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Abstract. Microtomography can measure the X-ray atten-

uation coefficient in a 3-D volume of snow with a spatial

resolution of a few microns. In order to extract quantitative

characteristics of the microstructure, such as the specific sur-

face area (SSA), from these data, the greyscale image first

needs to be segmented into a binary image of ice and air.

Different numerical algorithms can then be used to compute

the surface area of the binary image. In this paper, we re-

port on the effect of commonly used segmentation and sur-

face area computation techniques on the evaluation of den-

sity and specific surface area. The evaluation is based on

a set of 38 X-ray tomographies of different snow samples

without impregnation, scanned with an effective voxel size

of 10 and 18 µm. We found that different surface area com-

putation methods can induce relative variations up to 5 % in

the density and SSA values. Regarding segmentation, simi-

lar results were obtained by sequential and energy-based ap-

proaches, provided the associated parameters were correctly

chosen. The voxel size also appears to affect the values of

density and SSA, but because images with the higher resolu-

tion also show the higher noise level, it was not possible to

draw a definitive conclusion on this effect of resolution.

1 Introduction

The specific surface area (SSA) of snow is defined as

the area S of the ice–air interface per unit mass M ,

i.e. SSA= S/M expressed in m2 kg−1. We use this defini-

tion of SSA which can be directly related to surface area per

ice volume (SSAv) via SSAv= ρice SSA with ρice the den-

sity of ice. This quantity is essential for the modelling of the

physical and chemical properties of snow because it is an in-

dicator of potential exchanges with the surrounding environ-

ment. For instance, SSA can be used to predict snow electro-

magnetic characteristics such as light scattering and absorp-

tion (albedo in the near infrared) (e.g. Warren, 1982; Flan-

ner and Zender, 2006) or microwave radiation (e.g. Brucker

et al., 2011), and snow metamorphism (e.g. Flin et al., 2004;

Domine et al., 2007). Precise knowledge of this quantity is

required in numerous applications such as cold regions hy-

drology, predicting the role of snow in the regional/global

climate system, optical and microwave remote sensing, snow

chemistry, etc.

In the last decade, numerous field and laboratory instru-

ments were developed by different research groups to mea-

sure snow grain size. One possible definition of this grain size

is the equivalent spherical radius req, computed from the SSA

as req= 3/(ρice×SSA) with ρice the density of ice. This def-

inition is actually equivalent to the optical radius, i.e. the ra-

dius of a collection of spheres with the same infrared albedo

as that of the snow microstructure (Warren, 1982). In con-

trast, the definition of grain size used in traditional snow clas-

sification as the mean of the longest extension of disaggre-

gated particles (Fierz et al., 2009) is correlated to SSA only

for a few snow classes. The crystal size as stereologically

measured by Riche et al. (2012) is another potential defini-

tion for grain size, a priori, independent of the other defini-

tions mentioned above. Because of the co-existence of these

inconsistent grain size definitions and of different associated

measurement methods (optical, gas adsorption, tomography,

stereology), an intercomparison of different grain size mea-
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surement methods was organised by the International Associ-

ation of Cryospheric Sciences (IACS) working group, “From

quantitative stratigraphy to microstructure-based modelling

of snow”. One of the main objectives of this intercomparison

was to determine the accuracy, comparability and quality of

existing measurement methods.

In the context of this workshop, the present study focuses

on the measurement of density and SSA derived from micro-

tomographic data (Cnudde and Boone, 2013). Microtomog-

raphy measures the X-ray attenuation coefficient in a three-

dimensional (3-D) volume with high spatial resolutions of a

few to a few tens of microns. To extract the microstructure

from the reconstructed 3-D image, this image has to be fil-

tered to reduce noise and subsequently analysed to identify

the phase relevant for the investigation, in our case, ice. This

step, called binary segmentation, affects the subsequent mi-

crostructure characterisation, especially when the image res-

olution is close to the typical size of microstructural details.

Different algorithms exist to calculate density and SSA from

these images. Here we investigate the effects of binary seg-

mentation and surface area calculation methods on density

and SSA estimates, in order to provide guidelines for the use

of snow sample microtomographic data.

Comparative studies of processing techniques for images

obtained via X-ray microtomography have already listed the

performance of several segmentation methods with respect

to different quality indicators (e.g. Kaestner et al., 2008; Ias-

sonov et al., 2009; Schlüter and Sheppard, 2014). These stud-

ies emphasised the importance of using local image informa-

tion such as spatial correlation to perform suitable segmenta-

tions and highlighted the superior performance of Bayesian

Markov random field segmentation (Berthod et al., 1996),

which consists in finding the segmentation with minimum

boundary surface and which at the same time respects the

grey value data in the best possible way. However, none of

the studies mentioned were interested in snow. This material

exhibits specific features such as a natural tendency, induced

by metamorphism, to minimise its surface energy (e.g. Flin

et al., 2003; Vetter et al., 2010). Moreover, these former stud-

ies tended to focus on properties linked to volumetric mate-

rial contents, while less attention was paid to the surface area

of the segmented object. Hagenmuller et al. (2013) applied

an energy-based segmentation method on images of impreg-

nated snow samples, which is a three-phase material (impreg-

nation product, ice and residual air bubbles). This method is

based on the same principles as the Bayesian Markov ran-

dom field segmentation but the optimisation process is per-

formed differently. It explicitly takes advantage of the knowl-

edge that the local surface energy of snow tends to be limited

due to inherent snow metamorphism that occurred before

sampling, and was shown to be accurate in comparison to

a segmentation method based on global thresholding. How-

ever, the set of snow microtomographic images used by Ha-

genmuller et al. (2013) was limited to impregnated samples

and to a few different snow types. Moreover, no independent

SSA measurements were available to provide a reference or

at least a comparison. Here, the flexible energy-based seg-

mentation method was adapted to two-phase images (air–ice)

and applied to 38 images on which SSA measurements were

conducted with independent instruments. Note that compar-

isons with these independent SSA measurements are beyond

the scope of this paper and will be reported in a synthesis

paper of the working group to be published in the present

special issue of The Cryosphere.

First, the sampling and X-ray measurement procedures to

obtain greyscale images are described. Attention is paid to

the fact that the parameters used for binary segmentation also

depend on the scanned sample and not only on the X-ray

source set-up. Second, two different approaches of binary

segmentation are presented. The first one, commonly used

in the snow science community, consists of a sequence of fil-

ters: Gaussian smoothing, global thresholding and morpho-

logical filtering. The second one is based on the minimisation

of a segmentation energy. Third, different methods to com-

pute surface area from binary images are presented. Finally,

the different methods of binary segmentation and area com-

putation are applied to the microtomographic images and the

results are compared to provide an estimation of the scatter in

density and SSA measurements due to numerical processing

of the greyscale image and area calculation.

2 Material and methods

2.1 Data set

Snow sampling, preparation and scanning were conducted at

SLF, Davos, Switzerland, during the Snow Grain Size Work-

shop in March 2014.

2.1.1 Sampling

Thirteen snow blocks of apparently homogeneous snow were

collected in the field or prepared in a cold laboratory. These

blocks span different snow types (decomposing and frag-

mented snow, rounded grains, faceted crystals and depth

hoar, Fig. 1). Smaller specimens were taken out of these

blocks to conduct grain size measurements with different in-

struments. Two snow cylinders of radius 35 mm and height of

60 mm and one snow cylinder of radius 20 and 60 mm height

were extruded from each block to perform microtomographic

measurements.

2.1.2 X-ray scanning

The greyscale images were obtained by a commercial micro-

computer tomograph (Scanco Medical µCT40) operating in

a cold room at −15 ◦C. The X-ray source was set to an en-

ergy of 55 keV. The two samples with a radius of 37 mm were

scanned with a nominal resolution of 18 µm, and the smaller

sample with a radius of 20 mm was scanned with a nominal
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A5 (FC/DF)

N1 (RG)

M2-2 (DH/FC)

F2-2 (FCxr)E4 (RG/DF)

C4 (RG)B5 (FC/RG) D5 (FC/RG)

D5-2 (FC/RG) G2 (RG/FC)

H2 (FC/FCxr) M1-1 (DH/FC) M1-3 (DHch/FC)

3 mm

Figure 1. The different snow types and microstructural patterns used in this study. The 3-D images shown have a side length of 3 mm and

correspond to a subset of the images analysed in the present study. The grain shape is also indicated in brackets below the images, according

to the international snow classification (Fierz et al., 2009).

resolution of 10 µm. To avoid edge effects, a sub-image of

about 10003 voxels in size was extracted from each image,

which corresponds to a volume of 103 mm3 for the 10 µm

resolution and 183 mm3 for the 18 µm resolution. These vol-

umes are larger than the previously established representa-

tive elementary volumes on the order of 2.53 mm3 for SSA

(Flin et al., 2011) and density (Coléou et al., 2001). In the

following, the images corresponding to a resolution 18 µm

are identified by the suffixes “s1” and “s2”, and the 10 µm by

“10 µ”. The output of the tomograph is a 3-D greyscale im-

age with values encoded as unsigned short integers (16 bits)

(Fig. 2). The greyscale value or intensity (I ) quantifies the

X-ray attenuation coefficient.

2.1.3 Images artefacts

As shown in Fig. 2, air and ice can be distinguished by

their respective attenuation coefficient, i.e. by their greyscale

value or intensity. However, the greyscale distributions in ice

and air are not completely disjoint, as there are always pix-

els (voxels in 3-D) that consist of both materials. In addition

1 mm

Number of voxels

Intensity (arbitrary units)

Ice

Air

Figure 2. Grayscale image (4002 pixels) representing the X-ray

attenuation coefficient and its corresponding greyscale histogram.

The 2-D slice is extracted from image G2-s1. The image exhibits

two materials: air (dark grey) and ice (light grey). The contour of

ice resulting from binary segmentation is plotted in red. The zoom

panel (top left) was enlarged eight times to emphasise the fuzzy

transition between air and ice.
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to this fuzzy transition between air and ice, the image is also

noisy, which does not make the binary segmentation straight-

forward.

Figure 3 shows the greyscale distributions obtained on all

scanned images. The exact position of the attenuation peaks

and the scatter around the peaks depend both on resolution

and snow sample. Slight differences are also observed be-

tween the greyscale distribution of the two images coming

from the same snow block and scanned with the same reso-

lution. This may be due to slight variations in the tempera-

ture of the X-ray source during successive scans. Hence, it

is doubtful whether binary segmentation parameters “opti-

mised” for one image can be used to segment other images

even of the same sample and with the same resolution. It ap-

pears necessary to determine the segmentation parameters on

each image independently.

2.2 Segmentation methods

In this section, two binary segmentation methods are pre-

sented: (1) the common method based on global threshold-

ing combined with denoising and morphological filtering,

hereafter referred to as sequential filtering, and (2) a method

based on the minimisation of a segmentation energy, referred

to as energy-based segmentation.

2.2.1 Sequential filtering

Sequential filtering is commonly used to segment greyscale

microtomographic images of snow because it is simple, fast

and is implemented in packages of several different pro-

gramming languages. It consists of a sequence of denoising,

global thresholding and post-processing, the input of each

step coming from the output of the previous step.

Denoising with a Gaussian filter

Numerous filters exist to remove noise from images, the

most common being the Gaussian filter, the median filter,

the anisotropic diffusion filter and the total variation filter

(Schlüter and Sheppard, 2014). The objective of denoising is

to smooth intensity variations in homogeneous zones (char-

acterised by low-intensity gradients) while preserving sharp

variations of intensity in the transition between materials

(characterised by high-intensity gradient). In snow science,

the most popular denoising filter is the Gaussian filter (e.g.

Kerbrat et al., 2008; Lomonaco et al., 2011; Theile et al.,

2009; Schleef and Löwe, 2013), which consists in convo-

luting the intensity field I (i.e. the greyscale value) with a

Gaussian kernel of zero mean N (0, σ ) defined as

N (0,σ )(I )=
1

σ
√

2π
exp

(
−
I 2

2σ 2

)
, (1)

with σ the (positive) standard deviation. The support of the

Gaussian kernel can be truncated (here to b4σc) to speed up

Figure 3. Grayscale distributions for all images. The solid lines and

dashed lines respectively represent the distributions for the images

scanned with the resolution 10 and 18 µm. The greyscale distribu-

tion is computed on 1000 bins of homogeneous size in the intensity

range [30 000, 50 000] (arbitrary units).

the calculations. This filter is very efficient in smoothing ho-

mogeneous zones. However, it fails to preserve sharp fea-

tures in the image by indifferently smoothing low-intensity

and high-intensity gradient zones, and therefore reduces the

effective resolution of the image.

Global thresholding

After the denoising step, a global threshold T is determined

for the entire image in order to classify voxels as air or ice,

depending on whether their greyscale value is smaller or

greater, respectively, than the threshold. The choice of this

threshold is generally based on the greyscale histogram with-

out considering the spatial distribution of greyscale values.

Different methods exist, an exhaustive review of which can

be found in Sezgin and Sankur (2004). Here the focus is lim-

ited to methods commonly used for snow, namely (1) local

minimum, (2) Otsu’s method and (3) mixture modelling.

1. Local minimum: a simple way to determine the thresh-

old is to define it as the local minimum in the valley be-

tween the attenuation peaks of ice and air (Figs. 2 and 3)

(e.g. Flin, 2004; Heggli et al., 2009; Pinzer et al., 2012).

However, the histogram may be noisy, resulting in sev-

eral local maxima and minima, which makes the method

inapplicable. In some cases, the attenuation peaks of ice

and air can also be too close, which results in a uni-

modal histogram without any valley (e.g. Kerbrat et al.,

2008). Moreover, the position of the local minimum is

generally affected by the height of the attenuation peaks

in the histogram: the less ice in the image, the closer

the local minimum is to the ice attenuation peak. The

threshold obtained by this method is denoted Tvalley in

the following.

2. Otsu’s method: another popular method, first intro-

duced by Otsu (1975), is to find the threshold that

minimises the intra-class variance σw defined as

The Cryosphere, 10, 1039–1054, 2016 www.the-cryosphere.net/10/1039/2016/
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Figure 4. Different intensity models based on the greyscale distribution. (a) Mixture model composed of two Gaussian distributions to

reproduce the greyscale distribution on the low-intensity gradient zones. L1 error between the masked and reconstructed histograms is 0.006.

(b) Mixture model composed of two Gaussian distributions to reproduce the whole greyscale distribution. L1 error between the initial and

reconstructed histograms is 0.14. (c) Mixture model composed of three Gaussian distributions to reproduce the whole greyscale distribution.

L1 error between the initial and reconstructed histograms is 0.03. For all figures, theL1 error is the integral of the absolute difference between

the measured and the modelled greyscale distribution. Note that the area under the greyscale distribution of the entire image is 1.

σ 2
w= nair σ

2
air+ nice σ

2
ice, with nair and nice the numbers

of voxels classified as air and ice respectively, and σair

and σice the standard deviations of the greyscale value

in each segmented class. This method is generic and

does not require any assumption of the greyscale dis-

tribution. However, this also represents a drawback of

the method, in that knowledge of the origin of the im-

age artefacts can help to find the optimal threshold. The

threshold obtained by this method is denoted Totsu in the

following. This method is less used in the snow commu-

nity but is widely used for other porous materials (e.g.

Haussener, 2010; Ebner et al., 2015).

3. Mixture modelling: the classification error induced by

the thresholding can be also minimised by assuming

that each class is Gaussian-distributed. From there, dif-

ferent methods can be considered to decompose the

greyscale histogram in a sum of Gaussian distributions.

– The greyscale histogram computed on the image

masked on high-intensity gradients can usually be

perfectly decomposed into two Gaussian distribu-

tions centred on the attenuation peaks of air (µair)

and ice (µice), respectively, and with identical stan-

dard deviations σ (Fig. 4a). Masking the high-

intensity gradients enables suppression of the fuzzy

transition zones between ice and air. Therefore, on

the corresponding histogram, the scatter around the

attenuation peaks can be attributed to instrument

noise only, and appears to be Gaussian-distributed.

The optimal threshold value derived from this

method is Tmask= (µice+µair)/2. Note that the

ratio Qnoise= σ/(µice−µair) provides a quantita-

tive estimate of the quality of the greyscale images

with regard to noise artefacts. In practice, however,

masking the greyscale image on high-intensity gra-

dient zones is time-consuming and not straightfor-

ward with existing segmentation software. More-

over, in the case of very thin ice structures, homo-

geneous ice zones are almost non-existent.

– Kerbrat et al. (2008) directly fitted the sum of two

Gaussian distributions to the complete greyscale

histogram (Fig. 4b). Note that the partial volume

effect at the transition between materials changes

the position of the attenuation peaks and the agree-

ment between the fit and the histogram remains par-

tial in comparison to the fit on the histogram of the

masked image. The threshold, defined as the mean

of the centre of the two Gaussian distributions ob-

tained by this fit, is denoted Tkerbrat.

– Hagenmuller et al. (2013) fitted the greyscale his-

togram with the sum of three Gaussian distributions

to take into account the fuzzy transition between

materials. The fitting function is

F̃ = λair ·N (µair,σ )+ λice ·N (µice,σ )

+ (1− λair− λice) ·N (µ,µ̃), (2)

where λair, λice, µair, µice and σ are five ad-

justable parameters (representing the proportions of

non-fuzzy air and ice in the image, the attenua-

tion peaks of air and ice, and noise, respectively),

µ= (µair+µice)/2, and µ̃= (µice−µair)/4. The

two first terms of the sum model the greyscale dis-

tribution in low-intensity gradient zones, while the

last term models the greyscale distribution in high-

intensity gradient zones. The choice of µ̃ value is

arbitrary but was found to provide a good fit to the

transition zone. The agreement of this model with

the greyscale histogram is generally very good,

although no additional free parameter is added

in comparison to the two-Gaussian distributions

www.the-cryosphere.net/10/1039/2016/ The Cryosphere, 10, 1039–1054, 2016
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model (Fig. 4c). The optimal threshold value de-

rived from this method is Thagen= (µice+µair)/2.

Note that the value Qblur= 1− λair− λice pro-

vides a quantitative estimate of the quality of the

greyscale image with regards to the fuzzy transition

artefact.

Post-processing

In general, the binary segmented image needs to be further

corrected to remove remaining artefacts. This can be done

manually for each 2-D section, but it is extremely time-

consuming (Flin et al., 2003). The continuity of the ice ma-

trix can also be used to correct the binary image by delet-

ing ice zones not connected to the main structure or to the

edges of the image (Hagenmuller et al., 2013; Schleef et al.,

2014; Calonne et al., 2014). Among generic and automatic

post-processing methods, the morphological operators ero-

sion and dilation are the most popular. The combination of

these operators enables deletion of small holes in the ice ma-

trix (closing: erosion then dilation) or small protuberances

on the ice surface (opening: dilation then erosion). In the

following, the support size of these morphological filters is

denoted d .

2.2.2 Energy-based segmentation

Energy-based segmentation methods consist in finding the

optimal segmentation by minimising a prescribed energy

function. These methods are robust and flexible since the best

segmentation is automatically found by the optimisation pro-

cess, and the energy function can incorporate various seg-

mentation criteria. In general, the optimisation of functions

composed of billions of variables can be complex and time-

consuming. However, provided that the variables are binary

and some additional restrictions on the form of the energy

function, efficient global optimisation methods exist. In par-

ticular, functions that involve only pair interactions can be

globally optimised in a very efficient way with the graph cut

method (Kolmogorov and Zabih, 2004). Using this method,

the typical computing time of the energy-based segmentation

of a 10003 voxel image is 5 h on a desktop computer with a

single processor (2.7 GHz).

The energy function E used in the present work is com-

posed of two components: a data fidelity term Ev and

a spatial regularisation term Es. The definition of E is

similar to that proposed by Hagenmuller et al. (2013)

for the binary segmentation of impregnated snow samples

(air/ice/impregnation product), except that the data fidelity

term is, here, adapted to the processing of air/ice images.

This term assigns penalties for classifying a voxel into ice

or air, according to its local greyscale value. Qualitatively,

assigning to air a voxel with a greyscale value close to the

attenuation peak of ice “costs more” than assigning it to ice.

Quantitatively, we define Ev as follows:

34 000 38 000 42 000
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O
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ur
re

nc
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ra
tio

0.0
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m
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Prox. to air P0

Prox. to ice P1

Figure 5. Proximity functions to air (P0) and to ice (P1) computed

from Eqs. (4) and (5), and the three Gaussians histogram fit obtained

on image G2-s1.

Ev(L)= v ·
∑
i

((1−Li) ·P1 (Ii)+Li ·P0 (Ii)) , (3)

where Li is the segmentation label (0 for air, 1 for ice) for

voxel i, Ii is its greyscale value, P0 is the proximity function

to air and P1 is the proximity function to ice. This energy is

scaled by the volume v of one voxel. The proximity functions

quantify how close a greyscale value is to the correspond-

ing material. They are defined from the three Gaussians fit

(Eq. 2) adjusted on the greyscale histogram as follows:

P0(I )=

{
1 if I < µair

min(1,eN (µair,σ )(I )) elsewhere
(4)

P1(I )=

{
1 if I > µice

min(1,eN (µice,σ )(I )) elsewhere,
(5)

with e= exp(1) (Fig. 5).

The spatial regularisation term Es(L) is defined as

r · S(L), with S(L) the surface area of the segmented ob-

ject L and r (r ≥ 0) a tunable parameter with the dimen-

sion of a length. Accounting for this regularisation term in

the energy leads to penalising large interface areas: a voxel

with an intermediate grey value is segmented so that the in-

terface air/ice area is minimised. The parameter r assigns a

relative weight to the surface area term in the total energy

function E, and can be interpreted as the minimum radius

of protuberances preserved on the segmented object (Hagen-

muller et al., 2013). This regularisation term minimising the

ice/air interface is of particular interest for materials such as

snow where metamorphism naturally tends to reduce the sur-

face and grain boundary energy. Such processes are known to

be particularly effective on snow types resulting from isother-

mal metamorphism. For other snow types, such as precipita-

tion particles, faceted crystals or depth hoar, the surface reg-

ularisation term is expected to perform well in recovering the

facet shapes, but may induce some rounding at facet edges.

The Cryosphere, 10, 1039–1054, 2016 www.the-cryosphere.net/10/1039/2016/
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2.3 Surface area computation

Flin et al. (2011) evaluated three different approaches to

compute the area of the ice–pore interface from 3-D binary

images: the stereological approach (e.g. Torquato, 2002), the

marching cubes approach (e.g. Hildebrand et al., 1999) and

the voxel projection approach (Flin et al., 2005). These au-

thors showed that the three approaches provide globally sim-

ilar results, but each possesses its own inherent drawbacks:

the stereological approach does not handle anisotropic struc-

tures properly, the marching cubes tends to overestimate the

surface and the voxel projection method is highly sensitive

to image resolution. In the present work, in order to estimate

whether variations of SSA due to different surface area com-

putation approaches are significant compared to the effect

of binary segmentation, we tested three different methods

to quantify the surface area: the stereological approach, the

marching cubes approach and the Crofton approach. We did

not evaluate the voxel projection method (Flin et al., 2005)

because its implementation is sophisticated and the required

computation of high-quality normal vectors is excessively

time-consuming if used only for surface area computation.

2.3.1 Model-based stereological approach

Stereological methods derive higher dimensional geometri-

cal properties, as density or SSA, from lower dimensional

data. The key idea is to count the intersections of the refer-

ence material with points or lines. Prior to the development

of X-ray tomography, so-called model-based methods were

used. These models assume certain geometric properties of

the object being studied, such as the isotropy of the material

(Edens and Brown, 1995). They are now replaced by design-

based methods that do not require any prior information on

the studied object but require denser sampling of the object

(Baddeley and Vedel Jensen, 2005; Matzl and Schneebeli,

2010).

Here, we used two variants of the stereological method by

measuring the intersection of lines in a 3-D volume. The first

method consisted in counting the number of interface points

on linear paths aligned with the three orthogonal directions.

The surface area is then twice the number of intersections

multiplied by the area of a voxel face. A surface area value

is obtained for each direction. With the microtomographic

data presented in this paper, the 2-D sections are virtual and

do not correspond to physical surface sections of the sam-

ple. This corresponds to a model-based stereological method

since isotropy of the sample is assumed; we call it “stereo-

logical” in the following.

In addition, we used the mathematical formalism provided

by the Cauchy-Crofton formula that explicitly relates the

area of a surface to the number of intersections with any

straight lines (Boykov and Kolmogorov, 2003). Instead of

using only three orthogonal directions of the straight lines,

we used 13 and 49 directions, and the improved approxi-

mations based on Voronoi diagrams proposed by Danek and

Matula (2011). This method comes close to a design-based

stereological method, as the volume (and direction) is al-

most exhaustively sampled. We refer to this area computation

method as the Crofton approach.

2.3.2 Marching cubes approach

The marching cubes approach consists in extracting a polyg-

onal mesh of an isosurface from a 3-D scalar field. Summing

the area contributions of all polygons constituting the mesh

provides the surface area of the whole image. We used a

homemade version of the algorithm developed by Lorensen

and Cline (1987). It computes the area of the 0.5 isosurface

of the binary image without any further processing of the im-

age. Our version of the algorithm is adapted to compute only

the surface area without saving all the mesh elements that are

required for 3-D visualisation.

3 Results

In this section, the methods to compute the area of the ice–

air interface are evaluated first, since this evaluation can be

performed on reference objects whose area is theoretically

known, without accounting for the interplay with the binary

segmentation method. The Crofton approach, which is shown

to perform best, is selected for the rest of the study. The sen-

sitivity of density and SSA to the parameters of the sequen-

tial filtering and energy-based segmentations on the entire set

of snow images is then investigated. Finally the variability of

SSA due to numerical processing is compared to the variabil-

ity of SSA due to snow spatial heterogeneity and scanning

resolution.

3.1 Surface area estimation

An oblate spheroid (or ellipsoid of revolution) with symme-

try axis along z was chosen as a reference object to com-

pare the different surface area computation methods. An

anisotropy of 0.6 was considered (ratio between the dimen-

sions of z and (x, y) semi-axes), and spheroids of different

sizes were used to evaluate the impact of the discretization

on the surface area computation. Figure 6 shows that the

surface area calculated with the Crofton approach is in ex-

cellent agreement with the theoretical area: for sufficiently

large spheroids, i.e. a surface area larger than 200 voxels2,

the relative error is less than 1 % for the Crofton approach

with 49 different directions and 2 % for the Crofton approach

with 13 different directions. Adding more directions does not

significantly improve the accuracy of the Crofton approach

while it increases the computation time. The marching cubes

approach systematically overestimates the surface area by

about 5 % due to the presence of artificial stair steps in the

triangulation of the isosurface. As expected, the stereologi-

cal method shows scatter in the results obtained between the
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Figure 6. Surface area of an oblate spheroid, obtained by dif-

ferent calculation methods. The spheroid has a horizontal (x, y)

semi-axis a varying in [3, 19] voxel and a vertical (z) semi-axis

c= 0.6 · a. The reference surface area of the spheroid is computed

analytically. The Crofton approach is computed with 13 or 49 dif-

ferent directions. As in Figs. 10, 11, 12 and 13, the relative error is

calculated as the computed value minus the reference value, divided

by the reference value. Note that due to symmetry of the oblate

spheroid, the values of stereological y are superimposed with the

values of stereological x.

z and the (x, y) components. The mean value of the three

components provides a fair estimation of the surface area,

with a relative error of about 2 % compared to the theoretical

value. These observations on the stereological and marching

cubes approaches corroborate previous results obtained by

Flin et al. (2011) on snow images.

The different surface area computation methods were then

evaluated on the entire set of snow images segmented with

the energy-based method (r = 1 voxel). According to the re-

sults obtained on the spheroid, the Crofton approach with 13

directions was chosen as a reference. As shown in Fig. 7,

the SSA obtained by the direction-averaged stereological

method is in excellent agreement with the value provided

by the Crofton method. The results of the marching cubes

method are in fair agreement but show a systematic over-

estimation of the SSA (+6 % average relative deviation).

In summary, all presented area computation methods

showed consistent results. The Crofton approach showed the

best accuracy on an artificial anisotropic structure whose sur-

face area is theoretically known. The stereological approach

is negatively affected by strong anisotropy of the imaged

structure. However, on the tested snow images, the structural

anisotropy is low and this method is in excellent agreement

with the Crofton approach. The simple marching cubes ap-

proach presented here (without additional filtering or pre-

smoothing of the binary image) overestimates the specific

surface on the order of 5 %. For the following analysis of

the sensitivity to binary segmentation, the SSA is computed

via the Crofton approach with 13 directions.
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Figure 7. Comparison of the SSA obtained by different surface area

calculation methods on all images binarised with the energy-based

segmentation (r = 1 voxel). The root mean square difference be-

tween the SSA computed as the direction average of the stereolog-

ical method and the SSA computed with the Crofton approach is

0.008 m2 kg−1. This difference is 1.13 m2 kg−1 for the marching

cubes approach. The black line represents the 1 : 1 line.

3.2 Sequential filtering

The binary image resulting from the sequential filtering ap-

proach depends on (1) the standard deviation σ of the Gaus-

sian filter, (2) the threshold value T and (3) the size d of

the post-processing morphological filters (opening/closing).

As shown in Fig. 8, both SSA and density are sensitive to

these segmentation parameters. The relation between SSA

and density, on the one hand, and σ and d, on the other hand,

depends significantly on the chosen threshold. Thus, in the

following, we first investigate the dependence of SSA and

density on the threshold, and then analyse the effects of σ

and d with a threshold obtained by the mixture model of Ha-

genmuller et al. (2013).

3.2.1 Choice of threshold

The threshold Tmask obtained by the two-Gaussian fit of the

greyscale histogram computed on the low-intensity gradient

zones is chosen as a reference, since this value is not affected

by the fuzzy transition artefact. This reference threshold

ranges between 38 800 and 39 500 for the different scanned

images (Fig. 9). The mean values of the attenuation peaks of

air and ice are µair= 35 800 and µice= 42 600, respectively.

Hence, the variations of the reference threshold value remain

small compared to the contrast between the two attenuation

peaks µice−µair= 6800. However, these variations clearly

indicate, once again, that a unique threshold value cannot

be used for all images. These variations could be explained

by slight variations in the X-ray source energy level due to

slight temperature changes, or to deviations from the Beer–
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Figure 8. SSA and density of image G2-s1 obtained by sequential

filtering for different segmentation parameters.

Lambert attenuation law, depending on the total ice content

of the sample.

As shown in Fig. 9, the computed threshold depends sig-

nificantly on the determination method. These variations

in turn affect the density extracted from the binary image

(Fig. 10a). Note that the scatter on density due to the choice

of the threshold remains the same even if a Gaussian fil-

ter is applied on the greyscale image before thresholding

(Fig. 10a). The SSA values are also affected by the thresh-

old determination method, but to a smaller extent since the

threshold value tends to affect density and total surface area

in the same proportion (Fig. 10b). The variation of SSA due

to smoothing is much more important than those due to the

choice of the threshold (Fig. 10b).

In detail, the valley method systematically overestimates

the threshold value, leading to a systematic underestimation

of the snow density by about 10 kg m−3 on average. Otsu’s

method tends to underestimate the threshold value, leading to

an overestimation of the snow density by about 6 kg m−3 on

average. Kerbrat’s method tends to underestimate the thresh-

old value, leading to an overestimation of the snow density

by about 4 kg m−3 on average. Note that the density over-

estimation with Kerbrat’s method is more pronounced on

low-density snow samples scanned with a 18 µm resolution.

Lastly, the method introduced by Hagenmuller et al. (2013)

slightly underestimates the threshold value, and therefore

overestimates the snow density with a mean absolute differ-

ence of about 2 kg m−3 compared to the reference.

In summary, the threshold value obtained by the valley

method, a method widely used in the snow community,

clearly leads to an underestimation of snow density. The mix-

ture models of Kerbrat et al. (2008) or Hagenmuller et al.

(2013), which assume that noise is Gaussian-distributed, pro-

vide a threshold value in good agreement with the reference

method. The model of Hagenmuller et al. (2013), which ex-

plicitly accounts for the fuzzy transition between materials,

yields the threshold which is the closest to the reference value

obtained on the masked image.

Figure 9. Sequential filtering segmentation: threshold values ob-

tained on the entire set of images by the different intensity models.

The black line represents the 1 : 1 line. The obtained thresholds T

are also expressed as a function of the mean threshold T and the

mean contrast µice–µair between air and ice, obtained by the refer-

ence method.

3.2.2 Gaussian filtering

The sensitivity of density and surface area to the standard

deviation σ of the Gaussian smoothing kernel is shown on

Fig. 11. The segmentation was performed with the thresh-

old Thagen derived using the method of Hagenmuller et al.

(2013).

Depending on the sample, density varies in the range [−8,

+2] % (compared to the value obtained without smoothing)

when σ is increased from 0 to 20 µm (Fig. 11a). Density ap-

pears to be insensitive to σ when σ is much lower than the

voxel size. For larger values of σ , an average decrease of den-

sity with σ is observed due to the fact that snow structure is

generally convex and smoothing tends to erode convex zones.

Slight increase of density with σ is observed for σ > 5 µm

for samples M1-1, M1-3 and M2-2. These samples are the

most faceted snow samples exhibiting a large proportion of

flat surfaces (Fig. 1), which explains the different variation

of density with σ . Systematic differences can also be noted

between the images with a resolution of 10 and 18 µm. At

a resolution of 10 µm, a fast decrease of density is observed

for σ in the range [3, 6] µm. This regime is absent at a resolu-

tion of 18 µm. For larger values of σ , the evolution of density

is then similar for the two resolutions, and depends on the

snow type. This difference is attributable to a stronger noise

in the 10 µm images, which results in local greyscale varia-

tions that are generally smoothed out when σ > 6 µm.

The computed surface area significantly decreases when

σ increases (Fig. 11b). Relative variations up to 50 % are

observed. On the 10 µm images and with σ in the range
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Figure 10. Sequential filtering segmentation: relative variation of density (a) and SSA (b) computed with different threshold determina-

tion methods, with respect to the reference values computed with Tmask. Void (solid) markers correspond to values obtained without any

smoothing (with a Gaussian filter of standard deviation σ = 1 voxel). The legends apply to both subplots.
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Figure 11. Sequential filtering segmentation: relative variations of density (a) and surface area (b) with the size σ of the Gaussian filter. The

variations are calculated with respect to density and surface area obtained without a smoothing filter (σ = 0).

[3, 6] µm, the surface area decreases rapidly when σ in-

creases. These variations probably correspond to the progres-

sive smoothing of noise-induced fluctuations on the inter-

face. For larger values of σ , the surface area decreases much

more slowly, which corresponds to the progressive smooth-

ing of real microstructural details. On the 18 µm images,

these two regimes cannot be distinguished because the over-

all surface area is less affected by noise artefacts and only the

smoothing of real structural details is observed. The same

variations with σ can be observed on SSA since the varia-

tions of density with σ are small compared to the variations

of the surface area. Note that the absolute values of density

and SSA for the different scanned snow images are indicated

on Fig. 15.

3.2.3 Morphological opening/closing

Figure 12 shows the relative variation of density and surface

area obtained by morphological filters of different sizes d .

Note that the values of d are constrained by the voxel grid

and are thus discrete (1,
√

2,
√

3, 2 voxel, etc.). The opening

and closing filters delete holes in the ice matrix or ice ele-

ments in the air, of a typical size d. Therefore, the surface

area decreases when d increases. Density, on the contrary, is

not very sensitive to d. When no Gaussian filter is applied to

the greyscale image, thresholding yields a lot of small details

in the binary image, which enhances the effect of morpholog-

ical filters (Fig. 12b). When the image is already smoothed

by Gaussian filtering, the morphological filters have less ef-
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Figure 12. Sequential filtering segmentation: relative variations of density (a) and surface area (b) as a function of the morphological filter

size d for different values of the Gaussian filter size σ . The legends apply to both subplots.

Figure 13. Energy-based segmentation: relative variations of density (a) and surface area (b) as a function of parameter r .

fect on the overall density and specific surface area. How-

ever, note that using a Gaussian filter of standard deviation σ

does not guarantee the complete absence of details “smaller”

than σ . Certain algorithms based on the binary images, such

as grain segmentation (e.g. Theile and Schneebeli, 2011; Ha-

genmuller et al., 2014), are highly sensitive to the presence

of residual artefacts in the ice matrix and require the use of

these additional morphological filters.

3.3 Energy-based approach

The binary image resulting from the energy-based approach

depends on the parameter r which controls the smoothness

of the segmented object. The other parameters involved in

the volumetric term Ev of the segmentation energy are di-

rectly derived from the three Gaussians mixture model (see

Sect. 2.2).

As shown in Fig. 13a, the density of the segmented object

slightly varies with r . On the 10 µm images, the evolution

of density with r is not monotonic but relative variations re-

main limited in the range [−4, +1] %. On the 18 µm images,

density clearly decreases when σ increases. This higher sen-

sitivity of density to r on the 18 µm images can be explained

by the fact that the fuzzy transition appears to be larger than

on the 10 µm images, which leads to a higher indetermina-

tion of the exact position of the interface between ice and air

in this moderate intensity gradient zone (Fig. 14).

As shown in Fig. 13b, surface area is more sensitive to r

than density, and decreases significantly when r increases.

Two regimes can be distinguished. For low values of r in

the range [0, 10] µm, the surface area decreases rapidly when
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Figure 14. Relative importance of the artefacts due to

noise (Qnoise) and to the fuzzy transition (Qblur). Qnoise cor-

responds to the ratio between the standard deviation of the

Gaussian distributions fitted on the attenuation peaks and the

difference between the peak attenuation intensity of ice and air

(see Sect. 2.2). Qblur corresponds to the area of the Gaussian

representing the fuzzy transition in Hagenmuller’s mixture model

(see Sect. 2.2).

r increases. For larger values of r in the range [10, 20] µm,

the decrease of the surface area with r is much slower, and

displays an almost constant slope. As discussed by Hagen-

muller et al. (2013), this second regime is due to real de-

tails of the snow structure being progressively smoothed out,

and is indicative of a continuum of sizes in structural de-

tails of snow microstructure. The distinction between the two

regimes is more pronounced on the 10 µm images which are

more affected by noise (Fig. 14).

3.4 Comparison between images and methods

The sensitivity of surface area to the parameters σ and r

is similar, but the energy-based and sequential filtering ap-

proaches are conceptually different (Figs. 11 and 13). The

Gaussian filter smoothes high-frequency intensity variations

with a small amplitude, independently of the subsequent bi-

nary thresholding. Small details due to noise artefacts re-

maining in the binary image are then deleted independently

of the initial greyscale value by applying morphological fil-

ters. The energy-based approach smoothes the segmented ob-

ject so that the ice–air interface area is minimised while re-

specting at best the greyscale intensity model. Hence, the

greyscale smoothing and morphological filtering are some-

how done simultaneously with thresholding in the energy-

based approach. In addition, the Gaussian filter is “grid-

limited”: as shown in Fig. 11b, this filter does not affect

the segmented object if σ is to small compared to the voxel

size. In contrast, in the energy-based approach, smoothing

of the ice–air interface occurs even for very low values of r

(Fig. 13b) because voxels with a greyscale value close to

the threshold between ice and air can be segmented as air

or ice without much change in the data fidelity term Ev but

with a clear change in the surface term Es. The parameter r

defines the largest equivalent spherical radius of details pre-

served in the segmented image, whereas σ does not directly

correspond to the size of the smallest detail.

Figure 15 shows density and specific surface area

computed on the entire set of snow images segmented

with the sequential filtering approach (σ = 1.0 voxel,

T = Thagen, d = 1.0 voxel) and the energy-based approach

(r = 1.0 voxel). The “smoothing” parameters (σ and r) were

chosen equal to 1.0 voxel since this value roughly corre-

sponds to the transition beyond which the computed sur-

face area starts to vary slowly with σ and r (Figs. 11b

and 13b), and therefore provides the segmentations that best

preserve the smallest snow details while deleting most of

noise-induced protuberances. As already pointed out, this

transition is clear on the 10 µm images, but is less evident

on the 18 µm images. To be consistent, however, and to en-

sure that all noise artefacts are smoothed out, values of r ,

σ = 1 voxel were used in all cases.

It is observed that the two approaches generally produce

similar results in terms of density (root mean square devi-

ation between the two segmentation methods is 6 kg m−3)

and specific surface area (root mean square deviation of

0.7 m2 kg−1). The largest differences are observed for the

snow types presenting the highest SSA. In general, the den-

sity provided by the sequential filtering is slightly larger than

that computed with the energy-based approach. The opposite

difference is observed for SSA.

Scatter can be observed even between the density and SSA

derived from images coming from the same snow block,

probably due to the existence of spatial heterogeneities with

the blocks and the difference of image quality. The aver-

ages of standard deviations calculated for each snow block

are 10.7 kg m−3 and 1.1 m2 kg−1 for density and SSA, re-

spectively (calculated with the energy-based approach). This

intra-block variability nevertheless appears to be limited

compared to the inter-block variability (46.5 kg m−3 for den-

sity and 4.7 m2 kg−1; see Fig. 15), and is on the same order

as the variability due to the image processing technique (see

above).

Lastly, systematically larger density and SSA values are

found on the images scanned with a 10 µm resolution, com-

pared to the images with a 18 µm resolution. It could be ar-

gued that this difference is due to a better imaging of small

details with a lower voxel size. However, as already no-

ticed, the 10 µm images also present stronger noise artefacts

(Fig. 14), and it is difficult to assess whether the effective res-

olution of these images is, in practice, finer than the one of

the 18 µm images. Note that the root mean square difference

between the density (respectively SSA) computed on the im-

ages s1 and s2 is 3.8 kg m−3 (respectively 0.15 m2 kg−1),

which is much lower than the intra-block variability (includ-

ing the 10 µm images). This observation indicates that the
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Figure 15. Specific surface area as a function of density for the entire set of images and the two different binary segmentation methods.

The sequential filtering (“Sequ.” in the legend) was applied with σ = 1.0 voxel, T = Thagen and d = 1.0 voxel. The energy-based approach

(“Ener.” in the legend) was applied with r = 1.0 voxel. The surface area was computed with the Crofton approach.

hardware set-up of the tomograph and the subsequent im-

age quality or resolution can significantly affect the measured

density and SSA.

4 Conclusions and discussions

We investigated the effect of numerical processing of micro-

tomographic images on density and specific surface area de-

rived from these data. To this end, a set of 38 X-ray atten-

uation images of non-impregnated snow were analysed with

different numerical methods to segment the greyscale images

and to compute the surface area on the resulting binary im-

ages.

The segmentation step is not straightforward because the

greyscale images present noise and blur. It is shown that

noise artefacts can significantly affect the computed SSA,

and that the fuzzy transition between ice and air can have

a strong impact on the computed density.

The sequential filtering approach critically depends on the

threshold used to separate ice and air. The greyscale his-

togram on low-intensity gradient zones presents two disjoint

attenuation peaks, whose characteristics are not affected by

blur. The threshold derived from this method was used as

a reference to evaluate other methods based on the analysis

of the greyscale histogram of the entire image. The mixture

models which consist in decomposing the histogram into a

sum of Gaussian distributions are shown to be accurate. On

the contrary, the local minimum method is shown to be un-

suitable in general.

Smoothing induced by the Gaussian and morphological

filters in the sequential approach, or by accounting for the

surface area term in the energy-based method, efficiently re-

move noise artefacts from the segmented binary image. Mor-

phological filters applied on the binary image in the sequen-

tial approach miss the initial grey value information. How-

ever, it seems that their effect is negligible if the applied

Gaussian filter is strong enough. The smoothing can also in-

duce the disappearance of real structural details, contribut-

ing to the overall SSA. The transition between smoothing of

noise and smoothing of real details can be well estimated

on the curve, showing the evolution of SSA as a function

of σ or r . However, due to the influence of noise, it remains

difficult to assess the potential contribution to the SSA of

structural details of size smaller than the voxel size. It has

previously been shown that the SSA measured with the gas

adsorption technique, which has a molecular resolution, is in

good agreement with the SSA measured with microtomog-

raphy for aged natural snow (Kerbrat et al., 2008). This ob-

servation corroborates the idea that the surface of aged snow

is smooth up to a scale of about tens of microns, and that if

smaller structures are present, they do not contribute signif-

icantly to the overall SSA (Kerbrat et al., 2008). To further
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investigate this issue on recent snow and to disregard any ad-

ditional influence of the measuring technique except the res-

olution, the use of new tomographic systems with very high

resolutions of about 1 µm would be necessary.

The formalism of the energy-based segmentation could

enable more advanced criteria in the segmentation process,

such as the maximisation of the greyscale gradient at the

segmented interface (Boykov and Jolly, 2001), the minimi-

sation of the curvature of the segmented object (El-Zehiry

and Grady, 2010) or the spatial continuity in time series of

3-D images (Wolz et al., 2010). In this study, only criteria on

the local greyscale value and on the surface area of the seg-

mented object were used. The advantage of this method is

that the parameter r formally defines an effective resolution

of the segmented image. In contrast, the standard deviation σ

of the Gaussian smoothing kernel in the sequential approach

does not explicitly define the smallest structural detail in the

segmented image. In practice, however, both methods pro-

vide very similar results on the tested images in terms of

density and SSA, provided appropriate parameters are cho-

sen.

Comparison between the presented area computation

methods showed similar results when applied to a synthetic

image or to the set of snow images. On the synthetic image

(oblate spheroid), the Crofton approach computes the sur-

face area with highest accuracy (less than 2 % for sufficiently

large spheroids), whereas the stereological approach is neg-

atively affected by strong anisotropy of the imaged structure

and the unfiltered marching cubes approach overestimates

the specific surface on the order of 5 %. Stereological meth-

ods using more complex test lines, such as cycloids, can com-

pensate for the effect of anisotropy if the snow sample ex-

hibits isotropy in a certain plane, which is often the case for

the stratified snowpack (Matzl and Schneebeli, 2010). How-

ever, on the tested snow images, the surface anisotropy is

low and the stereological method is in excellent agreement

with the Crofton approach. The unfiltered marching cubes

approach still overestimates the specific surface on the order

of 5 %. Note that methods have been developed to overcome

this overestimation problem of the marching cubes approach,

such as the use of grey levels or smoothing (Flin et al., 2005).

However, these methods may create other artefacts, depend-

ing on the image considered, such as systematic underestima-

tion of the surface (Flin et al., 2005), and were not evaluated

here.

The comparison of the sequential filtering and energy-

based methods shows that density and SSA can be estimated

from X-ray tomography images with a “numerical” variabil-

ity of the same order as the variability due to spatial het-

erogeneities within one snow layer and to different hardware

set-ups.

Recommendations

A few recommendations to derive density and SSA from mi-

crotomographic data are summarised below.

– Surface area computation: the unfiltered marching

cubes approach systematically overestimates the surface

area and should thus be avoided. Counting intersections

with test lines of different orientations (at least in the

three axes x, y and z) provides an efficient way to com-

pute the surface area and properly accounts for struc-

tural anisotropy.

– Threshold determination: the value of the threshold de-

pends on the tomograph configuration but also poten-

tially on the scanned sample. A constant value for a

time series does not necessarily prevent density devi-

ations due to beam hardening. Visual inspection of the

histogram or the valley method do not always provide

consistent threshold values. The fit of Gaussian distri-

butions on the histogram provides an automatic and sat-

isfactory method to determine an appropriate threshold

value. However, all methods need visual inspection and

comparison with the greyscale image.

– Smoothing of greyscale image: smoothing of the

greyscale image, such as the convolution with a Gaus-

sian kernel, is required to reduce noise artefacts but also

reduces the effective resolution of the image by delet-

ing structural details that could contribute to the over-

all SSA. The filter, and in particular the standard devia-

tion σ of the applied Gaussian kernel, expressed in µm,

should be systematically mentioned if SSA values de-

rived from tomographic data are presented. Indeed, SSA

is a decreasing function of the effective resolution even

if the resolution is larger than the nominal voxel size.

This function is expected to become constant only for

sufficiently small resolutions, depending on the snow

type.
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