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Motivated by recent questions about the extension of Courant's nodal domain theorem, we revisit a theorem published by C. Sturm in 1836, which deals with zeros of linear combination of eigenfunctions of Sturm-Liouville problems. Although well known in the nineteenth century, this theorem seems to have been ignored or forgotten by some of the specialists in spectral theory since the second half of the twentieth-century. Although not specialists in History of Sciences, we have tried to put this theorem into the context of nineteenth century mathematics.

Introduction

In this paper, we are interested in the following one-dimensional eigenvalue problem, where r denotes the spectral parameter. Precise assumptions on K, G, L are given below.

Note that when K = G ≡ 1, (1.1)- (1.3) is an eigenvalue problem for the classical operatord 2 V dx 2 + LV . This eigenvalue problem, in the above generality (K, G, L functions of x), was first studied by Charles Sturm in a Memoir presented to the Paris Academy of sciences in September 1833, summarized in [37,[START_REF] Sturm | Monsieur Sturm nous prie d'insérer la note suivante[END_REF], and published in [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF][START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF].

Remark 1.2. In this paper, we have mainly retained the notation of [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF], except that we use [α, β] for the interval, instead of Sturm's notation [x, X]. We otherwise use today notation and vocabulary. Note that in [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF], Sturm uses lower case letters for the functions K, G, L, the same notation as Joseph Fourier in [13].

As far as the eigenvalue problem (1.1)- (1.3) is concerned, Sturm's results can be roughly summarized in the following theorems.

Theorem 1.3 (Sturm, 1836). Under the assumptions (1.4)-(1.5), the eigenvalue problem (1.1)- (1.3) admits an increasing infinite sequence {ρ i , i ≥ 1} of positive simple eigenvalues, tending to infinity. Furthermore, the associated eigenfunctions V i have the following remarkable property: the function V i vanishes, and changes sign, precisely (i -1) times in the open interval ]α, β[ . Theorem 1.4 (Sturm, 1836). The first theorem today appears in most textbooks on Sturm-Liouville theory. Although well known in the nineteenth century, the second theorem (as well as the more precise Theorem 2.15) seems to have been ignored or forgotten by some of the specialists in spectral theory since the second half of the twentieth-century, as the following chronology indicates.

Let Y = A m V m + • • • + A n V n be
1833: Sturm's Memoir presented to the Paris Academy of sciences in September, summarized in [37,[START_REF] Sturm | Monsieur Sturm nous prie d'insérer la note suivante[END_REF]. 1836: Sturm's papers [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF][START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF] ) also suggests that Sturm may have looked for a statement in higher dimension as well, without success. Sturm indeed mentions studying an example with spherical symmetry in dimension 3 (leading to an ordinary differential equation with singularity), to which he may have applied Theorem 1.4. 1903: Hurwitz [START_REF] Hurwitz | Über die Fourierschen Konstanten integrierbaren Funktionen[END_REF] gives a lower bound for the number of zeros of the sum of a trigonometric series with a spectral gap and refers, somewhat inaccurately, to Sturm's Theorems. This result, known as the Sturm-Hurwitz theorem, already appears in a more general framework in Liouville's paper [START_REF] Liouville | Mémoire sur le développement de fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable[END_REF]. See [12, § 2] for a generalization of the Sturm-Hurwitz theorem to Fourier integrals with a spectral gap, [START_REF] Ovsienko | Projective differential geometry old and new: from Schwarzian derivative to cohomology of diffeomorphism groups[END_REF] for geometric applications, and the recent paper [35] which quantifies the Sturm-Hurwitz theorem. 1931: Courant & Hilbert [START_REF] Courant | Methoden der mathematischen Physik[END_REF][START_REF] Courant | Methods of mathematical physics[END_REF] extensively mention the Sturm-Liouville problem. They do not refer to the original papers of Sturm, but to Bôcher's book [START_REF] Bôcher | Leçons sur les méthodes de Sturm dans la théorie des équations différentielles linéaires et leurs développements modernes[END_REF] which does not include Theorem 1.4. They then state an extension of the so-called Courant's nodal domain theorem to linear combination of eigenfunctions, [10, footnote, p. 394] and [11, [START_REF] Arnold | Topology of real algebraic curves (works of I.G. Petrovsky and their development)[END_REF] points out that an extension of Courant's theorem to linear combinations of eigenfunctions cannot be true in general. Counterexamples were first given by O. Viro for the 3-sphere (with the canonical metric) [START_REF] Viro | Construction of multi-component real algebraic surfaces[END_REF] and, more recently in the papers [4, 5], see also [START_REF] Gladwell | The Courant-Herrmann conjecture[END_REF]. As far as we know, the first implementation of Gelfand's idea into a complete proof of Theorem 1.4 is given in [5,[START_REF] Bérard | Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented[END_REF].

Remark 1.5. In [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF], Theorem 1.4 first appears as a corollary to a much deeper theorem [40, § XXIV], in which Sturm describes the time evolution of the x-zeros of a solution u(x, t) of the heat equation. We shall not consider this topic here, and we refer to [START_REF] Galaktionov | Sturm's theorems on zero sets in nonlinear parabolic equations[END_REF][START_REF] Lützen | Charles François Sturm and differential equations[END_REF] for modern formulations and a historical analysis.

Our interest in Theorem 1.4 arose from reading [20], and investigating Courant's nodal domain theorem and its extension to linear combination of eigenfunctions.

The main purpose of this paper is to popularize Theorems 1.4 and 2.15, as well as Sturm's originality and ideas. Sturm's results are clearly stated in the summaries [37,[START_REF] Sturm | Monsieur Sturm nous prie d'insérer la note suivante[END_REF]. Unfortunately, Sturm's detailed papers [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF][START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF] are written linearly, and contain very few tagged statements. Our second purpose is to provide an accessible proof of Theorems 1.4 and 2.15, meeting today standards of rigor. We in particular state precise assumptions, clarify some technical points, and provide some alternative proofs. We otherwise closely follow the original proofs, and we provide precise cross-references to Sturm's papers.

In this paper, we make the following strong assumptions.

(1.6) By our assumption L > 0, the eigenvalues are positive, ρ j > 0. Under the Assumptions (1.6), the functions V j are C ∞ on ]α 0 , β 0 [ . This follows from Cauchy's existence and uniqueness theorem, or from Liouville's existence proof [START_REF] Liouville | Mémoire sur le développement de fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable[END_REF]. Note that the assumption L > 0 is convenient, but not necessary. It actually suffices that L G be bounded from below.

       [α, β] ⊂]α 0 , β 0 [ , K, G, L ∈ C ∞ (]α 0 , β 0 [) , K, G, L > 0 on ]α 0 , β 0 [ . Remark 1.
In this section, we fix

(2.1) Y = n j=m A j V j ,
a linear combination of eigenfunctions of the eigenvalue problem (1.1)-(1.3), where 1 ≤ m ≤ n , and where the A j are real constants.

Remark 2.1. We shall always assume that Y ≡ 0 , which is equivalent to assuming that n m A 2 j = 0 . As far as the statement of Theorem 1.4 is concerned, and without loss of generality, it is simpler to assume that A m A n = 0 .

We also introduce the associated family of functions, {Y k , k ∈ Z}, where

(2.2) Y k = (-1) k n j=m ρ k j A j V j .
Note 

(2.6) G Y k+1 = K d 2 Y k dx 2 + dK dx dY k dx -L Y k .
(3) Under the Assumptions (1.6), the function Y k cannot vanish at infinite order at a point ξ ∈ [α, β], unless Y ≡ 0 .

Proof. [40, p. 437] Assertions (1) and (2) are clear by linearity. For Assertion (3), assume that Y k ≡ 0 , and that it vanishes at infinite order at some ξ. Then, according to (2.6) and its successive derivatives, the function Y k+1 also vanishes at infinite order at ξ, and so does Y ℓ for any ℓ ≥ k. Assume, as indicated in Remark 2.1, that A n = 0. Fixing some p ≥ 0, we can write, for any ℓ ≥ k, 

d p V n dx p (ξ) + n-1 j=m ρ j ρ n ℓ A j A n d p V j dx p (ξ) = 0 . Since ρ n > ρ j for m ≤ j ≤ n -1,
       U(x) = B ξ (x -ξ) p + (x -ξ) p+1 R ξ (x) , U 1 (x) = B 1,ξ (x -ξ) p-2 + (x -ξ) p-1 R 1,ξ (x) , with B ξ B 1,ξ > 0 .
Proof. [40, p. 439] Assume that ξ is a zero of order p ≥ 2 of U, so that 

U(ξ) = • • • = d p-1 U dx p-1 (ξ) =
U(x) = B ξ (x -ξ) p + (x -ξ) p+1 R ξ (x) ,
where

B ξ = 1 p! d p U dx p (ξ) = 0 . Equation (2.6) implies that (GU 1 )(x) = p(p -1)B ξ (x -ξ) p-2 K(x) + (x -ξ) p-1 S ξ (x) ,
for some smooth function S ξ . It follows that

U 1 (x) = B 1,ξ (x -ξ) p-2 + (x -ξ) p-1 R 1,ξ (x) , for some function R 1,ξ , with B 1,ξ = p(p -1) K(ξ)
G(ξ) B ξ . In particular, B 1,ξ B ξ > 0 and this proves the lemma. Lemma 2.5. Assume that (1.6) holds. Assume that h ∈ [0, ∞[ , i.e., that the boundary condition at α is not the Dirichlet boundary condition. Let U denote any Y k , U 1 = Y k+1 , and assume that U(α) = 0 . Then, α is a zero of U of even order, i.e., there exists n U ∈ N \ {0} such that d p U dx p (α) = 0 for 0 ≤ p ≤ 2n U -1 and = 0 for p = 2n U . When H ∈ [0, ∞[ , a similar statement holds at the boundary β.

Proof. [40, p. 440-441] Assume that U(α) = 0. By Lemma 2.2, U does not vanish at infinite order at α, so that there exists p ≥ 1 with

U(α) = • • • = d p-1 Y k dx p-1 (α) = 0 and d p U dx p (α) = 0 .
Taylor's formula with integral remainder term gives

U(x) = B α (x -α) p + (x -α) p+1 R α (x) , where B α = 1 p! d p U dx p (α) = 0 .
The boundary condition at α implies that dU dx (α) = 0, and hence that p ≥ 2. By Lemma 2.4, we can write From Lemma 2.2, we know that U cannot vanish at infinite order at a

U 1 (x) = B 1,α (x -α) p-2 + (x -α) p-1 R 1,α (x) , with B 1,α B α > 0 . If p = 2, then U 1 (α) = 0. If p > 2, one can continue. If p = 2q, one arrives at Y k+q (x) = B k+q,α + (x -α)R k+q,α (x) , with Y k+q (α) = B k+q,α and B k+q,α B k,α > 0 . If p = 2q + 1, one arrives at Y k+q (x) = B k+q,α (x -α) + (x -α) 2 R k+q,α (x) , with B k+qα B k,α > 0 and
point ξ ∈ [α, β]. If ξ ∈]α, β[ and U(ξ) = 0 , we define the multiplicity m(U, ξ) of the zero ξ by (2.8) m(U, ξ) = min{p | d p U dx p (ξ) = 0} . From Lemma 2.5, we know that the multiplicity m(U, α) is even if h ∈ [0, ∞[, and that the multiplicity m(U, β) is even if H ∈ [0, ∞[ . We define the reduced multiplicity of α by (2.9) m(U, α) = 1 2 m(U, α) if h ∈ [0, ∞[ , 0 if h = ∞ ,
and a similar formula for the reduced multiplicity of β.

By Lemma 2.2, the function U has finitely many distinct zeros

ξ 1 (U) < ξ 2 (U) < • • • < ξ p (U) in the interval ]α, β[ . We define the number of zeros of U in ]α, β[ , counted with multiplicities, by (2.10) N m (U, ]α, β[) = p j=1 m(U, ξ i (U)) ,
and we use the notation N m (U) whenever the interval is clear.

We define the number of zeros of U in [α, β], counted with multiplicities, by

(2.11) N m (U, [α, β]) = p j=1 m(U, ξ i (U)) + m(U, α) + m(U, β) ,
and we use the notation N m (U) whenever the interval is clear.

We define the number of zeros of U in ]α, β[ (multiplicities not accounted for) by (2.12) N(U, ]α, β[) = p , and we use the notation N(U) whenever the interval is clear.

Finally, we define the number of sign changes of U in the interval ]α, β[ by

(2.13) N v (U, ]α, β[) = p j=1 1 2 1 -(-1) m(U,ξ j (U )) .
Remark 2.6. Note that sign changes of the function Y correspond to zeros with odd multiplicity.

Comparing the numbers of zeros of

Y k and Y k+1 . Assume that (1.6) holds. Let U be some Y k and U 1 = Y k+1 .
In this subsection, we show that the number of zeros of U 1 is not smaller than the number of zeros of U.

Lemma 2.7. Let ξ < η be two zeros of U in [α, β]. Then, there exists some a ξ,η ∈]ξ, η[ such that U(a ξ,η ) U 1 (a ξ,η ) < 0 .
Remark 2.8. We do not assume that ξ, η are consecutive zeros.

Proof. [40, p. 437] Since U cannot vanish identically in ]ξ, η[ (see Lemma 2.2), there exists some x 0 ∈]ξ, η[ such that U(x 0 ) = 0. Let ε 0 = sign(U(x 0 )). Then ε 0 U takes a positive value at x 0 , and hence

M := sup{ε 0 U(x) | x ∈ [ξ, η]
} is positive and achieved at some a ξ,η ∈ ]ξ, η[. Denote this point by a for short, then,

ε 0 U(a) > 0 , dU dx (a) = 0 and ε 0 d 2 U dx 2 (a) ≤ 0 . It follows from (2.6) that ε 0 U 1 (a) < 0 , or equivalently, that U(a)U 1 (a) < 0 . The lemma is proved. Lemma 2.9. Let ξ ∈]α, β]. Assume that U(ξ) = 0 , and that U does not change sign in ]α, ξ[. Then, there exists some a ξ ∈ [α, ξ[ such that U(a ξ )U 1 (a ξ ) < 0. Let η ∈ [α, β[. Assume that U(η) = 0, and that U does not change sign in ]η, β[. Then, there exists some b η ∈]η, β] such that U(b η )U 1 (b η ) < 0.
Proof. [40, p. 438

] Since U cannot vanish identically in ]α, ξ[ (see Lemma 2.2), there exists x 0 ∈]α, ξ[ such that U(x 0 ) = 0 . Let ε ξ = sign(U(x 0 )) . Since U does not change sign in ]α, ξ[ , ε ξ U(x) ≥ 0 in ]α, ξ[ . Then, M ξ := sup{ε ξ U(x) | x ∈ [α, ξ]} > 0 . Let a ξ := inf{x ∈ [α, ξ] | ε ξ U(x) = M ξ } . Then a ξ ∈ [α, ξ[. If a ξ ∈]α, ξ[, then ε ξ U(a ξ ) > 0 , dU dx (a ξ ) = 0 , and ε ξ d 2 U dx 2 (a ξ ) ≤ 0 . By (2.6), this implies that ε ξ U 1 (a ξ ) < 0. Equivalently, U(a ξ )U 1 (a ξ ) < 0. Claim 2.10. If a ξ = α , then ε ξ U(α) > 0 , h = 0 , dU dx (α) = 0 , and ε ξ d 2 U dx 2 (α) ≤ 0 . Proof of the claim. Assume that a ξ = α , then ε ξ U(α) > 0 , and hence h = ∞ . If h were in ]0, ∞[, we would have ε ξ dU dx (α) = hε ξ U(α) > 0 ,
and hence a ξ > α . It follows that the assumption a ξ = α implies that h = 0 and dU dx (α

) = 0. If ε ξ d 2 U dx 2 (α)
where positive, we would have a ξ > α. Therefore, the assumption a ξ = α also implies that

ε ξ d 2 U dx 2 (α) ≤ 0 . The claim is proved.
If a ξ = α, then by Claim 2.10 and (2.6), we have ε ξ U 1 (α) < 0. Equivalently, U(α)U 1 (α) < 0. The first assertion of the lemma is proved. The proof of the second assertion is similar.

Proposition 2.11. Assume that (1.6) holds, and let k ∈ Z. Then, (2. [START_REF] Galaktionov | Sturm's theorems on zero sets in nonlinear parabolic equations[END_REF]) 

N v (Y k+1 , ]α, β[) ≥ N v (Y k , ]α, β[) , i.e.,
∈]ξ, β] such that U 1 (a) < 0 and U 1 (b) > 0 .
It follows that the function U 1 vanishes and changes sign at least once in ]α, β[ , so that 

N v (U 1 ) ≥ 1 = N v (U),
d 2 U dx 2 (c) ≥ 0 . Equation(2.6) then implies that U 1 (c) > 0 .
We can conclude that the function U 1 vanishes and changes sign at least twice in ]α, β[, so that

N v (U 1 ) ≥ 2 = N v (U). Case 4. Assume that N v (U) = p ≥ 3 . Then, U has exactly p zeros, with odd multiplicities, in ]α, β[ , α < ξ 1 < ξ 2 < • • • < ξ p < β ,

and one can assume that

U| ]α,ξ 1 [ ≥ 0 , (-1) p U| ]ξp,β[ ≥ 0 , and (-1) i U| ]ξ i ,ξ i+1 [ ≥ 0 for 1 ≤ i ≤ p -1 .
One can repeat the arguments given in the Cases 2 and 3, and conclude that there exist a 0 , . . . , a p with

a 0 ∈ [α, ξ 1 [ , a i ∈]ξ i , ξ i+1 [ for 1 ≤ i ≤ p -1, and a p ∈]ξ p , β] such that (-1) i U 1 (a i ) < 0 .
We can then conclude that the function U 1 vanishes and changes sign at least

p times in ]α, β[ , i.e. that N v (U 1 ) ≥ p = N v (U) .
This concludes the proof of Proposition 2.11.

Proposition 2.12. Assume that (1.6) holds. For any k ∈ Z, 

(2.15) N m (Y k+1 , ]α, β[) ≥ N m (Y k , ]α, β[) , i.e.,
in ]α, β[ . Let α < ξ 1 < • • • < ξ k < β be the distinct zeros of U, with multiplicities p i = m(U, ξ i ) for 1 ≤ i ≤ k . Let σ 0 be the sign of U in ]α, ξ 1 [ , σ i the sign of U in ]ξ i , ξ i+1 [ for 1 ≤ i ≤ k -1 , and σ k the sign of U in ]ξ k , β[ . Note that σ i = sign d p i U dx p i (ξ i ) for 1 ≤ i ≤ k .
By Lemma 2.9, there exist

a 0 ∈ [α, ξ 1 [ and a k ∈]ξ k , β] such that U(a 0 )U 1 (a 0 ) < 0 and U(a k )U 1 (a k ) < 0 . By Lemma 2.7, there ex- ists a i ∈]ξ i , ξ i+1 [ , 1 ≤ i ≤ k -1 , such that U(a i )U 1 (a i ) < 0 .
Summarizing, we have obtained:

(2.16) For 0 ≤ i ≤ k , U(a i ) U 1 (a i ) < 0 .
We have the relation

(2.17) N m (U, ]α, β[) = k i=1 N m (U, ]a i-1 , a i [) = k i=1 p i . Indeed, for 1 ≤ i ≤ k, the interval ]a i-1 , a i [ contains precisely one zero ξ i of U, with multiplicity p i .
For U 1 , we have the inequality

(2.18) N m (U 1 , ]α, β[) ≥ k i=1 N m (U 1 , ]a i-1 , a i [) , because U 1 might have zeros in the interval ]α, a 0 [ if a 0 > α (resp. in the interval ]a k , β[ if a k < β). Claim 2.13. For 1 ≤ i ≤ k, N m (U 1 , ]a i-1 , a i [) ≥ N m (U, ]a i-1 , a i [) = p i .
To prove the claim, we consider several cases.

• If p i = 1 , then U(a i-1 ) U(a i ) < 0 and, by (2.16), U 1 (a i-1 )U 1 (a i ) < 0 , so that N m (U 1 , ]a i-1 , a i [) ≥ 1 .
• If p i ≥ 2, we apply Lemma (2.4) at ξ i : there exist real numbers B, B 1 and smooth functions R and R 1 , such that, in a neighborhood of ξ i , (2. [START_REF] Hurwitz | Über die Fourierschen Konstanten integrierbaren Funktionen[END_REF])

U(x) = B(x -ξ i ) p i + (x -ξ i ) p i +1 R(x) , U 1 (x) = B 1 (x -ξ i ) p i -2 + (x -ξ i ) p i -1 R 1 (x)
, where sign(B) = sign(B 1 ) = σ i . We now use (2. [START_REF] Gilain | Cauchy et le cours d'analyse de l'École polytechnique[END_REF]) and the fact that sign(U(a [START_REF] Hurwitz | Über die Fourierschen Konstanten integrierbaren Funktionen[END_REF]), for ε small enough, we also have

i )) = σ i . ⋄ If p i ≥ 2 is odd, then σ i-1 σ i = -1 . It follows that σ i U 1 (a i ) < 0 and σ i U 1 (a i-1 ) > 0 . By (2.
σ i U 1 (ξ i + ε) > 0 and σ i U 1 (ξ i -ε) < 0 .
This means that U 1 vanishes at order p i -2 at ξ i , and at least once in the intervals ]a i-1 , ξ i -ε [ and ] [START_REF] Hurwitz | Über die Fourierschen Konstanten integrierbaren Funktionen[END_REF]), for ε small enough, we also have

ξ i + ε, a i [, so that N m (U 1 , ]a i-1 , a i [) ≥ p i -2 + 2 = p i = N m (U, ]a i-1 , a i [) . ⋄ If p i ≥ 2 is even, then σ i-1 σ i = 1 . It follows that σ i U 1 (a i ) < 0 and σ i U 1 (a i-1 ) < 0 . By (2.
σ i U 1 (ξ i + ε) > 0 and σ i U 1 (ξ i -ε) > 0 .
This means that U 1 vanishes at order p i -2 at ξ i , and at least once in the intervals ]a i-1 , ξ i -ε [ and ]

ξ i + ε, a i [ , so that N m (U 1 , ]a i-1 , a i [) ≥ p i -2 + 2 = p i = N m (U, ]a i-1 , a i [) .
The claim is proved, and the proposition as well.

Proposition 2.14. Assume that (1.6) holds. For any k ∈ Z, (2.20)

N m (Y k+1 , [α, β]) ≥ N m (Y k , [α, β]) ,
i.e., in the interval [α, β], counting multiplicities of interior zeros, and reduced multiplicities of α and β, the function Y k+1 vanishes at least as many times as the function Y k .

Proof. [40, p. 440-442] Recall that the reduced multiplicity of α (resp. β) is zero if the Dirichlet condition holds at α (resp. at β) or if U(α) = 0 (resp. U(β) = 0). Furthermore, according to Lemma 2.5,

if h ∈ [0, ∞[ and U(α) = 0 (resp. if H ∈ [0, ∞[ and U(β) = 0), then m(U, α) = 2p (resp. m(U, β) = 2q).
Case 1. Assume that N m (U, ]α, β[) = 0 . Without loss of generality, we may assume that U > 0 in ]α, β[ .

• If U(α) = 0 and U(β) = 0, there is nothing to prove. 

• Assume that U(α) = U(β) = 0 . Then, there exists a ∈]α, β[ such that U(a) = sup{U(x) | x ∈ [α, β]} , with U(a) > 0 , dU dx (a) = 0 , and d 2 U dx 2 (a) ≤ 0 . It follows from (2.6) that U 1 (a) < 0 , and that (2.21) N m (U 1 , [α, β]) = N(U 1 , [α, a]) + N (U 1 , [a, β]) . It now
U(x) = B(x -α) 2p + (x -α) 2p+1 R(x) , U 1 (x) = B 1 (x -α) 2p-2 + (x -α) 2p-1 R 1 (x) , with B > 0 and B 1 > 0 .
It follows that U 1 (α + ε) > 0 for any positive ε small enough so that

N m (U 1 , ]α, a[) ≥ 1. It follows that (2.23) N m (U 1 , [α, a]) = m(U 1 , α) + N m (U 1 , ]α, a[) ≥ p -1 + 1 , i.e. N m (U 1 , [α, a]) ≥ N(U, [α, a]) . ⋄ Interval [a, β].
The proof is similar.

• Assume that U(α) = 0 and U(β) = 0 . The proof is similar to the previous one with a ∈]a, β] .

• Assume that U(α) = 0 and U(β) = 0 . The proof is similar to the previous one with a ∈ [α, a[ .

Case 2. Assume that N m (U, ]α, β[) ≥ 1 .
• If U(α) = 0 (resp. U(β) = 0), there is nothing to prove for the boundary α (resp. β). 

• If U(α) = 0 (resp. U(β) = 0),
k , β]) to prove that N m (U 1 , [α, a 0 ]) ≥ N m (U, [α, a 0 ]) (resp. to prove that N m (U 1 , [a k , β]) ≥ N m (U, [a k , β]).
N v (Y, ]α, β[) ≤ N m (Y, ]α, β[) ≤ N m (Y, [α, β]) , (2.26) (m -1) ≤ N v (Y, ]α, β[) and N m (Y, [α, β]) ≤ (n -1) .
Proof. [40, p. 442] Let N(V ) be any of the above functions. We may of course assume that A m = 0 and A n = 0. In the preceding lemmas, we have proved that N(Y k+1 ) ≥ N(Y k ) for any k ∈ Z. This inequality can also be rewritten as

(2.27) N(Y (-k) ) ≤ N(Y ) ≤ N(Y k ) for any k ≥ 1 .
Letting k tend to infinity, we conclude that (2.28)

N(V m ) ≤ N(Y ) ≤ N(V n ) ,
and we can apply Theorem 1.3.

Remark. For a complete proof of the limiting argument when k tends to infinity, we refer to Appendix A.

3. Liouville's approach to Theorem 1.4

3.1. Main statement. We keep the notation of Section 2. Starting from a linear combination Y as in (2.1), Liouville also considers the family Y k given by (2.2), and shows that the number of zeros of Y k+1 is not smaller than the number of zeros of Y k . His proof is based on a generalization of Rolle's theorem.

Remark 3.1. In his proof, Liouville [START_REF] Liouville | Démonstration d'un théorème dû à M. Sturm et relatif à une classe de fonctions transcendantes[END_REF] only considers the zeros in the open interval ]α, β[ . As in Section 2, for 1 ≤ m ≤ n, we fix Y = n j=m A j V j , a linear combination of eigenfunctions of the eigenvalue problem (1.1)-(1.3), and we assume that A m A n = 0 , see Remark 2.1.

Theorem 3.2. Counting zeros with multiplicities in the interval ]α, β[ , the function Y (1) has at most (n-1) zeros and, (2) has at least (m-1) zeros.

Proof. Liouville uses the following version of Rolle's theorem (Michel Rolle (1652-1719) was a French mathematician). This version of Rolle's theorem seems to go back to Cauchy and Lagrange. Proof of the lemma. Call Call m j the multiplicity of the zero x j , 1 ≤ j ≤ ν -1 . Then f ′ has at least ν zeros, one in each of the open intervals determined by x ′ , x ′′ and the x j 's, and has a zero at each x j with multiplicity m j -1 , provided that m j > 1. It follows that the number of zeros of f ′ in ]x ′ , x ′′ [ , counting multiplicities, is at least

Lemma 3.3. Let f be a function in ]α 0 , β 0 [ . Assume that f (x ′ ) = f (x ′′ ) = 0 for some x ′ , x ′′ , α 0 < x ′ < x ′′ < β 0 . (1)
x 1 < x 2 < • • • x ν-1 the distinct zeros of f in ]x ′ , x ′′ [ . Since f (x ′ ) = f (x ′′ ) = 0 ,
ν-1 j=1 (m j -1) + ν = ν-1 j=1 m j + 1 ,
which proves the second assertion.

Proof of the assertion "Y has at most (n -1) zeros in ]α, β[, counting multiplicities".

Write (1.1) for V 1 and for V p , for some m ≤ p ≤ n. Multiply the first equation by -V p , the second by V 1 , and add the resulting equations. Then

(3.1) V 1 d dx K dV p dx -V p d dx K dV 1 dx + (ρ p -ρ 1 )GV 1 V p = 0 .
Use the identity

(3.2) V 1 d dx K dV p dx -V p d dx K dV 1 dx = d dx V 1 K dV p dx -V p K dV 1 dx ,
and integrate from α to t to get the identity

(3.3) (ρ 1 -ρ p ) t α GV 1 V p dx = K(t) V 1 (t) dV p dx (t) -V p (t) dV 1 dx (t) .
Here we have used the boundary condition (1.2) which implies that

V 1 (α) dV p dx (α) -V p (α) dV 1 dx (α) = 0 .
Multiplying the identity (3.3) by A p , and summing for p from m to n, we obtain

(3.4) t α GV 1 n p=m (ρ 1 -ρ p )A p V p dx = K(t) V 1 dY dx -Y dV 1 dx (t) . or (3.5) t α GV 1 n p=m (ρ 1 -ρ p )A p V p dx = K(t) V 2 1 (t) d dt Y V 1 (t) ,
where we have used the fact that the function

V 1 does not vanish in the interval ]α, β[ . Let Ψ(x) = Y V 1 (x)
. The zeros of Y in ]α, β[ are the same as the zeros of Ψ, with the same multiplicities. Let µ be the number of zeros of Y , counted with multiplicities. Using Lemma 3.3, Assertion (2), one can show that dΨ dx has at least µ -1 zeros in ]α, β[ , and hence so does the left-hand side of (3.5),

t α GV 1 n p=m (ρ 1 -ρ p )A p V p dx .
On the other hand, this function vanishes at α and β (because of the boundary condition (1.3) or orthogonality). By Lemma 3.3, its derivative, 

(3.6) V 1 n p=m (ρ 1 -ρ p )A p V
Y k = n p=m (ρ 1 -ρ p ) k A p V p
has at least µ zeros, counted with multiplicities, in ]α, β[ . We may of course assume that the coefficient A n is non-zero. The above assertion can be rewritten as the statement:

For all k ≥ 0 , the equation

(3.8) A m ρ m -ρ 1 ρ n -ρ 1 k V m + • • • + A n-1 ρ n-1 -ρ 1 ρ n -ρ 1 k V n-1 + A n V n = 0 has at least µ solutions in ]α, β[, counting multiplicities.
Letting k tend to infinity, and using the fact that V n has exactly (n-1) zeros in ]α, β[ , this implies that µ ≤ (n -1). This proves the first assertion.

Proof of the assertion "Y has at least (m -1) zeros in ]α, β[, counting multiplicities".

We have seen that the number of zeros of Y k is less than or equal to the number of zeros of the function Y k+1 . This assertion actually holds for any k ∈ Z, and can also be rewritten as,

(3.9) N m (Y -k ) ≤ N m (Y ) ,
for any k ≥ 0, where

(3.10) Y -k = A m (ρ m -ρ 1 ) -k V m + • • • + A n (ρ n -ρ 1 ) -k V n ,
and we can again let k tend to infinity. The second assertion is proved and Theorem 3.2 as well. where the function ∆ is defined as the determinant

(3.12) V 1 (a 1 ) V 1 (a 2 ) • • • V 1 (a µ ) V 1 (x) V 2 (a 1 ) V 2 (a 2 ) • • • V 2 (a µ ) V 2 (x) . . . . . . . . . . . . . . . V µ+1 (a 1 ) V µ+1 (a 2 ) • • • V µ+1 (a µ ) V µ+1 (x)
.

The function W vanishes at the points a i , [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF][START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF] are written in French, and quite long, about 80 pages each. One difficulty in reading them is the lack of layout structure. The papers are written linearly, and divided into sequences of sections, without any title. Most results are stated without tags, "Theorem" and the like, and only appear in the body of the text. For example, [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF] only contains one theorem stated as such, see § XII, p. 125. In order to have an overview of the results contained in [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF], the reader should look at the announcement [37]. Theorem 1.4 is stated in [START_REF] Sturm | Monsieur Sturm nous prie d'insérer la note suivante[END_REF].

1 ≤ i ≤ µ .
For a more thorough analysis of Sturm's papers on differential equations, we refer to [START_REF] Lützen | Charles François Sturm and differential equations[END_REF][START_REF] Galaktionov | Sturm's theorems on zero sets in nonlinear parabolic equations[END_REF]. We refer to [START_REF] Bôcher | The published and unpublished work of Charles Sturm on algebraic and differential equations[END_REF]33] for the relationships between Theorem 

   K(α) ∂u ∂x (α, t) -h u(α, t) = 0 , K(β) ∂u ∂x (β, t) + H u(β, t) = 0 ,
for all t > 0, and with the initial condition

(4.3) u(x, 0) = f (x) , for x ∈]α, β[ , where f is a given function.
The functions K, G, L and the constants h, H describe the physical properties of the bar, see [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF]Introduction,p. 376]. Sturm refers to the book of Siméon Denis Poisson [START_REF] Poisson | Théorie mathématique de la chaleur[END_REF], rather than to Fourier's book [13], because Poisson's equations are more general, see [33,Chap. III].

The boundary conditions (1.2)-(1.3) and (4.2) first appeared in the work of Fourier [13] but are called "Robin's condition" in the recent literature. Victor Gustave Robin (1855-1897) was a French mathematician.

As was popularized by Fourier and Poisson, in order to solve (4.1), Sturm uses the method of separation of variables, and is therefore led to the eigenvalue problem (1.1)-(1.3).

Sturm's assumptions.

In [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF][START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF], Sturm implicitly assumes that the functions K, G, L are C ∞ and, explicitly, that K is positive, see [39, p. 108]. For the eigenvalue problem, he also assumes that G, L are positive, see [40, p. 381]. In [40, p. 394], he mentions that L could take negative values, and implicitly assumes, in this case, that L G is bounded from below.

In [START_REF] Liouville | Démonstration d'un théorème dû à M. Sturm et relatif à une classe de fonctions transcendantes[END_REF], Liouville does not mention any regularity assumption on the functions G, K, L. He however indicates a regularity assumption (piecewise C 2 functions) in a previous paper, [23, Footnote ( * ), p. 256]. 4.4. Sturm's originality. Before explaining Sturm's proofs, we would like to insist on the originality of his approach. Indeed, unlike his predecessors, Sturm does not look for explicit solutions of the differential equation (4.4) (i.e., solutions in closed form, or given as sums of series or as integrals), but he rather looks for qualitative properties of the solutions, properties which can be deduced directly from the differential equation itself. The following excerpts are translated from [39, Introduction]1 .

One only knows how to integrate these equations in a very small number of particular cases, and one can otherwise not even obtain a first integral; even when one knows the expression of the function which satisfies such an equation, in finite form, as a series, as integrals either definite or indefinite, it is most generally difficult to recognize in this expression the behaviour and the characteristic properties of this function. . . . Although it is important to be able to determine the value of the unknown function for an isolated value of the variable it depends upon, it

is not less necessary to discuss the behaviour of this function, or otherwise stated, the form and the twists and turns of the curve whose ordinate would be the function, and the abscissa the independent variable. It turns out that one can achieve this goal by the sole consideration of the differential equation themselves, without having to integrate them. This is the purpose of the present memoir. . . . 

d dx K dV dx + GV = 0 , (I)
and takes the existence and uniqueness theorem for granted. More precisely, he claims [39, p. 108], without any reference whatsoever, The complete integral of equation (I) must contain two arbitrary constants, for which one can take the values of V and of dV dx corresponding to some particular value of x. Once these values are fixed, the function V is fully determined by equation (I), it has a uniquely determined value for each value of x. On the other hand, he gives two arguments for the fact that a solution of (I) and its derivative cannot vanish simultaneously at a point without vanishing identically, see [39, § II]. When the coefficients K, G of the differential equation depend upon a parameter m, e.g. continuously, Sturm also takes for granted the fact that the solution V (x, m), and its zeros, depend continuously on m.

In [40, § II], Sturm mentions the existence proof given by Liouville in [START_REF] Liouville | Mémoire sur le développement de fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable[END_REF], see also [START_REF] Liouville | Analyse appliquée. Mémoire sur la théorie analytique de la chaleur[END_REF]. According to [START_REF] Gilain | Cauchy et le cours d'analyse de l'École polytechnique[END_REF], Augustin-Louis Cauchy may have presented the existence and uniqueness theorem for ordinary differential equations in his course at École polytechnique as early as in the year 1817-1818. Following a recommendation of the administration of the school, Cauchy delivered the notes of his lectures in 1824, see [START_REF] Cauchy | Équations différentielles ordinaires. Cours inédit (Fragment). Critical edition by Christian Gilain[END_REF] and, in particular, the introduction by Christian Gilain who discovered these notes in 1974. These notes apparently had a limited distribution. Liouville entered the École polytechnique in 1825, and there attended the mathematics course given by Ampère2 (as a matter of fact Ampère and Cauchy gave the course every other year, alternatively). Liouville's proof of the existence theorem for differential equations in [START_REF] Liouville | Analyse appliquée. Mémoire sur la théorie analytique de la chaleur[END_REF], à la Picard but before Picard, though limited to the particular case of 2nd order linear equations, might be the first well circulated proof of an existence theorem for differential equations, see [25, § 34]. Cauchy's theorem was later popularized in the second volume of Moigno's book, published in 1844, see [START_REF] Moigno | Leçons de calcul différentiel et de calcul intégral, rédigées principalement d'après les méthodes et les ouvrages de M. A.-L. Cauchy, et étendues aux travaux les plus récents des géomètres[END_REF], "Vingt-sixième Leçon" § 159, pp. 385-396. 4.6. Sturm's proof of Theorem 1.3. Theorem 1.3 is proved in [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF]. For the first assertion, see § III (p. 384) to VII; for the second assertion, see § VIII (p. 396) to X.

The proof is based on the paper [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF] in which Sturm studies the zeros of the solution of the initial value problem,

d dx K(x, m) dV dx (x, m) + G(x, m)V (x, m) = 0 , (4.4) K dV dx -hV (α, m) = 0 . (4.5)
Here K, G are assumed to be functions of x depending on a real parameter m, with K positive (the constants h and H may also depend on the parameter m). The solution V (x, m) is well defined up to a scaling factor. The main part of [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF] The eigenvalue problem (1.1)-( 1.3) itself is studied in [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF]. For this purpose, Sturm considers the functions K(x, r) ≡ K(x) and G(x, r) = rG(x) -L(x) , the solution V (x, r) of the corresponding initial value problem (4.4)-(4.5), and applies the results and methods of [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF]. Sturm's general motivation, see the introductions to [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF] and [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF], was the investigation of heat diffusion in a (non-homogeneous) bar, whose physical properties are described by the functions K, G, L. He first obtained Theorem 1.4 as a corollary of a much deeper theorem which describes the behaviour, as time varies, of the x-zeros of a solution u(x, t) of the heat equation (4.1)-(4.3). When the initial temperature u(x, 0) is given by a linear combination of simple states,

(4.7) u(x, 0) = Y (x) = n j=m A j V j the function u(x, t) is given by (4.8) u(x, t) = n j=m e -tρ j A j V j .
When t tends to infinity, the x-zeros of u(x, t) approach those of V p , where p is the least integer j, m ≤ j ≤ n such that A j = 0.

J. Liouville, who was aware of Theorem 1.4, made use of it in [START_REF] Liouville | Mémoire sur le développement de fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable[END_REF], and provided a purely "ordinary differential equation" proof in [START_REF] Liouville | Démonstration d'un théorème dû à M. Sturm et relatif à une classe de fonctions transcendantes[END_REF], a few months before the actual publication of [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF]. This induced Sturm to provide two proofs of Theorem 1.4 in [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF], his initial proof using the heat equation, and another proof based on the sole ordinary differential equation. 

Y k (x) = j=m ρ k j A j V j ,
as k tends to infinity.

Appendix A. The limiting argument in (3.8)

Recall that we assume that A n = 0. Define

(A.1) ω = ρ n-1 -ρ 1 ρ n -ρ 1 k .
One can rewrite (3.8) as

V n (x) + ω Π(x) = 0 , where (A.2) Π(x) = n-1 p=m ρ p -ρ 1 ρ n-1 -ρ 1 k A p A n V p .
It follows that Π is uniformly bounded by

(A.3) |Π(x)| ≤ M := n max p A p A n max p sup [α,β] |V p | . Similarly, (A.4) dΠ dx (x) ≤ N := n max p A p A n max p sup [α,β] | dV p dx | . Call ξ 1 < ξ 2 < • • • < ξ n-1 the zeros of the function V n in the interval ]α, β[. • Assume that V n (α) = 0 and V n (β) = 0 . Since dVn dx (ξ i ) = 0 , there exist δ 1 , ε 1 > 0 such that | dVn dx (x)| ≥ ε 1 for x ∈ [ξ i -δ 1 , ξ i + δ 1 ] , and |V n (x)| ≥ ε 1 in [α, β] \ ∪ ]ξ i -δ 1 , ξ i + δ 1 [ . For k large enough, we have ωM, ωN ≤ ε 1 /2. It follows that in the interval [ξ i -δ 1 , ξ i + δ 1 ] , d dx (V n + ω Π) ≥ | dV n dx | -ω N ≥ ε 1 /2 . Furthermore, V n (ξ i ± δ 1 ) + ω Π(ξ i ± δ 1 ) ≥ |V n (ξ i ± δ 1 )| -ω M ≥ ε 1 /2 . Since V n (ξ i + δ 1 )V n (ξ i -δ 1 ) < 0 , we can conclude that the function V n + ω Π has exactly one zero in each interval ]ξ i -δ 1 , ξ i + δ 1 [ . In [α, β] \ ∪ ]ξ i -δ 1 , ξ i + δ 1 [ , we have |V n (x) + ω Π(x)| ≥ |V n (x)| -ωM ≥ ε 1 /2 , which implies that V n (x) + ω Π(x) = 0 .
• Assume that V n (α) = 0 and V n (β) = 0 . This corresponds to the case h = +∞ and H = +∞. Hence the V j verify Dirichlet at α and Π verifies Dirichlet at α. Observing that V ′ n (α) = 0, it is immediate to see that there exists δ 1 > 0, such that, for k large enough, V n (x) + ω Π(x) has only α as zero in [α, α + δ 1 ].

• The other cases are treated in the same way.

Appendix B. Citations from Sturm's papers French original and English translation

Citation from [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF]Introduction]. On ne sait [ces équations] les intégrer que dans un très petit nombre de cas particuliers hors desquels on ne peut pas même en obtenir une intégrale première ; et lors même qu'on possède l'expression de la fonction qui vérifie une telle équation, soit sous forme finie, soit en série, soit en intégrales définies ou indéfinies, il est le plus souvent difficile de reconnaître dans cette expression la marche et les propriétés caractéristiques de cette fonction. . . . S'il importe de pouvoir déterminer la valeur de la fonction inconnue pour une valeur isolée quelconque de la variable dont elle dépend, il n'est pas moins nécessaire de discuter la marche de cette fonction, ou en d'autres termes, d'examiner la forme et les sinuosités de la courbe dont cette fonction serait l'ordonnée variable, en prenant pour abscisse la variable indépendante. Or on peut arriver à ce but par la seule considération des équations différentielles elles-mêmes, sans qu'on ait besoin de leur intégration. Tel est l'objet du présent mémoire. . . . One only knows how to integrate these equations in a very small number of particular cases, and one can otherwise not even obtain a first integral; even when one knows the expression of the function which satisfies such an equation, in finite form, as a series, as integrals either definite or indefinite, it is most generally difficult to recognize in this expression the behaviour and the characteristic properties of this function. . . . Although it is important to be able to determine the value of the unknown function for an isolated value of the variable it depends upon, it is not less necessary to discuss the behaviour of this function, or otherwise stated, the form and the twists and turns of the curve whose ordinate would be the function, and the abscissa the independent variable. It turns out that one can achieve this goal by the sole consideration of the differential equation themselves, without having to integrate them. This is the purpose of the present memoir. . . . [39, p. 108]. L'intégrale complète de l'équation (I) doit contenir deux constantes arbitraires, pour lesquelles on peut prendre les valeurs de V et de dV dx correspondantes à une valeur particulière de x. Lorsque ces valeurs sont fixées, la fonction V est entièrement définie par l'équation (I), elle a une valeur déterminée et unique pour chaque valeur de x.

Citation from

The complete integral of equation (I) must contain two arbitrary constants, for which one can take the values of V and of dV dx corresponding to some particular value of x. Once these values are fixed, the function V is fully determined by equation (I), it has a uniquely determined value for each value of x.

Citation from [40, p. 379]. M. Liouville a démontré directement ce théorème, qui n'était pour moi qu'un corollaire du précédent, sans s'occuper du cas particulier où la fonction serait nulle à l'une des extrémités de la barre. J'en ai aussi trouvé après lui une autre démonstration directe que je donne dans ce mémoire. M. Liouville a fait usage du même théorème dans un très beau Mémoire qu'il a publié dans le numéro de juillet de son journal et qui a pour objet le développement d'une fonction arbitraire en une série composée de fonctions V que nous avons considérées. M. Liouville gave a direct proof of this theorem, which for me was a mere corollary of the preceding one, without taking care of the particular case in which the function vanishes at one of the extremities of the bar. I have also found, after him, another direct proof which I give in this memoir. M. Liouville made use of the same theorem in a very nice memoir which he published in the July issue of his journal, and which deals with the expansion of an arbitrary function into a series made of the functions V which we have considered.

p. 436 ℓ ↑ 13, Sturm mentions Liouville's proof [START_REF] Liouville | Démonstration d'un théorème dû à M. Sturm et relatif à une classe de fonctions transcendantes[END_REF]. M. Liouville a démontré directement le théorème du numéro précédent (dans le cahier d'août de son journal) sans employer la considération de la variable auxiliaire t qui entre dans la fonction u (42) dont j'ai fait usage. Il n'a pas tenu compte toutefois de la racine x ou X3 lorsqu'elle existe. Je vais donner ici une autre démonstration directe du même théorème, indépendante de celui du n • XXIV. He introduces the linear combination

Y = C i V i + C i+1 V i+1 + • • • + C p V p .
(43) and, p. 436 ℓ ↑ 1, its companion 

Y 1 = -(C i ρ i V i + C i+1 ρ i+1 V i+1 + • • • + C p ρ p V p
Y 1 = -(C i (ρ i + c)V i + C i+1 (ρ i+1 + c)V i+1 + • • • + C p (ρ p + c)V p ) ,
where c is a constant, he obtains 

  G -L)V = 0 , for x ∈]α, β[ , , L : [α, β] → R are positive functions , (1.4) h , H ∈ [0, ∞]are non negative constants, possibly infinite. (1.5) Remark 1.1. When h = ∞ (resp. H = ∞), the boundary condition should be understood as the Dirichlet boundary condition V (α) = 0 (resp. as the Dirichlet boundary condition V (β) = 0).

  a non trivial linear combination of eigenfunctions of the eigenvalue problem (1.1)-(1.3), with 1 ≤ m ≤ n, and {A j , m ≤ j ≤ n} real constants such that A 2 m + • • • + A 2 n = 0. Then, the function Y has at least (m -1), and at most (n -1) zeros in the open interval ]α, β[.

  dY k+q dx (α) = B k+q,α = 0 . On the other-hand, since Y k+q satisfies (1.2) and Y k+q (α) = 0 , we must have dY k+q dx (α) = 0 , because h > 0 . This yields a contradiction and proves that the case p = 2q + 1 cannot occur. The lemma is proved. 2.2. Counting zeros. Assume that (1.6) holds. Let U denote any Y k , and U 1 = Y k+1 . They satisfy the relation (2.6).

  which proves the lemma in Case 2. Case 3. If N v (U) = 2, the function U has exactly two zeros, having odd multiplicities, ξ and η in ]α, β[ , α < ξ < η < β , and we may assume that U| ]α,ξ[ ≥ 0 , U| ]ξ,η[ ≤ 0, and U| ]η,β[ ≥ 0. The arguments given in Case 2 imply that there exist a ∈ [α, ξ[ such that U 1 (a) < 0 and b ∈]η, β] such that U 1 (b) < 0 . In ]ξ, η[ the function U does not vanish identically and therefore achieves a global minimum at a point c such that U(c) < 0 , dU dx (c) = 0 , and

  suffices to look separately at the intervals [α, a] and [a, β] . ⋄ Interval [α, a]. If the Dirichlet condition holds at α, there is nothing to prove. If h ∈ [0, ∞[, m(U, α) = 2p ≥ 2 and, by Lemma 2.4, (2.22)

  the number a 0 (resp. a k ) which appears in the proof of Proposition 2.12 belongs to the open interval ]α, ξ 1 [ (resp. to the open interval ]ξ k , β[), where ξ 1 (resp. ξ k ) is the smallest (resp. largest) zero of U in ]α, β[. We can then apply the proof of Step. 1 to the interval [α, a 0 ] (resp. to the interval [a

3. 4 .

 4 Liouville's 2nd approach to the 2nd part of Theorem 3.2. If the function Y has µ 1 distinct zeros, and µ ≤ µ 1 sign changes, we call a i , α < a 1 < • • • < a µ < β, the points at which Y changes sign. Claim 3.5. The function Y changes sign at least (m -1) times in the interval ]α, β[ . Proof of the claim. Assume, by contradiction, that µ ≤ (m -2). Consider the function (3.11)x → W (x) := ∆(a 1 , . . . , a µ ; x) ,

4. 5 .

 5 Sturm and the existence and uniqueness theorem for ordinary differential equation. In [39, p. 108], Sturm considers the differential equation

  is devoted to studying how the zeros of the function V (x, m) (and other related functions) depend on the parameter m, see [39, § XII, p. 125]. While developing this program, Sturm proves the oscillation, separation and comparison theorems which nowadays bear his name, [39, § XV, XVI and XXXVII].

  The spectral data of the eigenvalue problem (1.1)-(1.3) are determined by the following transcendental equation in the spectral parameter r, (4.6) K(β) dV dx (β, r) + HV (β, r) = 0 , see, [40], §III, page 383, line 8 from bottom. 4.7. Sturm's two proofs of Theorem 1.4. Theorem 1.4 appears in [40, § XXV, p. 431], see also the announcement [38].

  p. 444 ℓ ↓ 3, Sturm explains what to do when no assumption is made on the sign of the function ℓ. Taking Y as above, and defining

•

  + ℓ)Y . It suffices to assume that the constant c is such that gc + ℓ > 0 and to follow the previous proof with this new definition of Y 1 . Lemma 3.3: Mentioned p. 272. No precise statement, no proof provided by Liouville. • Proof of first assertion. Lemma 3.4: p. 274. • Proof of second assertion: p. 276 and reference to [23]. Claim 3.5: We use the determinant ∆ to simplify Liouville's [23, Lemme 1 er , p. 259].

  published. Joseph Liouville summarizes Sturm's results in [23, § III, p. 257], and uses them to study the expansion of a given function f into a series of eigenfunctions of (1.1). 1877: Lord Rayleigh writes "a beautiful theorem has been discovered by Sturm" as he mentions Theorem 1.4 in [34, Section 142]. 1891: F. Pockels [30, pp. 68-73] gives a summary of Sturm's results, including Theorem 1.4, and mentions the different proofs provided by Sturm, Liouville and Rayleigh. On the basis of a note of Sturm in Férussac's Bulletin [36], Pockels (p. 71, lines 12-17

  that Y 0 is the original linear combination Y , and that Y k ≡ 0 if and only if Y ≡ 0 . The functions Y k and Y k+1 satisfy the differential relation

	2.1.2. For m ≤ p ≤ n, write the equations satisfied by the eigenfunc-
	tion V p ,				
	(2.3)	d dx	K	dV p dx	+ (ρ p G -L)V p = 0 ,
	(2.4)	K	dV p dx	-hV p (α) = 0 ,
	(2.5)	K	dV p dx	+ HV p (β) = 0 ,
	and multiply the p-th equation by ρ k p A p . Summing up from p = m to n, yields the following lemma.
	Lemma 2.2. Assume that (1.6) holds. Let k ∈ Z.
	(1) The function Y k satisfies the boundary conditions (1.2) and (1.3).
	(2)				
	Roughly speaking, Sturm's idea is to show that the number of zeros of
	Y k , in the interval ]α, β[, is non-decreasing with respect to k, and then to take the limit when k tends to infinity, see Subsection 2.3. Up to
	changing the constants A j , it suffices to compare the numbers of zeros of Y and Y 1 . For this purpose, Sturm compares the signs of Y and Y 1 near the zeros of Y (Lemma 2.4), and at the non-zero local extrema
	of Y (Lemmas 2.7 and 2.9). The main ingredient for this purpose is
	the differential relation (2.6). In the sequel, we indicate the pages in
	Sturm's papers corresponding to the different steps of the proof.

  This proves Proposition 2.14.We can now state Sturm's refined version of Theorem 1.4.

	Theorem 2.15. Assume that (1.6) holds, and let Y be the non trivial
	linear combination		
		n	
	(2.24)	Y =	A p V p ,
		p=m	
	where 1 ≤ m ≤ n, and where {A p , m ≤ p ≤ n} are real constants such that A 2 m + • • • + A 2 n ≡ 0 . Then, with the notation of Subsection 2.2,
	(2.25)		

  If the function f is differentiable, and has ν -1 distinct zeros in the interval ]x ′ , x ′′ [ , then the derivative f ′ has at least ν distinct zeros in ]x ′ , x ′′ [ . (2) If the function f is smooth, and has µ -1 zeros counted with multiplicities in the interval ]x ′ , x ′′ [ , then the derivative f ′ has at least µ zeros counted with multiplicities in ]x ′ , x ′′ [ .

  zeros counted with multiplicities in the interval ]α, β[ , then the functionY 1 = n p=m (ρ 1 -ρ p )A p V p has at least µ zeros, counted with multiplicities, in ]α, β[ .

	Applying this lemma iteratively, we deduce that if Y has at least µ
	zeros counted with multiplicities in ]α, β[ , then, for any k ≥ 1, the
	function
	(3.7)

p has at least µ zeros counted with multiplicities in ]α, β[ . We have proved the following Lemma 3.4. If the function Y = n p=m A p V p has at least µ

  because Y involves the functions V p with p ≥ m and W the functions V q with q ≤ µ + 1 ≤ m -1 . This gives a contradiction.Remark 3.7. The arguments in Subsection 3.2, using Assertion (1) of Lemma 3.3, instead of Assertion (2), yield an upper bound on the number of zeros of Y , multiplicities not accounted for. This estimate holds under weaker regularity assumptions, namely only assuming that the functions G, L are continuous, and that the function K is C 1 , see Appendix C, and compare with[START_REF] Gantmacher | Oscillation matrices and kernels and small vibrations of mechanical systems[END_REF], Chap. III.5.

			On the other
	hand, we have		
	(3.13)	β α	GY W dx = 0 ,
	Remark 3.6. Liouville does actually not use the determinant (3.12),
	but a similar approach, see [23, p. 259], Lemme 1 er . The determinant
	∆ appears in [34, Section 142]. The paper [6] is based on a careful
	analysis of this determinant.	
			According to
	the first part in Theorem 3.2, W being a linear combination of the
	first µ + 1 eigenfunctions, vanishes at most µ times in ]α, β[ , counting

multiplicities. This implies that each zero a i of W has order one, and that W does not have any other zero in ]α, β[ . It follows that the function Y W vanishes only at the points {a i }, 1 ≤ i ≤ µ, and that it does not change sign. We can assume that Y W ≥ 0 .

4. Mathematical context of

Sturm's papers. Sturm's motivations and ideas 4.1. On Sturm's style. Sturm's papers

  The proofs of Sturm actually give a more precise result. In[40, p. 379], Sturm writes, M. Liouville gave a direct proof of this theorem, which for me was a mere corollary of the preceding one, without taking care of the particular case in which the function vanishes at one of the extremities of the bar. I have also found, after him, another direct proof which I give in this memoir. M. Liouville made use of the same theorem in a very nice memoir which he published in the July issue of his journal, and which deals with the expansion of an arbitrary function into a series made of the functions V which we have considered.

	The time independent analog to studying the behaviour of the x-zeros
	of (4.8) is to study the behaviour of the zeros of the family of functions
	{Y k } k∈Z , where
	(4.9)

  ) .He also notes ℓ ↓ 5, that the function Y satisfies the boundary conditions (1.2)-(1.3). Sturm' idea Je vais prouver . . . , is to prove that the function Y 1 has at least as many zeros in ]α, β[, counted with multiplicities, as the function Y in the same circumstances.p. 437 ℓ ↑ 10, Sturm makes the implicit assumption that the zeros of Y are isolated. p. 439 ℓ ↓ 5, Sturm states that the number of sign changes of Y 1 in ]α, β[ is not smaller than the number of sign changes of Y . He then considers the zeros with multiplicities, and implicitly assumes that the function Y (assumed not to be identically zero) does not vanish at infinite order at some point. p. 440 ℓ ↑ 13, Sturm states that the number of zeros of Y 1 in ]α, β[, counted with multiplicities, is not smaller than the number of zeros of Y . He then examines (ℓ ↑ 6) the possible zeros of Y at α or β. p. 442 ℓ ↓ 7, Sturm states that the number of zeros of Y 1 in [α, β], counted with multiplicities (with a special rule for counting multiplicities at α, β), is not smaller than the number of zeros of Y . p. 442 ℓ ↓ 13, Sturm iterates the procedure (with Y k ), and uses a limiting argument to conclude that the number of zeros of Y in [α, β], counting multiplicities, is at most p -1.p. 443, Sturm proves the lower bound for the number of zeros and, (ℓ ↑ 6), compares the present proof with the heat equation proof, the functions Y k are equal to d k u dt k (x, 0). Finally, in a footnote, he mentions that Y cannot vanish identically unless all the coefficients C j are zero. He does not mention the fact that Y can actually not vanish at infinite order at any point.

	p. 437, Sturm establishes the differential relation	
	gY 1 = k	d 2 Y dx 2 +	dk dx	dY dx	-ℓY .	(44)

See Appendix B for the original citations in French.

We are grateful to J. Lützen for providing this information.

Respectively α and β with our notation.
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Appendix C. Sturm's results under weaker assumptions

We proved Theorems 2.15 and 3.2 under the Assumptions (1.6). In this section, we consider the weaker assumptions (C.1)

Under these assumptions, the functions V j are C 2 on ]α 0 , 0 [. This follows easily for example from Liouville's existence proof [START_REF] Liouville | Mémoire sur le développement de fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable[END_REF], and we have the following lemma, whose proof is analogous to the proof of Lemma 2.2 

(3) Under the Assumptions (C.1), the function

In Subsection 3. We can then deduce from this claim, as in Section 3, that a linear combination Y = n j=m A j V j has at most (n -1) distinct zeros (in particular it has finitely many zeros). Once this result is secured, we can define zeros at which Y changes sign (without using the multiplicity), and apply Sturm's lower bound argument to conclude that the function Y must change sign at least (m -1) times.

Appendix D. Sturm's original o.d.e proof

The first proof of Theorem 1.4 appears in [40, § XXV, p. 431], as a corollary of a more profound theorem ( § XXIV) which describes the behaviour, as t grows from 0 to infinity, of the zeros of x → u(x, t), where u is a solution of the heat (4.1)-(4.3).

Sturm proves that the number N(t) of zeros of the function x → u(x, t) is piecewise constant, non-increasing in t, and that jumps occur precisely for values of t such that u(x, t) and ∂u ∂t (x, t) have common zeros. We refer to [START_REF] Galaktionov | Sturm's theorems on zero sets in nonlinear parabolic equations[END_REF] for an analysis of this aspect of Sturm's paper [START_REF] Sturm | Mémoire sur une classe d'équations à différences partielles[END_REF]. Here are the pages in Liouville's paper [START_REF] Liouville | Démonstration d'un théorème dû à M. Sturm et relatif à une classe de fonctions transcendantes[END_REF].

• Theorem 3.2: p. 272.