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STURM’S THEOREM ON ZEROS OF LINEAR

COMBINATIONS OF EIGENFUNCTIONS

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. Motivated by recent questions about the extension of
Courant’s nodal domain theorem, we revisit a theorem published
by C. Sturm in 1836, which deals with zeros of linear combina-
tion of eigenfunctions of Sturm-Liouville problems. Although well
known in the nineteenth century, this theorem seems to have been
ignored or forgotten by some of the specialists in spectral the-
ory since the second half of the twentieth-century. Although not
specialists in History of Sciences, we have tried to replace these
theorems into the context of nineteenth century mathematics.

1. Introduction

In this paper, we are interested in the following one-dimensional eigen-
value problem, where r denotes the spectral parameter.

d

dx

(

K
dV

dx

)

+ (r G − L)V = 0 , for x ∈]α, β[ ,(1.1)

(

K
dV

dx
− hV

)

(α) = 0 ,(1.2)

(

K
dV

dx
+ HV

)

(β) = 0 .(1.3)

Here,

K, G, L : [α, β] → R are positive functions ,(1.4)

h , H ∈ [0, ∞] are non negative constants, possibly infinite.(1.5)

Remark 1.1. When h = ∞ (resp. H = ∞), the boundary condition
should be understood as the Dirichlet boundary condition V (α) = 0
(resp. as the Dirichlet boundary condition V (β) = 0).

Precise assumptions on K, G, L are given below.

Note that when K = G ≡ 1, (1.1)–(1.3) is an eigenvalue problem for
the classical operator −d2V

dx2 + LV .
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This eigenvalue problem, in the above generality (K, G, L functions of
x), was first studied by Charles Sturm in a Memoir presented to the
Paris Academy of sciences in September 1833, summarized in [33, 34],
and published in [35, 36].

Remark 1.2. In this paper, we have mainly retained the notation of [35],
except that we use [α, β] for the interval, instead of Sturm’s notation
[x, X]. We otherwise use today notation and vocabulary. Note that
in [36], Sturm uses lower case letters for the functions K, G, L. Sturm
uses the same notation as Joseph Fourier in [11].

As far as the eigenvalue problem (1.1)–(1.3) is concerned, Sturm’s re-
sults can be roughly summarized in the following theorems.

Theorem 1.3 (Sturm, 1836). Under the assumptions (1.4)–(1.5), the
eigenvalue problem (1.1)–(1.3) admits an increasing infinite sequence
{ρi, i ≥ 1} of positive simple eigenvalues, tending to infinity. Further-
more, the associated eigenfunctions Vi have the following remarkable
property: the function Vi vanishes, and changes sign, precisely (i − 1)
times in the open interval ]α, β[ .

Theorem 1.4 (Sturm, 1836). Let Y = AmVm + · · · + AnVn be a non
trivial linear combination of eigenfunctions of the eigenvalue problem
(1.1)–(1.3), with 1 ≤ m ≤ n, and {Aj , m ≤ j ≤ n} real constants such
that A2

m + · · · + A2
n 6= 0. Then, the function Y has at least (m − 1),

and at most (n − 1) zeros in the open interval ]α, β[.

The first theorem today appears in most textbooks on Sturm-Liouville
theory. Although well known in the nineteenth century, the second the-
orem seems to have been ignored or forgotten by some of the specialists
in spectral theory since the second half of the twentieth-century, as the
following chronology indicates.

1833: Sturm’s Memoir presented to the Paris Academy of sciences
in September, and [33, 34]

1836: Sturm’s papers [35, 36] published. The main results, The-
orems 1.3 and 1.4, are summarized by Joseph Liouville in [20,
§ III, p. 257].

1877: Lord Rayleigh writes “a beautiful theorem has been discov-
ered by Sturm” as he mentions Theorem 1.4 in [31, Section 142].

1891: F. Pockels [27, pp. 68-73] gives a summary of Sturm’s re-
sults, including Theorem 1.4, and mentions the different proofs
provided by Sturm, Liouville and Rayleigh. On the basis of a
note of Sturm in Férussac’s Bulletin [32], Pockels (p. 71, lines
12-17) also suggests that Sturm may have looked for a state-
ment in higher dimension as well, without success. Sturm in-
deed mentions studying an example with spherical symmetry in
3 dimensions (leading to an ordinary differential equation with
singularity), to which he may have applied Theorem 1.4.
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1903: Hurwitz [16] gives a lower bound for the number of zeros
of the sum of a trigonometric series with a spectral gap and
refers, somewhat inaccurately, to Sturm’s Theorems. This re-
sult, known as the Sturm-Hurwitz theorem, already appears in
a more general framework in Liouville’s paper [20].
See [10, § 2] for a generalization, and [25] for geometric appli-
cations.

1931: Courant and Hilbert [8, 9] extensively mention the Sturm-
Liouville problem. They do not refer to the original papers of
Sturm, but to Bôcher’s book [6] which does not include The-
orem 1.4. They state an extension of Courant’s nodal domain
theorem to linear combination of eigenfunctions, [8, footnote,
p. 394] and [9, footnote, p. 454], and refer to the dissertation of
H. Herrmann [15]. It turns out that neither Herrmann’s disser-
tation, nor his later papers, consider this extension of Courant’s
Theorem.

1956: Pleijel mentions Sturm’s Theorem 1.4, somewhat inaccu-
rately, in [26, p. 543 and 550].

1973: V. Arnold [1] points out that an extension of Courant’s the-
orem to linear combinations of eigenfunctions cannot be true in
general. Counterexamples were first given by O. Viro for the
3-sphere (with the canonical metric) [37] and, more recently in
the paper [4], see also [14].
It seems to us that Arnold was not aware of Theorem 1.4. In
[3], see also Supplementary problem 9 in [2, p. 327], he men-
tions a proof, suggested by I. Gelfand, of the upper bound in
Theorem 1.4. Gelfand’s idea is to “use fermions rather than
bosons”, and to apply Courant’s nodal domain theorem. How-
ever, Arnold concludes by writing [3, p. 30], “the arguments
above do not yet provide a proof ”. As far as we know, Gelfand’s
idea has so far not yielded any complete proof of Sturm’s re-
sult. It is interesting to note that Liouville’s and Rayleigh’s
proofs of the lower bound in Theorem 1.4 use an idea similar
to Gelfand’s, see the proof of Claim 3.5.

Remark 1.5. In [36], Theorem 1.4 first appears as a corollary to a
much deeper theorem [36, § XXIV], in which Sturm describes the time
evolution of the x-zeros of a solution u(x, t) of the heat equation. We
shall not consider this topic here, and we refer to [12, 23] for modern
formulations and a historical analysis.

Our interest in Theorem 1.4 arose from reading [17], and investigating
Courant’s nodal domain theorem and its extension to linear combina-
tion of eigenfunctions.

The main purpose of this paper is to popularize Sturm’s originality and
ideas, and to provide an accessible ordinary differential equation proof
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of Theorem 1.4, meeting today standards of rigor. More precisely, we
revisit Sturm’s original statement and proof, see Theorem 2.14 and
[36, § XXVI], as well as Liouville’s, see Theorems 3.2 and [21]. We also
clarify some technical points and provide alternative proofs.

We make the following strong assumptions.

(1.6)















[α, β] ⊂]α0, β0[ ,

K, G, L ∈ C∞(]α0, β0[) ,

K, G, L > 0 on ]α0, β0[ .

Remark 1.6. Neither Sturm nor Liouville make explicit regularity as-
sumptions, see Subsection 4.3 and Remark 3.7 for more details.

Organization of the paper. In Section 2, we prove Theorem 2.14,
Sturm’s refined version of Theorem 1.4, following the ideas of [36,
§ XXVI]. In Section 3, we prove Theorem 3.2, Liouville’s version of
Theorem 1.4, following [20, 21]. In Section 4, we describe the context
of Sturm’s papers and his ideas. Appendix A provides the detailed
proof of a technical argument. Appendix B provides the translations
into English of the citations in French.

Acknowledgements. The authors would like to thank N. Kuznetsov
and J. Lützen for their comments on an earlier version of this paper.

2. Sturm’s o.d.e. proof of Theorem 1.4

2.1. Preliminary lemmas and notation.

2.1.1. Recall that {(ρj , Vj), j ≥ 1} are the eigenvalues and eigenfunc-
tions of the eigenvalue problem (1.1)–(1.3).

By our assumption L > 0, the eigenvalues are positive, ρj > 0. Under
the Assumptions (1.6), the functions Vj are C∞ on ]α0, β0[ . This follows
from Cauchy’s existence and uniqueness theorem, or from Liouville’s
existence proof [20].

In this section, we fix

(2.1) Y =
n
∑

j=m

AjVj ,

a linear combination of eigenfunctions of the eigenvalue problem (1.1)–
(1.3), where 1 ≤ m ≤ n , and where the Aj are real constants.

Remark 2.1. We shall always assume that Y 6≡ 0 , which is equivalent
to assuming that

∑n
m A2

j 6= 0 . As far as the statement of Theorem 1.4
is concerned, the numbers which actually matter are

ne = sup{p | m ≤ p ≤ n such that Ap 6= 0} ,(2.2)

me = inf{p | m ≤ p ≤ n such that Ap 6= 0} .(2.3)

Without loss of generality, we may assume that Am An 6= 0 .
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We also introduce the associated family of functions, {Yk, k ∈ Z}, where

(2.4) Yk = (−1)k
n
∑

j=m

Aj ρk
j Vj .

Note that Y0 is the original linear combination Y , and that Yk ≡ 0 if
and only if Y ≡ 0 .

Roughly speaking, Sturm’s idea is to show that the number of zeros of
Yk, in the interval ]α, β[, is non-decreasing with respect to k, and then
to take the limit when k tends to infinity, see Subsection 2.3. Up to
changing the constants Aj , it suffices to compare the number of zeros
of Y and Y1. For this purpose, Sturm compares the signs of Y and Y1

near the zeros of Y (Lemma 2.4), and at the non-zero local extrema
of Y (Lemmas 2.6 and 2.8). The main ingredient for this purpose is
the differential relation (2.8). In the sequel, we indicate the pages in
Sturm’s papers corresponding to the different steps of the proof.

2.1.2. For m ≤ p ≤ n, write the equations satisfied by the eigenfunc-
tion Vp,

d

dx

(

K
dVp

dx

)

+ (ρp G − L)Vp = 0 ,(2.5)
(

K
dVp

dx
− hVp

)

(α) = 0 ,(2.6)
(

K
dVp

dx
+ HVp

)

(β) = 0 ,(2.7)

and multiply the p-th equation by Ap ρk
p . Summing up from p = m to

n, yields the following lemma.

Lemma 2.2. Assume that (1.6) holds. Let k ∈ Z.

(1) The function Yk satisfies the boundary conditions (1.2) and
(1.3).

(2) The functions Yk and Yk+1 satisfy the differential relation

(2.8) G Yk+1 = K
d2Yk

dx2
+

dK

dx

dYk

dx
− L Yk .

(3) Under the Assumptions (1.6), the function Yk cannot vanish at
infinite order at a point ξ ∈ [α, β], unless Y ≡ 0 .

Proof. [36, p. 437] Assertions (1) and (2) are clear by linearity.

For Assertion (3), assume that Yk 6≡ 0 , and that it vanishes at infinite
order at some ξ. Then, according to (2.8) and its successive derivatives,
the function Yk+1 also vanishes at infinite order at ξ, and so does Yℓ for
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any ℓ ≥ k. Assume, as indicated in Remark 2.1, that An 6= 0. Fixing
some p ≥ 0, we can write, for any ℓ ≥ k,

dpVn

dxp
(ξ) +

n−1
∑

j=m

Aj

An

(

ρj

ρn

)ℓ
dpVj

dxp
(ξ) = 0 .

Since ρn > ρj for m ≤ j ≤ n − 1, letting ℓ tend to infinity, we conclude
that dpVn

dxp (ξ) = 0. This would be true for all p, which is impossible by
Cauchy’s uniqueness theorem, or by Sturm’s argument [35, § II]. �

Remark 2.3. Assertion (3), and the fact that the zeros of Y are isolated,
with finite multiplicities, are implicit in [36].

Lemma 2.4. Assume that (1.6) holds. Let U denote any Yk, and
U1 = Yk+1. Let ξ ∈ [α, β] be a zero of U , of order p ≥ 2 . Then, there
exist constants Bξ and B1,ξ , and smooth functions Rξ and R1,ξ , such
that

(2.9)















U(x) = Bξ(x − ξ)p + (x − ξ)p+1Rξ(x) ,

U1(x) = B1,ξ(x − ξ)p−2 + (x − ξ)p−1R1,ξ(x) ,

with Bξ B1,ξ > 0 .

Proof. [36, p. 439] Assume that ξ is a zero of order p ≥ 2 of U , so
that

U(ξ) = · · · =
dp−1U

dxp−1
(ξ) = 0

and
dpU

dxp
(ξ) 6= 0 .

Taylor’s formula with integral remainder term, see Laplace [18], gives
the existence of some function Rξ such that

U(x) = Bξ(x − ξ)p + (x − ξ)p+1Rξ(x) ,

where

Bξ =
1
p!

dpU

dxp
(ξ) 6= 0 .

Equation (2.8) implies that

(GU1)(x) = p(p − 1)Bξ(x − ξ)p−2K(x) + (x − ξ)p−1Sξ(x) ,

for some smooth function Sξ. It follows that

U1(x) = B1,ξ(x − ξ)p−2 + (x − ξ)p−1R1,ξ(x) ,

for some function R1,ξ , with B1,ξ = p(p − 1)K(ξ)
G(ξ)

Bξ .
In particular, B1,ξ Bξ > 0 and this proves the lemma. �
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Lemma 2.5. Assume that (1.6) holds. Assume that h ∈ [0, ∞[ , i.e.,
that the boundary condition at α is not the Dirichlet boundary condi-
tion. Let U denote any Yk, U1 = Yk+1, and assume that U(α) = 0 .
Then, α is a zero of U of even order, i.e., there exists nU ∈ N \ {0}
such that dpU

dxp (α) = 0 for 0 ≤ p ≤ 2nU − 1 and 6= 0 for p = 2nU .

When H ∈ [0, ∞[ , a similar statement holds at the boundary β.

Proof. [36, p. 440-441] Assume that U(α) = 0. By Lemma 2.2, U
does not vanish at infinite order at α, so that there exists p ≥ 1 with

U(α) = · · · =
dp−1Yk

dxp−1
(α) = 0

and
dpU

dxp
(α) 6= 0 .

Taylor’s formula with integral remainder term gives

U(x) = Bα(x − α)p + (x − α)p+1Rα(x) ,

where Bα = 1
p!

dpU
dxp (α) 6= 0 .

The boundary condition at α implies that dU
dx

(α) = 0, and hence that
p ≥ 2. By Lemma 2.4, we can write

U1(x) = B1,α(x − α)p−2 + (x − α)p−1R1,α(x) ,

with B1,α Bα > 0 .
If p = 2, then U1(α) 6= 0. If p > 2, one can continue. If p = 2q, one
arrives at

Yk+q(x) = Bk+q,α + (x − α)Rk+q,α(x) ,

with Yk+q(α) = Bk+q,α and Bk+q,α Bk,α > 0 .
If p = 2q + 1, one arrives at

Yk+q(x) = Bk+q,α(x − α) + (x − α)2Rk+q,α(x) ,

with Bk+qα Bk,α > 0 and dYk+q

dx
(α) = Bk+q,α 6= 0 . On the other-hand,

since Yk+q satisfies (1.2) and Yk+q(α) = 0 , we must have dYk+q

dx
(α) = 0 ,

because h > 0 . This yields a contradiction and proves that the case
p = 2q + 1 cannot occur. The lemma is proved. �

2.2. Counting zeros. Assume that (1.6) holds. Let U denote any Yk,
and U1 = Yk+1. They satisfy the relation (2.8).

From Lemma 2.2, we know that U cannot vanish at infinite order at a
point ξ ∈ [α, β]. If ξ ∈]α, β[ and U(ξ) = 0 , we define the multiplicity
m(U, ξ) of the zero ξ by

(2.10) m(U, ξ) = min{p |
dpU

dxp
(ξ) 6= 0} .
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From Lemma 2.5, we know that the multiplicity m(U, α) is even if
h ∈ [0, ∞[, and that the multiplicity m(U, β) is even if H ∈ [0, ∞[ . We
define the reduced multiplicity of α by

(2.11) m(U, α) =

{ 1
2
m(U, α) if h ∈ [0, ∞[ ,

0 if h = ∞ ,

and a similar formula for the reduced multiplicity of β.

By Lemma 2.2, the function U has finitely many distinct zeros
ξ1(U) < ξ2(U) < · · · < ξp(U) in the interval ]α, β[ . We define the
number of zeros of U in ]α, β[ , counted with multiplicities, by

(2.12) Nm(U, ]α, β[) =
p
∑

j=1

m(U, ξi(U)) ,

and use the notation Nm(U) whenever the interval is clear.

We define the number of zeros of U in [α, β], counted with multiplicities,
by

(2.13) Nm(U, [α, β]) =
p
∑

j=1

m(U, ξi(U)) + m(U, α) + m(U, β) ,

and use the notation Nm(U) whenever the interval is clear.

We define the number of zeros of U in ]α, β[ (multiplicities not ac-
counted for) by

(2.14) N(U, ]α, β[) = p ,

and use the notation N(U) whenever the interval is clear.

Finally, we define the number of sign changes of U in the interval ]α, β[
by

(2.15) Nv(U, ]α, β[) =
p
∑

j=1

1
2

[

1 − (−1)m(U,ξj(U))
]

.

2.3. Comparing the number of zeros of Yk and Yk+1. Assume
that (1.6) holds. Let U be some Yk and U1 = Yk+1. In this subsection,
we show that the number of zeros of U1 is not smaller than the number
of zeros of U .

Lemma 2.6. Let ξ < η be two zeros of U in [α, β]. Then, there exists
some aξ,η ∈]ξ, η[ such that U(aξ,η) U1(aξ,η) < 0 .

Remark 2.7. We do not assume that ξ, η are consecutive zeros. The
point aξ,η is a point at which U achieves a non-zero local extremum of
U .
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Proof. [36, p. 437] Since U cannot vanish identically in ]ξ, η[ (see
Lemma 2.2), there exists some x0 ∈]ξ, η[ such that U(x0) 6= 0. Let
ε0 = sign(U(x0)). Then ε0U takes a positive value at x0, and hence
M := sup{ε0U(x) | x ∈ [ξ, η]} is positive and achieved at some aξ,η ∈
]ξ, η[. Denote this point by a for short, then,

ε0U(a) > 0 ,
dU

dx
(a) = 0 and ε0

d2U

dx2
(a) ≤ 0 .

It follows from (2.8) that ε0U1(a) < 0 , or equivalently, that
U(a)U1(a) < 0 . The lemma is proved. �

Lemma 2.8. Let ξ ∈]α, β]. Assume that U(ξ) = 0 , and that U does
not change sign in ]α, ξ[. Then, there exists some aξ ∈ [α, ξ[ such that
U(aξ)U1(aξ) < 0.
Let η ∈ [α, β[. Assume that U(η) = 0, and that U does not change sign
in ]η, β[. Then, there exists some bη ∈]η, β] such that U(bη)U1(bη) < 0.

Proof. [36, p. 438] Since U cannot vanish identically in ]α, ξ[ (see
Lemma 2.2), there exists x0 ∈]α, ξ[ such that U(x0) 6= 0 . Let εξ =
sign(U(x0)) . Since U does not change sign in ]α, ξ[ , εξU(x) ≥ 0 in
]α, ξ[ . Then,

Mξ := sup{εξU(x) | x ∈ [α, ξ]} > 0 .

Let
aξ := inf{x ∈ [α, ξ] | εξU(x) = Mξ} .

Then aξ ∈ [α, ξ[.

If aξ ∈]α, ξ[, then εξU(aξ) > 0 , dU
dx

(aξ) = 0 , and εξ
d2U
dx2 (aξ) ≤ 0 . By

(2.8), this implies that εξU1(aξ) < 0. Equivalently, U(aξ)U1(aξ) < 0.

Claim 2.9. If aξ = α , then εξ U(α) > 0 , h = 0 , dU
dx

(α) = 0 , and

εξ
d2U
dx2 (α) ≤ 0 .

Proof of the claim. Assume that aξ = α , then εξ U(α) > 0 , and hence
h 6= ∞ . If h were in ]0, ∞[, we would have εξ

dU
dx

(α) = hεξU(α) > 0 ,
and hence aξ > α . It follows that the assumption aξ = α implies
that h = 0 and dU

dx
(α) = 0. If εξ

d2U
dx2 (α) where positive, we would

have aξ > α. Therefore, the assumption aξ = α also implies that
εξ

d2U
dx2 (α) ≤ 0 . The claim is proved.

If aξ = α, then by Claim 2.9 and (2.8), we have εξU1(α) < 0. Equiva-
lently, U(α)U1(α) < 0. The first assertion of the lemma is proved. The
proof of the second assertion is similar. �

Proposition 2.10. Assume that (1.6) holds, and let k ∈ Z. Then,

(2.16) Nv(Yk+1, ]α, β[) ≥ Nv(Yk, ]α, β[) ,

i.e., in the interval ]α, β[, the function Yk+1 changes sign at least as
many times as the function Yk.



10 P. BÉRARD AND B. HELFFER

Proof. [36, p. 437-439]
We keep the notation U = Yk and U1 = Yk+1. By Lemma 2.2, the
functions U and U1 have finitely many zeros in ]α, β[, with finite multi-
plicities. Note that the sign changes of U correspond to the zeros of U
with odd multiplicities. Since α and β are fixed, we skip the mention
to the interval ]α, β[ in the proof, and we examine several cases.

Case 1. If Nv(U) = 0, there is nothing to prove.

Case 2. Assume that Nv(U) = 1. Then U admits a unique zero
ξ ∈]α, β[ having odd multiplicity. Without loss of generality, we may
assume that U ≥ 0 in ]α, ξ[ and U ≤ 0 in ]ξ, β[ . By Lemma 2.8, there
exist a ∈ [α, ξ[ and b ∈]ξ, β] such that U1(a) < 0 and U1(b) > 0 .

It follows that the function U1 vanishes and changes sign at least once
in ]α, β[ , so that Nv(U1) ≥ 1 = Nv(U), which proves the lemma in
Case 2.

Case 3. If Nv(U) = 2, the function U has exactly two zeros, having
odd multiplicities, ξ and η in ]α, β[ , α < ξ < η < β , and we may
assume that U |]α,ξ[ ≥ 0 , U |]ξ,η[ ≤ 0, and U |]η,β[ ≥ 0. The arguments
given in Case 2 imply that there exist a ∈ [α, ξ[ such that U1(a) < 0
and b ∈]η, β] such that U1(b) < 0 . In ]ξ, η[ the function U does not
vanish identically and therefore achieves a global minimum at a point
c such that U(c) < 0 , dU

dx
(c) = 0 , and d2U

dx2 (c) ≥ 0 . Equation(2.8) then
implies that U1(c) > 0 .

We can conclude that the function U1 vanishes and changes sign at
least twice in ]α, β[, so that Nv(U1) ≥ 2 = Nv(U).

Case 4. Assume that Nv(U) = p ≥ 3 . Then, U has exactly p zeros,
with odd multiplicities, in ]α, β[ , α < ξ1 < ξ2 < · · · < ξp < β , and one
can assume that

U |]α,ξ1[ ≥ 0 , (−1)pU |]ξp,β[ ≥ 0 , and

(−1)iU |]ξi,ξi+1[ ≥ 0 for 1 ≤ i ≤ p − 1 .

One can repeat the arguments given in the Cases 2 and 3, and conclude
that there exist a0, . . . , ap with a0 ∈ [α, ξ1[ , ai ∈]ξi, ξi+1[ for 1 ≤ i ≤
p − 1, and ap ∈]ξp, β] such that (−1)iU1(ai) < 0 .

We can then conclude that the function U1 vanishes and changes sign
at least p times in ]α, β[ , i.e. that Nv(U1) ≥ p = Nv(U) .

This concludes the proof of Proposition 2.10. �

Proposition 2.11. Assume that (1.6) holds. For any k ∈ Z,

(2.17) Nm(Yk+1, ]α, β[) ≥ Nm(Yk, ]α, β[) ,

i.e., in the interval ]α, β[ , counting multiplicities of zeros, the function
Yk+1 vanishes at least as many times as the function Yk.
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Proof. [36, p. 439-442] Let U = Yk and U1 = Yk+1 . If U does not
vanish in ]α, β[ , there is nothing to prove. We now assume that U has
at least one zero in ]α, β[ . By Lemma 2.2, U and U1 have finitely many
zeros in ]α, β[ . Let

α < ξ1 < · · · < ξk < β

be the distinct zeros of U , with multiplicities pi = m(U, ξi) for 1 ≤ i ≤
k . Let σ0 be the sign of U in ]α, ξ1[ , σi the sign of U in ]ξi, ξi+1[ for
1 ≤ i ≤ k − 1 , and σk the sign of U in ]ξk, β[ . Note that

σi = sign

(

dpiU

dxpi
(ξi)

)

for 1 ≤ i ≤ k .

By Lemma 2.8, there exist a0 ∈ [α, ξ1[ and ak ∈]ξk, β] such that
U(a0)U1(a0) < 0 and U(ak)U1(ak) < 0 . By Lemma 2.6, there ex-
ists ai ∈]ξi, ξi+1[ , 1 ≤ i ≤ k − 1 , such that U(ai)U1(ai) < 0 .
Summarizing, we have obtained:

(2.18) For 0 ≤ i ≤ k , U(ai) U1(ai) < 0 .

We have the relation

(2.19) Nm(U, ]α, β[) =
k
∑

i=1

Nm(U, ]ai−1, ai[) =
k
∑

i=1

pi .

Indeed, for 1 ≤ i ≤ k, the interval ]ai−1, ai[ contains precisely one zero
ξi of U , with multiplicity pi .
For U1, we have the inequality

(2.20) Nm(U1, ]α, β[) ≥
k
∑

i=1

Nm(U1, ]ai−1, ai[) ,

because U1 might have zeros in the interval ]α, a0[ if a0 > α (resp. in
the interval ]ak, β[ if ak < β).

Claim 2.12. For 1 ≤ i ≤ k,

Nm(U1, ]ai−1, ai[) ≥ Nm(U, ]ai−1, ai[) = pi .

To prove the claim, we consider several cases.

• If pi = 1 , then U(ai−1) U(ai) < 0 and, by (2.18), U1(ai−1)U1(ai) < 0 ,
so that Nm(U1, ]ai−1, ai[) ≥ 1 .

• If pi ≥ 2, we apply Lemma (2.4) at ξi : there exist real numbers B, B1

and smooth functions R and R1, such that, in a neighborhood of ξi ,

(2.21)

{

U(x) = B(x − ξi)pi + (x − ξi)pi+1R(x) ,

U1(x) = B1(x − ξi)pi−2 + (x − ξi)pi−1R1(x) ,

where sign(B) = sign(B1) = σi .
We now use (2.18) and the fact that sign(U(ai)) = σi .

⋄ If pi ≥ 2 is odd, then σi−1σi = −1 . It follows that

σiU(ai) < 0 and σiU(ai−1) > 0 .
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By (2.21), for ε small enough, we also have

σiU(ξi + ε) > 0 and σiU(ξi − ε) < 0 .

This means that U1 vanishes at order pi − 2 at ξi , and at least once in
the intervals ]ai−1, ξi − ε[ and ]ξi + ε, ai[, so that

Nm(U1, ]ai−1, ai[) ≥ pi − 2 + 2 = pi = Nm(U, ]ai−1, ai[) .

⋄ If pi ≥ 2 is even, then σi−1σi = 1 . It follows that

σiU(ai) < 0 and σiU(ai−1) < 0 .

By (2.21), for ε small enough, we also have

σiU(ξi + ε) > 0 and σiU(ξi − ε) > 0 .

This means that U1 vanishes at order pi − 2 at ξi , and at least once in
the intervals ]ai−1, ξi − ε[ and ]ξi + ε, ai[ , so that

Nm(U1, ]ai−1, ai[) ≥ pi − 2 + 2 = pi = Nm(U, ]ai−1, ai[) .

The claim is proved, and the proposition as well. �

Proposition 2.13. Assume that (1.6) holds. For any k ∈ Z,

(2.22) Nm(Yk+1, [α, β]) ≥ Nm(Yk, [α, β]) ,

i.e., in the interval [α, β], counting multiplicities of interior zeros, and
reduced multiplicities of α and β, the function Yk+1 vanishes at least as
many times as the function Yk.

Proof. [36, p. 440-442] Recall that the reduced multiplicity of α (resp.
β) is zero if Dirichlet condition holds at α (resp. at β) or if U(α) 6= 0
(resp. U(β) 6= 0). Furthermore, according to Lemma 2.5, if h ∈ [0, ∞[
and U(α) = 0 (resp. if H ∈ [0, ∞[ and U(β) = 0), then m(U, α) = 2p
(resp. m(U, β) = 2q).

Case 1. Assume that Nm(U, ]α, β[) = 0 . Without loss of generality,
we may assume that U > 0 in ]α, β[ .

• If U(α) 6= 0 and U(β) 6= 0, there is nothing to prove.

• Assume that U(α) = U(β) = 0 . Then, there exists a ∈]α, β[ such
that

U(a) = sup{U(x) | x ∈ [α, β]} ,

with

U(a) > 0 ,
dU

dx
(a) = 0 , and

d2U

dx2
(a) ≤ 0 .

It follows from (2.8) that U1(a) < 0 , and that

(2.23) Nm(U1, [α, β]) = N(U1, [α, a]) + N(U1, [a, β]) .

It now suffices to look separately at the intervals [α, a] and [a, β] .
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⋄ Interval [α, a]. If the Dirichlet condition holds at α, there is nothing
to prove. If h ∈ [0, ∞[, m(U, α) = 2p ≥ 2 and, by Lemma 2.4,

(2.24)

U(x) = B(x − α)2p + (x − α)2p+1R(x) ,

U1(x) = B1(x − α)2p−2 + (x − α)2p−1R1(x) ,

with B > 0 and B1 > 0 .

It follows that U1(α + ε) > 0 for any positive ε small enough so that
Nm(U1, ]α, a[) ≥ 1. It follows that

(2.25)

Nm(U1, [α, a]) = m(U1, α) + Nm(U1, ]α, a[) ≥ p − 1 + 1 ,

i.e.

Nm(U1, [α, a]) ≥ N(U, [α, a]) .

⋄ Interval [a, β]. The proof is similar.

• Assume that U(α) = 0 and U(β) 6= 0 . The proof is similar to the
previous one with a ∈]a, β] .

• Assume that U(α) 6= 0 and U(β) = 0 . The proof is similar to the
previous one with a ∈ [α, a[ .

Case 2. Assume that Nm(U, ]α, β[) ≥ 1 .

• If U(α) 6= 0 (resp. U(β) 6= 0), there is nothing to prove for the
boundary α (resp. β).

• If U(α) = 0 (resp. U(β) = 0), the number a0 (resp. ak) which
appears in the proof of Proposition 2.11 belongs to the open interval
]α, ξ1[ (resp. to the open interval ]ξk, β[), where ξ1 (resp. ξk) is the
smallest (resp. largest) zero of U in ]α, β[. We can then apply the
proof of Step. 1 to the interval [α, a0] (resp. to the interval [ak, β])
to prove that Nm(U1, [α, a0]) ≥ Nm(U, [α, a0]) (resp. to prove that
Nm(U1, [ak, β]) ≥ Nm(U, [ak, β]). This proves Proposition 2.13. �

We can now prove Sturm’s refined version of Theorem 1.4.

Theorem 2.14. Assume that (1.6) holds. With the notation of Sec-
tions 1 and 2.2, let Y be the linear combination

(2.26) Y =
n
∑

p=m

ApVp ,

where 1 ≤ m ≤ n, and where {Ap, m ≤ p ≤ n} are real constants such
that A2

m + · · · + A2
n 6≡ 0 , which is equivalent to saying that Y 6≡ 0 .

Then, with the notation of Subsection 2.2,

(2.27) Nv(Y, ]α, β[) ≤ Nm(Y, ]α, β[) ≤ Nm(Y, [α, β]) ,

(2.28) (m − 1) ≤ Nv(Y, ]α, β[) and Nm(Y, [α, β]) ≤ (n − 1) .
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Proof. [36, p. 442] Let N(V ) be any of the above functions. We may
of course assume that Am 6= 0 and An 6= 0. In the preceding lemmas,
we have proved that N(Yk+1) ≥ N(Yk) for any k ∈ Z, which can also
be rewritten as

(2.29) N(Y(−k)) ≤ N(Y ) ≤ N(Yk) for any k ≥ 1 .

Letting k tend to infinity, we see that

(2.30) N(Vm) ≤ N(Y ) ≤ N(Vn) ,

and we can apply Theorem 1.3. �

Remark. For a complete proof of the limiting argument when k tends
to infinity, we refer to Appendix A.

3. Liouville’s approach to Theorem 1.4

3.1. Main statement. We keep the notation of Section 2. Starting
from a linear combination Y as in (2.1), Liouville also considers the
family Yk given by (2.4) and shows that the number of zeros of Yk+1

is not smaller than the number of zeros of Yk. His proof is based on a
generalization of Rolle’s theorem.

Remark 3.1. In his proof, Liouville [21] only considers the zeros in the
open interval ]α, β[ .

As in Section 2, for 1 ≤ m ≤ n, we fix Y =
∑n

j=m AjVj, a linear
combination of eigenfunctions of the eigenvalue problem (1.1)–(1.3),
and we assume that AmAn 6= 0 , see Remark 2.1.

Theorem 3.2. Counting multiplicities, the function Y has, in the in-
terval ]α, β[ ,

(1) at most (n − 1) zeros,
and

(2) at least (m − 1) zeros.

Proof. Liouville uses the following version of Rolle’s theorem (Michel
Rolle (1652-1719) was a French mathematician). This version of Rolle’s
theorem seems to go back to Cauchy and Lagrange.

Lemma 3.3. Let f be a function in ]α0, β0[ . Assume that

f(x′) = f(x′′) = 0 for some x′, x′′ , α0 < x′ < x′′ < β0 .

(1) If the function f is differentiable, and has ν −1 distinct zeros in
the interval ]x′, x′′[ , then the derivative f ′ has at least ν distinct
zeros in ]x′, x′′[ .

(2) If the function f is smooth, and has µ − 1 zeros counted with
multiplicities in the interval ]x′, x′′[ , then the derivative f ′ has
at least µ zeros counted with multiplicities in ]x′, x′′[ .
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Proof of the lemma. Call x1 < x2 < · · · xν−1 the distinct zeros of
f in ]x′, x′′[ . Since f(x′) = f(x′′) = 0 , by Rolle’s theorem [29], the
function f ′ vanishes at least once in each open interval determined by
the xj , 1 ≤ j ≤ ν − 1 , as well as in the intervals ]x′, x1[ and ]xν−1, x′′[ .
It follows that f ′ has at least ν distinct zeros in ]x′, x′′[ , which proves
the first assertion.

Call mj the multiplicity of the zero xj , 1 ≤ j ≤ ν − 1 . Then f ′ has at
least ν zeros, one in each of the open intervals determined by x′, x′′ and
the xj ’s, and has a zero at each xj with multiplicity mj − 1 , provided
that mj > 1. It follows that the number of zeros of f ′ in ]x′, x′′[ ,
counting multiplicities, is at least

ν−1
∑

j=1

(mj − 1) + ν =
ν−1
∑

j=1

mj + 1 ,

which proves the second assertion. �

3.2. Proof of the assertion “Y has at most (n − 1) zeros in

]α, β[, counting multiplicities”.

Write (1.1) for V1 and for Vp, for some m ≤ p ≤ n. Multiply the first
equation by −Vp, the second by V1, and add the resulting equations.
Then

(3.1) V1
d

dx

(

K
dVp

dx

)

− Vp

d

dx

(

K
dV1

dx

)

+ (ρp − ρ1)GV1Vp = 0 .

Use the identity

(3.2) V1
d

dx

(

K
dVp

dx

)

− Vp

d

dx

(

K
dV1

dx

)

=
d

dx

(

V1K
dVp

dx
− VpK

dV1

dx

)

,

and integrate from α to t to get the identity

(3.3) (ρ1 − ρp)
∫ t

α
GV1Vp dx = K(t)

(

V1(t)
dVp

dx
(t) − Vp(t)

dV1

dx
(t)

)

.

Here we use the boundary condition (1.2) which implies that
(

V1(α)
dVp

dx
(α) − Vp(α)

dV1

dx
(α)

)

= 0 .

Multiplying the preceding identity by Ap, and summing for p from m
to n, we obtain

(3.4)
∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx = K(t)

(

V1
dY

dx
− Y

dV1

dx

)

(t) .

or

(3.5)
∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx = K(t) V 2
1 (t)

d

dt

(

Y

V1

)

(t) ,
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where we have used the fact that the function V1 does not vanish in
the interval ]α, β[ .

Let Ψ(x) = Y
V1

(x). The zeros of Y in ]α, β[ are the same as the zeros
of Ψ. Let µ be the number of zeros of Y , counted with multiplicities.
By Lemma 3.3, Assertion (2), dΨ

dx
has at least µ − 1 zeros in ]α, β[ , and

hence so does the left-hand side of (3.5),

∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx .

On the other hand, this function vanishes at α and β (because of the
boundary condition (1.3) or orthogonality). By Lemma 3.3, its deriv-
ative,

(3.6) V1

n
∑

p=m

(ρ1 − ρp)ApVp

has at least µ zeros counted with multiplicities in ]α, β[ . We have
proved the following

Lemma 3.4. If the function Y =
∑n

p=m ApVp has at least µ zeros
counted with multiplicities in the interval ]α, β[ , then the function
Y1 =

∑n
p=m(ρ1 − ρp)ApVp has at least µ zeros, counted with multiplici-

ties, in ]α, β[ .

Applying this lemma iteratively, we deduce that if Y has at least µ
zeros counted with multiplicities in ]α, β[ , then, for any k ≥ 1, the
function

(3.7) Yk =
n
∑

p=m

(ρ1 − ρp)kApVp

has at least µ zeros, counted with multiplicities, in ]α, β[ .

We may of course assume that the coefficient An is non-zero. The above
assertion can be rewritten as the statement:

For all k ≥ 0 , the equation

(3.8) Am

(

ρm − ρ1

ρn − ρ1

)k

Vm + · · · + An−1

(

ρn−1 − ρ1

ρn − ρ1

)k

Vn−1 + AnVn = 0

has at least µ solutions in ]α, β[, counting multiplicities.

Letting k tend to infinity, and using the fact that Vn has exactly (n−1)
zeros in ]α, β[ , this implies that µ ≤ (n − 1). This proves the first
assertion. �
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3.3. Proof of the assertion “Y has at least (m − 1) zeros in

]α, β[, counting multiplicities”.

We have seen that the number of zeros of Yk is less than or equal to
the number of zeros of the function Yk+1. This assertion actually holds
for any k ∈ Z, and can also be rewritten as, for any k ≥ 0,

(3.9) Nm(Y−k) ≤ Nm(Y ) ,

where, for k ≥ 0,

(3.10) Y−k = Am(ρm − ρ1)−kVm + · · · + An(ρn − ρ1)−kVn ,

and we can again let k tend to infinity. The second assertion is proved
and Theorem 3.2 as well. �

3.4. Liouville’s 2nd approach to the 2nd part of Theorem 3.2.

If the function Y has µ1 distinct zeros, then it changes sign µ times, at
points ai which satisfy α < a1 < · · · < aµ < β, with µ1 ≥ µ .

Claim 3.5. The function Y changes sign at least (m − 1) times in the
interval ]α, β[ .

Proof of the claim. Assume, by contradiction, that µ ≤ (m − 2).
Consider the function

(3.11) x 7→ W (x) := ∆(a1, . . . , aµ; x) ,

where the function ∆ is defined as the determinant

(3.12)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V1(a1) V1(a2) · · · V1(aµ) V1(x)
V2(a1) V2(a2) · · · V2(aµ) V2(x)

...
...

...
...

...
Vµ+1(a1) Vµ+1(a2) · · · Vµ+1(aµ) Vµ+1(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The function W vanishes at the points ai , 1 ≤ i ≤ µ . According to
the first part in Theorem 3.2, W being a linear combination of the
first µ + 1 eigenfunctions, vanishes at most µ times in ]α, β[ , counting
multiplicities. This implies that each zero ai of W has order one, and
that W does not have any other zero in ]α, β[ . It follows that the
function Y W vanishes only at the points {ai}, 1 ≤ i ≤ µ, and that it
does not change sign. We can assume that Y W ≥ 0 . On the other
hand, we have

(3.13)
∫ β

α
GY W dx = 0 ,

because Y involves the functions Vp with p ≥ m and W the functions
Vq with q ≤ µ + 1 ≤ m − 1 . This gives a contradiction. �

Remark 3.6. Liouville does actually not use the determinant (3.12),
but a similar approach, see [20, p. 259], Lemme 1er. The determinant
∆ appears in [31, Section 142].
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Remark 3.7. The arguments in Subsection 3.2, using Assertion (1) of
Lemma 3.3, instead of Assertion (2), yield an upper bound on the
number of zeros of Y , multiplicities not accounted for. This estimate
holds under weaker regularity assumptions, namely only assuming that
the functions G, L are continuous, and that the function K is C1.

4. Mathematical context of Sturm’s papers.
Sturm’s motivations and ideas

4.1. On Sturm’s style. Sturm’s papers [35, 36] are written in French,
and quite long, about 80 pages each. One difficulty in reading them
is the lack of layout structure. The papers are divided into sequences
of sections, without any title. Most results are stated without tags,
“Theorem” and the like, and only appear in the body of the text. For
example, [35] only contains one theorem stated as such, see § XII,
p. 125. In order to have an overview of the results contained in [35],
the reader should look at the announcement [33]. Theorem 1.4 is stated
in [34].

For a more thorough analysis of Sturm’s papers on differential equa-
tions, we refer to [23, 12]. We refer to [5, 30] for the relationships be-
tween Theorem 1.3 and Sturm’s theorem on the number of real roots
of real polynomials.

4.2. Sturm’s motivations. Sturm’s motivations come from mathe-
matical physics, and more precisely, from the problem of heat diffusion
in a non-homogeneous bar. He considers the heat equation,

(4.1) G
∂u

∂t
=

∂

∂x

(

K
∂u

∂x

)

− Lu , for (x, t) ∈]α, β[×R+ ,

with boundary conditions

(4.2)







K(α) ∂u
∂x

(α, t) − h u(α, t) = 0 ,

K(β) ∂u
∂x

(β, t) + H u(β, t) = 0 ,

for all t > 0, and the initial condition

(4.3) u(x, 0) = f(x) , for x ∈]α, β[ ,

where f is a given function.

The functions K, G, L and the constants h, H describe the physical
properties of the bar, see [36, Introduction, p. 376]. Sturm refers to
the book of Siméon Denis Poisson [28], rather than to Fourier’s book
[11], because Poisson’s equations are more general, see [30, Chap. III].

The boundary conditions (1.2)-(1.3) and (4.2) first appeared in the
work of Fourier [11] but are called “Robin’s condition” in the recent
literature. Victor Gustave Robin (1855-1897) was a French mathemati-
cian.
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As was popularized by Fourier and Poisson, in order to solve (4.1),
Sturm uses the method of separation of variables, and is therefore led
to the eigenvalue problem (1.1)–(1.3).

4.3. Sturm’s assumptions. In [35, 36], Sturm implicitly assumes
that the functions K, G, L are C∞ and, explicitly, that K is positive,
see [35, p. 108]. For the eigenvalue problem, he also assumes that G, L
are positive, see [36, p. 381]. In [36, p. 394], he mentions that L could
take negative values, and implicitly assumes, in this case, that L

G
is

bounded from below.

In [21], Liouville does not mention any regularity assumption on the
functions G, K, L. He however indicates a regularity assumption (piece-
wise C2 functions) in a previous paper, [20, Footnote (∗), p. 256].

4.4. Sturm’s originality. Before explaining Sturm’s proofs, we would
like to insist on the originality of his approach. Indeed, unlike his pre-
decessors, Sturm does not look for explicit solutions of the differential
equation (4.4) (i.e., solutions in closed form, or given as sums of series
or as integrals), but he rather looks for qualitative properties of the so-
lutions, properties which can be deduced directly from the differential
equation itself. The following excerpts are taken from [35, Introduc-
tion]1.
On ne sait [ces équations] les intégrer que dans un très petit nombre
de cas particuliers hors desquels on ne peut pas même en obtenir une
intégrale première ; et lors même qu’on possède l’expression de la fonc-
tion qui vérifie une telle équation, soit sous forme finie, soit en série,
soit en intégrales définies ou indéfinies, il est le plus souvent difficile
de reconnaître dans cette expression la marche et les propriétés carac-
téristiques de cette fonction. . . .
S’il importe de pouvoir déterminer la valeur de la fonction inconnue
pour une valeur isolée quelconque de la variable dont elle dépend, il
n’est pas moins nécessaire de discuter la marche de cette fonction, ou
en d’autres termes, d’examiner la forme et les sinuosités de la courbe
dont cette fonction serait l’ordonnée variable, en prenant pour abscisse
la variable indépendante. Or on peut arriver à ce but par la seule
considération des équations différentielles elles-mêmes, sans qu’on ait
besoin de leur intégration. Tel est l’objet du présent mémoire. . . .

4.5. Sturm and the existence and uniqueness theorem for or-

dinary differential equation. In [35, p. 108], Sturm considers the
differential equation

d

dx

(

K
dV

dx

)

+ GV = 0 , (I)

1See Appendix B for the English translations of the citations in French.
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and takes the existence and uniqueness theorem for granted. More pre-
cisely, he claims [35, p. 108], without any reference whatsoever,
L’intégrale complète de l’équation (I) doit contenir deux constantes ar-
bitraires, pour lesquelles on peut prendre les valeurs de V et de dV

dx

correspondantes à une valeur particulière de x. Lorsque ces valeurs
sont fixées, la fonction V est entièrement définie par l’équation (I),
elle a une valeur déterminée et unique pour chaque valeur de x.
On the other hand, he gives two arguments for the fact that a solu-
tion of (I) and its derivative cannot vanish simultaneously at a point
without vanishing identically, see [35, § II]. When the coefficients K, G
of the differential equation depend upon a parameter m, e.g. continu-
ously, Sturm also takes for granted the fact that the solution V (x, m),
and its zeros, depend continuously on m.

In [36, § II], Sturm mentions the existence proof given by Liouville in
[20], see also [19]. According to [13], Augustin-Louis Cauchy may have
presented the existence and uniqueness theorem for ordinary differen-
tial equations in his course at École polytechnique as early as in the
year 1817-1818. Following a recommendation of the administration of
the school, Cauchy delivered the notes of his lectures in 1824, see [7]
and, in particular, the introduction by Christian Gilain who discovered
these notes in 1974. These notes apparently had a limited distribution.
Liouville entered the École polytechnique in 1825, and there attended
the mathematics course given by Ampère2 (as a matter of fact Ampère
and Cauchy gave the course every other year, alternatively). Liouville’s
proof of the existence theorem for differential equations in [19], à la Pi-
card but before Picard, though limited to the particular case of 2nd
order linear equations, might be the first well circulated proof of an
existence theorem for differential equations, see [22, § 34]. Cauchy’s
theorem was later popularized in the second volume of Moigno’s book,
published in 1844, see [24], “Vingt-sixième Leçon” § 159, pp. 385–396.

4.6. Sturm’s proof of Theorem 1.3. Theorem 1.3 is proved in [36].
For the first assertion, see § III (p. 384) to VII; for the second assertion,
see § VIII (p. 396) to X.

The proof is based on the paper [35] in which Sturm studies the zeros
of the solution of the initial value problem,

d

dx

(

K(x, m)
dV

dx
(x, m)

)

+ G(x, m)V (x, m) = 0 ,(4.4)
(

K
dV

dx
− hV

)

(α, m) = 0 .(4.5)

Here K, G are assumed to be functions of x depending on a real pa-
rameter m, with K positive (the constants h and H may also depend

2We are grateful to J. Lützen for providing this information.
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on the parameter m). The solution V (x, m) is well defined up to a
scaling factor. The main part of [35] is devoted to studying how the
zeros of the function V (x, m) (and other related functions) depend
on the parameter m, see [35, § XII, p. 125]. While developing this
program, Sturm proves the oscillation, separation and comparison the-
orems which nowadays bear his name, [35, § XV, XVI and XXXVII].

The eigenvalue problem (1.1)–(1.3) itself is studied in [36]. For this
purpose, Sturm considers the functions

K(x, r) ≡ K(x) and G(x, r) = rG(x) − L(x) ,

the solution V (x, r) of the corresponding initial value problem (4.4)–
(4.5), and applies the results and methods of [35].

The spectral data of the eigenvalue problem (1.1)–(1.3) are determined
by the following transcendental equation in the spectral parameter r,

(4.6) K(β)
dV

dx
(β, r) + HV (β, r) = 0 .

4.7. Sturm’s two proofs of Theorem 1.4. Theorem 1.4 appears in
[36, § XXV, p. 431], see also the announcement [34].

Sturm’s general motivation, see the introductions to [35] and [36], was
the investigation of heat diffusion in a (non-homogeneous) bar, whose
physical properties are described by the functions K, G, L. He first
obtained Theorem 1.4 as a corollary of a much deeper theorem which
describes the behaviour, as time varies, of the x-zeros of a solution
u(x, t) of the heat equation (4.1)-(4.3). When the initial temperature
u(x, 0) is given by a linear combination of simple states,

(4.7) u(x, 0) = Y (x) =
∑

j=m

AjVj

the function u(x, t) is given by

(4.8) u(x, t) =
n
∑

j=m

e−tρj AjVj .

When t tends to infinity, the x-zeros of u(x, t) approach those of Vp,
where p is the least integer j, m ≤ j ≤ n such that Aj 6= 0.

J. Liouville, who was aware of Theorem 1.4, made use of it in [20],
and provided a purely “ordinary differential equation” (o.d.e.) proof in
[21], a few months before the actual publication of [36]. This induced
Sturm to provide two proofs of Theorem 1.4 in [36], his initial proof
using the heat equation, and another proof based only on the sole or-
dinary differential equation. The proofs of Sturm actually give a more
precise result. In [36, p. 379], Sturm writes,
M. Liouville a démontré directement ce théorème [Theorem 1.4], qui
n’était pour moi qu’un corollaire du précédent, sans s’occuper du cas
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particulier où la fonction serait nulle à l’une des extrémités de la barre.
J’en ai aussi trouvé après lui une autre démonstration directe que je
donne dans ce mémoire. M. Liouville a fait usage du même théorème
dans un très beau Mémoire qu’il a publié dans le numéro de juillet de
son journal et qui a pour objet le développement d’une fonction arbi-
traire en une série composée de fonctions V que nous avons considérées.

The time independent analog to studying the behaviour of the x-zeros
of (4.8) is to study the behaviour of the zeros of the family of functions
{Yk}k∈Z, where

(4.9) Yk(x) =
∑

j=m

Ajρ
k
j Vj ,

as k tends to infinity.

Appendix A. The limiting argument in (3.8)

Recall that we assume that An 6= 0. Define

(A.1) ω =

(

ρn−1 − ρ1

ρn − ρ1

)k

.

One can rewrite (3.8) as

Vn(x) + ωΠ(x) = 0 ,

where

(A.2) Π(x) =
n−1
∑

p=m

Ap

An

(

ρp − ρ1

ρn−1 − ρ1

)k

Vp .

It follows that Π is uniformly bounded by

(A.3) |Π(x)| ≤ M := n max
p

∣

∣

∣

∣

Ap

An

∣

∣

∣

∣

max
p

sup
[α,β]

|Vp| .

Similarly,

(A.4)

∣

∣

∣

∣

∣

dΠ
dx

(x)

∣

∣

∣

∣

∣

≤ N := n max
p

∣

∣

∣

∣

Ap

An

∣

∣

∣

∣

max
p

sup
[α,β]

|
dVp

dx
| .

Call ξ1 < ξ2 < · · · < ξn−1 the zeros of the function Vn in the interval
]α, β[.

• Assume that Vn(α) 6= 0 and Vn(β) 6= 0 .
Since dVn

dx
(ξi) 6= 0 , there exist δ1, ε1 > 0 such that |dVn

dx
(x)| ≥ ε1 for

x ∈ [ξi − δ1, ξi + δ1] , and |Vn(x)| ≥ ε1 in [α, β] \ ∪ ]ξi − δ1, ξi + δ1[ .
For k large enough, we have ωM, ωN ≤ ε1/2. It follows that in the
interval [ξi − δ1, ξi + δ1] ,

∣

∣

∣

∣

∣

d

dx
(Vn + ωΠ)

∣

∣

∣

∣

∣

≥ |
dVn

dx
| − ωN ≥ ε1/2 .
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Furthermore,

Vn(ξi ± δ1) + ωΠ(ξi ± δ1) ≥ |Vn(ξi ± δ1)| − ωM ≥ ε1/2 .

Since Vn(ξi + δ1)Vn(ξi − δ1) < 0 , we can conclude that the function
Vn + ωΠ has exactly one zero in each interval ]ξi − δ1, ξi + δ1[ .
In [α, β] \ ∪ ]ξi − δ1, ξi + δ1[ , we have

|Vn(x) + ωΠ(x)| ≥ |Vn(x)| − ωM ≥ ε1/2 ,

which implies that Vn(x) + ωΠ(x) 6= 0 .

• Assume that Vn(α) = 0 and Vn(β) 6= 0 . This corresponds to the
case h = +∞ and H 6= +∞. Hence the Vj verify Dirichlet at α and Π
verifies Dirichlet at α. Observing that V ′

n(α) 6= 0, it is immediate to see
that there exists δ1 > 0, such that, for k large enough, Vn(x) + ωΠ(x)
has only α as zero in [α, α + δ1].

• The other cases are treated in the same way. �
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Appendix B. Translation for the citations from Sturm’s
papers [35, 36]

Citation from [35, Introduction].

On ne sait [ces équations] les
intégrer que dans un très petit
nombre de cas particuliers hors
desquels on ne peut pas même
en obtenir une intégrale pre-
mière ; et lors même qu’on pos-
sède l’expression de la fonction
qui vérifie une telle équation,
soit sous forme finie, soit en
série, soit en intégrales définies
ou indéfinies, il est le plus sou-
vent difficile de reconnaître dans
cette expression la marche et
les propriétés caractéristiques
de cette fonction. . . .
S’il importe de pouvoir déter-
miner la valeur de la fonction
inconnue pour une valeur isolée
quelconque de la variable dont
elle dépend, il n’est pas moins
nécessaire de discuter la marche
de cette fonction, ou en d’autres
termes, d’examiner la forme et
les sinuosités de la courbe dont
cette fonction serait l’ordonnée
variable, en prenant pour ab-
scisse la variable indépendante.
Or on peut arriver à ce but par
la seule considération des équa-
tions différentielles elles-mêmes,
sans qu’on ait besoin de leur
intégration. Tel est l’objet du
présent mémoire. . . .

One only knows how to in-
tegrate these equations in a
very small number of particu-
lar cases, and one can otherwise
not even obtain a first integral;
even when one knows the ex-
pression of the function which
satisfies such an equation, in fi-
nite form, as a series, as inte-
grals either definite or indefi-
nite, it is most generally difficult
to recognize in this expression
the behaviour and the charac-
teristic properties of this func-
tion. . . .
Although it is important to be
able to determine the value of
the unknown function for an iso-
lated value of the variable it de-
pends upon, it is not less nec-
essary to discuss the behaviour
of this function, or otherwise
stated, the form and the twists
and turns of the curve whose
ordinate would be the func-
tion, and the abscissa the in-
dependent variable. It turns
out that one can achieve this
goal by the sole consideration of
the differential equation them-
selves, without having to inte-
grate them. This is the purpose
of the present memoir. . . .
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Citation from [35, p. 108].

L’intégrale complète de
l’équation (I) doit contenir
deux constantes arbitraires,
pour lesquelles on peut prendre
les valeurs de V et de dV

dx

correspondantes à une valeur
particulière de x. Lorsque ces
valeurs sont fixées, la fonction
V est entièrement définie par
l’équation (I), elle a une valeur
déterminée et unique pour
chaque valeur de x.

The complete integral of equa-
tion (I) must contain two arbi-
trary constants, for which one
can take the values of V and of
dV
dx

corresponding to some par-
ticular value of x. Once these
values are fixed, the function V
is fully determined by equation
(I), it has a uniquely determined
value for each value of x.

Citation from [36, p. 379].

M. Liouville a démontré directe-
ment ce théorème, qui n’était
pour moi qu’un corollaire du
précédent, sans s’occuper du cas
particulier où la fonction serait
nulle à l’une des extrémités de
la barre. J’en ai aussi trouvé
après lui une autre démonstra-
tion directe que je donne dans ce
mémoire. M. Liouville a fait us-
age du même théorème dans un
très beau Mémoire qu’il a pub-
lié dans le numéro de juillet de
son journal et qui a pour ob-
jet le développement d’une fonc-
tion arbitraire en une série com-
posée de fonctions V que nous
avons considérées.

M. Liouville gave a direct proof
of this theorem, which for me
was a mere corollary of the pre-
ceding one, without taking care
of the particular case in which
the function vanishes at one of
the extremities of the bar. I
have also found, after him, an-
other direct proof which I give
in this memoir. M. Liouville
made use of the same theorem
in a very nice memoir which he
published in the July issue of his
journal, and which deals with
the expansion of an arbitrary
function into a series made of
the functions V which we have
considered.
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