the Wien effect[41, 39],
in which monopole mobility can be probed by exploiting the chemical equilibrium existing between bound
and free particles in a field. An even more direct approach would be an equivalent of the “Stanford”
superconducting coil experiment [58, 30], whose goal was to measure the passage of free Dirac monopoles
through a superconducting coil. Such an experiment could in principle detect the passage of a single
magnetic quasi-particle but, given that the charges have no mass and therefore have diffusive, rather
than Newtonian dynamics, at least in the absence of an external field and that the monopole charge in
Dysprosium Titanate is approximately 8000 times smaller than a Dirac Monopole[30], this experiment
presents serious challenges. A starting point could be a many body equivalent. In fact, such an experiment
has been set up in another context by Hérrison and Ocio[59] to look at the violation of the fluctuation
dissipation relation in spin glass systems. In this experiment the magnetic fluctuations are directly
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measured and compared with magnetic response. The analysis presented in this paper suggests that the
resulting magnetic noise in spin ice would be due to the diffusive motion of monopoles. Unfortunately,
for the moment this set up is limited to the 4 K temperature range which remains in the high monopole
density regime. The goal for a monopole experiment would be first to descend below one Kelvin and then
to reduce the scale of the sample sufficiently so that the resulting noise was due to a mesoscopic, or even
microscopic number of quasi-particles.

In conclusion, the discovery of magnetic monopoles in spin ice has exposed a rich vein of physics,
in which a Coulomb gas, equivalent to a weak electrolyte appears at low temperature. This emergent
’magnetolyte’[41] shows many of the static and dynamic properties of the electric system within a very
idealized environment. Much experimental, theoretical and numerical work remains to be done in order
to fully exploit it.
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