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STURM’S THEOREM ON ZEROS OF LINEAR

COMBINATIONS OF EIGENFUNCTIONS

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. Motivated by recent questions about the extension of
Courant’s nodal domain theorem, we revisit a theorem published
by C. Sturm in 1836, which deals with zeros of linear combina-
tion of eigenfunctions of Sturm-Liouville problems. Although well
known in the nineteenth century, this theorem seems to have been
ignored or forgotten by some of the specialists in spectral the-
ory since the second half of the twentieth-century. Although not
specialists in History of Sciences, we have tried to replace these
theorems into the context of nineteenth century mathematics.

1. Introduction

In this paper, we are interested in the following eigenvalue problem,
where r denotes the spectral parameter.

d

dx

(

K
dV

dx

)

+ (r G − L)V = 0 ,(1.1)
(

K
dV

dx
− hV

)

(α) = 0 ,(1.2)
(

K
dV

dx
+ HV

)

(β) = 0 .(1.3)

Here,

K, G, L : [α, β] → R are positive functions ,(1.4)

h , H ∈ [0, ∞] are non negative constants, possibly infinite.(1.5)

Remark 1.1. When h = ∞ (resp. H = ∞), the boundary condition
should be understood as the Dirichlet boundary condition V (α) = 0
(resp. as the Dirichlet boundary condition V (β) = 0).

Precise assumptions on K, G, L will be given later on.

Note that when K = G ≡ 1, (1.1)–(1.3) is an eigenvalue problem for
the classical operator −d2V

dx2 + LV .
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The above boundary conditions first appear in the work of Joseph
Fourier [9] but are called “Robin’s condition” in the recent literature.
Victor Gustave Robin (1855-1897) was a French mathematician.

This eigenvalue problem, in the above generality (K, G, L functions of
x), was first studied by Charles Sturm in a Memoir presented to the
Paris Academy of sciences in September 1833, summarized in [31, 32],
and published in [33, 34].

Remark 1.2. In this paper, we have mainly retained the notation of
[33], except that Sturm considers the interval [x, X] instead of [α, β].
We otherwise use today notation and vocabulary. Note that in [34],
Sturm uses lower case letters for the functions K, G, L. Sturm uses the
same notation as Fourier in [9].

1.1. Sturm’s motivations and approach. Sturm’s motivations co-
me from mathematical physics, and more precisely from the problem
of heat diffusion in a non-homogeneous bar. The functions K, G, L ac-
tually describe the physical properties of the bar, see [34, Introduction,
p. 376]. Sturm refers to the book of Siméon Denis Poisson [26], rather
than to Fourier’s book [9], because Poisson’s equations are more gen-
eral, see [28, Chap. III]. As was popularized by Fourier and Poisson,
Sturm uses the method of separation of variables, and is therefore led to
the eigenvalue problem (1.1)–(1.3). To find the spectral data (eigenval-
ues and eigenfunctions), Sturm begins by studying the following initial
value problem.

d

dx

(

K(x, m)
dV

dx
(x, m)

)

+ G(x, m)V (x, m) = 0 ,(1.6)
(

K
dV

dx
− hV

)

(α, m) = 0 ,(1.7)

where he assumes that K, G are functions of x depending on a real
parameter m, with K positive (the constants h and H may also de-
pend on the parameter m). The solution V (x, m) is well defined up
to a scaling factor. The main part of [33] is devoted to studying how
the zeros of the function V (x, m) (and other related functions) de-
pend on the parameter m, under suitable assumptions on the functions
K and G (h and H), see [33, § XII, p. 125]. While developing this
program, Sturm proves the oscillation, separation and comparison the-
orems which nowadays bear his name, [33, § XV, XVI and XXXVII].

We would like to insist on the originality of Sturm’s approach. Indeed,
unlike his predecessors, Sturm does not look for explicit solutions of
the differential equation (1.6) (i.e., solutions in closed form, or given
as sums of series or as integrals), but he rather looks for qualitative
properties of the solutions, properties which can be deduced directly
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from the differential equation itself. The following excerpts are taken
from [33, Introduction]1.
On ne sait [ces équations] les intégrer que dans un très petit nombre
de cas particuliers hors desquels on ne peut pas même en obtenir une
intégrale première ; et lors même qu’on possède l’expression de la fonc-
tion qui vérifie une telle équation, soit sous forme finie, soit en série,
soit en intégrales définies ou indéfinies, il est le plus souvent difficile
de reconnaître dans cette expression la marche et les propriétés carac-
téristiques de cette fonction. . . .
S’il importe de pouvoir déterminer la valeur de la fonction inconnue
pour une valeur isolée quelconque de la variable dont elle dépend, il
n’est pas moins nécessaire de discuter la marche de cette fonction, ou
en d’autres termes, d’examiner la forme et les sinuosités de la courbe
dont cette fonction serait l’ordonnée variable, en prenant pour abscisse
la variable indépendante. Or on peut arriver à ce but par la seule
considération des équations différentielles elles-mêmes, sans qu’on ait
besoin de leur intégration. Tel est l’objet du présent mémoire. . . .

The eigenvalue problem (1.1)–(1.3) itself is studied in [34]. For this
purpose, Sturm considers the functions

K(x, r) ≡ K(x) and G(x, r) = rG(x) − L(x) ,

the solution V (x, r) of the corresponding initial value problem (1.6)–
(1.7), and applies the results and methods of [33].

The spectral data of the eigenvalue problem (1.1)–(1.3) are determined
by the following transcendental equation in the spectral parameter r,

(1.8) K(β)
dV

dx
(β, r) + HV (β, r) = 0 .

As far as the eigenvalue problem (1.1)–(1.3) is concerned, Sturm’s first
results can be summarized in the following theorem.

Theorem 1.3 (Sturm, 1836). Under the assumptions (1.4)–(1.5), the
eigenvalue problem (1.1)–(1.3) admits an increasing infinite sequence
{ρi, i ≥ 1} of positive simple eigenvalues, tending to infinity. Further-
more, the associated eigenfunctions Vi have the following remarkable
property: the function Vi vanishes, and changes sign, precisely (i − 1)
times in the open interval ]α, β[ .

Remark 1.4. Theorem 1.3 is proved in [34]. For the first assertion, see
§ III (p. 384) to VII; for the second assertion, see § VIII (p. 396) to X.

1See Appendix B for the English translations of the citations in French.
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1.2. About Sturm’s assumptions and proofs. In [33, 34], Sturm
implicitly assumes that the functions K, G, L are C∞ and, explicitly,
that K is positive, see [33, p. 108]. For the eigenvalue problem, he
also assumes that G, L are positive, see [34, p. 381]. In [34, p. 394], he
does however mention that L could take negative values and implicitly
assumes, in this case, that L

G
is bounded from below.

In [33, p. 108], Sturm considers the differential equation

d

dx

(

K
dV

dx

)

+ GV = 0 , (I)

and takes the existence and uniqueness theorem for granted. More
precisely, he claims [33, p. 108], without any reference whatsoever,
“L’intégrale complète de l’équation (I) doit contenir deux constantes
arbitraires, pour lesquelles on peut prendre les valeurs de V et de dV

dx

correspondantes à une valeur particulière de x. Lorsque ces valeurs
sont fixées, la fonction V est entièrement définie par l’équation (I),
elle a une valeur déterminée et unique pour chaque valeur de x.”
On the other hand, he gives two arguments for the fact that a solution
of (I) and its derivative cannot vanish simultaneously at a point without
vanishing identically, see [33, § II]. When the coefficients K, G of the
differential equation depend upon a parameter m, at least continuously,
Sturm also takes for granted the fact that the solution V (x, m) and its
zeros depend continuously on m.

Remark 1.5. In [34, § II], Sturm mentions the existence proof given by
Joseph Liouville in [18], which had already appeared in [17]. According
to [11], Augustin-Louis Cauchy may have presented the existence and
uniqueness theorem for ordinary differential equations in his course at
École polytechnique as early as in the year 1817-1818. Following a rec-
ommendation of the administration of the school, Cauchy delivered the
notes of his lectures in 1824, see [6] and, in particular, the introduction
by Christian Gilain who discovered these notes in 1974. These notes
apparently had a limited distribution. It should be mentioned that
Liouville entered the École polytechnique in 1825, and attended the
courses of either Ampère or Cauchy. His proof of the existence theorem
for differential equations in [17], à la Picard but before Picard, though
limited to the particular case of 2nd order linear differential equations,
might be the first well circulated proof of an existence theorem, see [20,
§ 34]. Cauchy’s theorem was later popularized in the second volume
of Moigno’s book, published in 1844, see [22], “Vingt-sixième Leçon”
§ 159, pp. 385–396.

Remark 1.6. Sturm’s papers [33, 34] are written in French, and quite
long, about 80 pages each. One difficulty in reading them is the lack
of layout structure. There is only a sequence of sections, without any
title, and most results are stated without tags, “Theorem” and the



STURM LINEAR COMBINATIONS EIGENFUNCTIONS 5

like, and only appear in the body of the text. For example, [33] only
contains one theorem stated as such, see § XII, p. 125. In order to have
an overview of the results contained in [33], the reader might look at
the announcement [31].

For a more thorough analysis of Sturm’s papers on differential equa-
tions, we refer to [21, 10]. We refer to [4, 28] for the relationships be-
tween Theorem 1.3 and Sturm’s theorem on the number of real roots
of real polynomials.

1.3. Our purpose and assumptions. In order to make the proofs
easier, we make the following strong assumptions.

(1.9)















[α, β] ⊂]α0, β0[ ,

K, G, L ∈ C∞(]α0, β0[) ,

K, G, L > 0 on ]α0, β0[ .

We refer to Section 5 for results under weaker assumptions.

Remark 1.7. The positivity assumption on L is actually not necessary,
but makes the discussion simpler. Compare with [34, p. 394].

The purpose of this paper is to discuss a result of Sturm which does
not seem to be as well known as Theorem 1.3. We begin with a rough
statement, Theorem 1.8, which will be made more precise later on, see
Theorems 3.10 and 4.2.

Theorem 1.8 (Sturm, 1836). Let Y = AmVm + · · · + AnVn be a non
trivial linear combination of eigenfunctions of the eigenvalue problem
(1.1)–(1.3), with 1 ≤ m ≤ n, and {Aj , m ≤ j ≤ n} real constants such
that A2

m + · · · + A2
n 6= 0. Then, the function Y has at least (m − 1),

and at most (n − 1) zeros in the open interval ]α, β[.

Theorem 1.8 appears in [34, § XXV, p. 431], see also the announce-
ment [32]. Sturm’s motivation, see the introductions to [33] and [34],
was the investigation of heat diffusion in a (non-homogeneous) bar,
whose physical properties are described by the functions K, G, L. He
first obtained Theorem 1.8 as a corollary of his investigation of the
behaviour, when t tends to infinity, of the temperature u(t, x) of a bar
whose initial temperature u(0, x) is given by a linear combination of
simple states.

J. Liouville, who was aware of Theorem 1.8, made use of it in [18],
and provided a purely “ordinary differential equation” (o.d.e.) proof in
[19], a few months before the actual publication of [34]. This induced
Sturm to provide two proofs of Theorem 1.8 in [34], his initial proof
using the heat equation, and another proof based only on the ordinary
differential equation. The proofs of Sturm actually give a more precise
result. In [34, p. 379], Sturm writes,
M. Liouville a démontré directement ce théorème, qui n’était pour moi
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qu’un corollaire du précédent, sans s’occuper du cas particulier où la
fonction serait nulle à l’une des extrémités de la barre. J’en ai aussi
trouvé après lui une autre démonstration directe que je donne dans ce
mémoire. M. Liouville a fait usage du même théorème dans un très
beau Mémoire qu’il a publié dans le numéro de juillet de son journal
et qui a pour objet le développement d’une fonction arbitraire en une
série composée de fonctions V que nous avons considérées.

In this paper, we revisit the (o.d.e.) proofs of Theorem 1.8 given
by Sturm and Liouville respectively. Liouville’s proof is simpler, but
slightly less precise than Sturm’s proof. Liouville’s paper, also in
French, is quite short, and very clear. As explained in Remark 1.6,
Sturm’s proof is more difficult to read. This might explain why Theo-
rem 1.8 is not better known.

In this paper, we do not consider Sturm’s heat equation proof of The-
orem 1.8, see [34, § XVIII ff], and refer to [10, 21] for modern formula-
tions.

Remark 1.9. Some remarks to conclude this introduction.
(1) In [29, Section 142], Lord Rayleigh writes “a beautiful theorem

has been discovered by Sturm” as he mentions Theorem 1.8.
(2) F. Pockels [25, pp. 68-73] gives a summary of Sturm’s results,

including Theorem 1.8, and mentions the different proofs pro-
vided by Sturm, Liouville and Rayleigh. On the basis of a note
of Sturm in Férussac’s Bulletin [30], Pockels (p. 71, lines 12-
17) also suggests that Sturm may have looked for a statement
in higher dimension as well, without success. Sturm indeed
mentions studying an example with spherical symmetry in 3
dimensions (leading to an ordinary differential equation with
singularity), to which he may have applied Theorem 1.8.

(3) Courant and Hilbert [7] extensively mention the Sturm-Liouville
problem. They however do not refer to the original papers of
Sturm, but rather to Bôcher’s book [5] which does not include
Theorem 1.8. Courant and Hilbert do not mention Theorem 1.8
either, but they do mention an analogue in higher dimensions
when they discuss Courant’s nodal domain theorem [7, foot-
note, p. 454], and refer to the dissertation of H. Herrmann [13].
As pointed out by V. Arnold [2, 15], such an extension can-
not be true in general. Counter-examples were first given by
O. Viro for the 3-sphere (with the canonical metric) [35] and,
more recently in the paper [3], see also [12].

(4) More recently Sturm’s Theorem 1.8 is mentioned, somewhat
inaccurately, in Pleijel’s 1956 paper [24, p. 543 and 550].

(5) It seems to us that Arnold was not aware of Theorem 1.8. In
[2], see also Supplementary problem 9 in [1, p. 327], he men-
tions a proof, suggested by I. Gelfand, of the upper bound in
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Theorem 1.8. Gelfand’s idea is to “use fermions rather than
bosons”, and to apply Courant’s nodal domain theorem. How-
ever, Arnold concludes by writing [2, p. 30], “the arguments
above do not yet provide a proof ”. As far as we know, Gelfand’s
idea has so far not yielded any complete proof of Sturm’s result.
It is interesting to note that Liouville’s proof of the lower bound
in Theorem 1.8 uses an idea similar to Gelfand’s, see the proof
of Claim 4.6.

(6) The lower bound in Theorem 1.8 is related to the so-called
Sturm-Hurwitz theorem for Fourier series with a spectral gap,
see [14], [8, § 2], and [23] for geometric applications.

1.4. Organization of the paper. In Section 2, we give some prelim-
inary results. In Section 3, we prove Theorem 3.10, a refined version of
Theorem 1.8, following the ideas of Sturm [34, § XXVI]. In Section 4,
we prove Theorem 4.2, another refined version of Theorem 1.8, follow-
ing the proof given by Liouville in [18, 19]. In Section 5 we consider
results under weaker assumptions. Appendix A provides the detailed
proof of a technical argument. Appendix B provides the translations
into English of the citations in French.

2. o.d.e. proofs of Sturm’s Theorem 1.8, common features

2.1. Preliminaries.

2.1.1. Recall that {(ρj , Vj), j ≥ 1} are the eigenvalues and eigenfunc-
tions of the eigenvalue problem (1.1)–(1.3). By our assumption L > 0,
the eigenvalues are positive, ρj > 0.

Under the Assumptions (1.9), the functions Vj are C∞ on ]α0, β0[ . This
follows easily for example from Liouville’s existence proof [18].

In the sequel, we study the zeros of a linear combination

(2.1) Y =
n
∑

j=m

AjVj ,

where 1 ≤ m ≤ n , and where the Aj are real constants. We always
assume that Y 6≡ 0 , which is equivalent to assuming that

∑n
m A2

j 6= 0 .

Remark 2.1. The numbers which actually matter are

ne = sup{p | m ≤ p ≤ n such that Ap 6= 0} ,(2.2)

me = inf{p | m ≤ p ≤ n such that Ap 6= 0} .(2.3)

Without loss of generality, we may assume that Am An 6= 0.

For any k ∈ Z, we define the function

(2.4) Yk = (−1)k
n
∑

j=m

Aj ρk
j Vj .
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Note in particular that Y0 is the original linear combination Y , and
that Yk ≡ 0 if and only if Y ≡ 0 .

In order to simplify notation, we shall, in the sequel, often denote a
function Yk (for some k ∈ Z) by U and the function Yk+1 by U1, the
important point being that Yk and Yk+1 satisfy the relation (2.8) below.

2.1.2. We write the equations satisfied by the functions Vp for m ≤
p ≤ n,

d

dx

(

K
dVp

dx

)

+ (ρp G − L)Vp = 0 ,(2.5)
(

K
dVp

dx
− hVp

)

(α) = 0 ,(2.6)
(

K
dVp

dx
+ HVp

)

(β) = 0 ,(2.7)

and multiply the p-th equation by Ap ρk
p . Summing up from p = m to

p = n, we obtain the following lemma.

Lemma 2.2. Let k ∈ Z.

(1) The function Yk satisfies the boundary conditions (1.2) and
(1.3).

(2) The functions Yk and Yk+1 satisfy the relation

(2.8) G Yk+1 = K
d2Yk

dx2
+

dK

dx

dYk

dx
− L Yk .

(3) Under the Assumptions (1.9), the function Yk cannot vanish at
infinite order at a point ξ ∈ [α, β], unless Yk ≡ 0 .

Proof. Assertions (1) and (2) are clear by linearity.

For Assertion (3), assume that Yk 6≡ 0, and that it vanishes at infinite
order at some ξ. Then, according to (2.8) and its successive derivatives,
the function Yk+1 also vanishes at infinite order at ξ, and so does Yℓ

for any ℓ ≥ k. Assume, as indicated above, that An 6= 0. Fixing some
p ≥ 0, we can write, for any ℓ ≥ k,

dpVn

dxp
(ξ) +

n−1
∑

j=m

Aj

An

(

ρj

ρn

)ℓ
dpVj

dxp
(ξ) = 0 .

Since ρn > ρj for m ≤ j ≤ n − 1, letting ℓ tend to infinity, we conclude
that dpVn

dxp (ξ) = 0. This would be true for all p, which is impossible by
Cauchy’s uniqueness theorem, or by Sturm’s argument [33, § II]. �

Lemma 2.3. Under the Assumptions (1.9), let ξ ∈ [α, β] be a zero of
Yk, of order p ≥ 2 . Then, there exist constants Bk,ξ and Bk+1,ξ , and
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smooth functions Rk,ξ and Rk+1,ξ , such that

(2.9)















Yk(x) = Bk,ξ(x − ξ)p + (x − ξ)p+1Rk,ξ(x) ,

Yk+1 = Bk+1,ξ(x − ξ)p−2 + (x − ξ)p−1Rk+1,ξ(x) ,

with Bk,ξ Bk+1,ξ > 0 .

Proof. Assume that ξ is a zero of order p ≥ 2 of Yk, so that

Yk(ξ) = · · · =
dp−1Yk

dxp−1
(ξ) = 0

and
dpYk

dxp
(ξ) 6= 0 .

Taylor’s formula with integral remainder term, see Laplace [16], gives
the existence of some function Rk,ξ such that

Yk(x) = Bk,ξ(x − ξ)p + (x − ξ)p+1Rk,ξ(x) ,

where

Bk,ξ =
1
p!

dpYk

dxp
(ξ) 6= 0 .

Equation (2.8) implies that

(GYk+1)(x) = p(p − 1)Bk,ξ(x − ξ)p−2K(x) + (x − ξ)p−1Sk,ξ(x) ,

for some smooth function Sk,ξ. It follows that

Yk+1(x) = Bk+1,ξ(x − ξ)p−2 + (x − ξ)p−1Rk+1,ξ(x) ,

for some function Rk+1,ξ , with Bk+1,ξ = p(p−1)K(ξ)
G(ξ)

Bk,ξ . In particular,
Bk+1,ξBk,ξ > 0 . This proves the lemma. �

Lemma 2.4. Assume that h ∈ [0, ∞[ , i.e., that the boundary condition
at α is not the Dirichlet boundary condition.
Fix some k, and assume that Yk(α) = 0 . Then, under the Assump-
tions (1.9), α is a zero of Yk of even order, i.e., there exists nk ∈ N\{0}
such that dpYk

dxp (α) = 0 for 0 ≤ p ≤ 2nk − 1 and 6= 0 for p = 2nk .

When H ∈ [0, ∞[ , a similar statement holds at the boundary β.

Proof. Assume that Yk(α) = 0. By Lemma 2.2, Yk does not vanish at
infinite order at α, so that there exists p ≥ 1 with

Yk(α) = · · · =
dp−1Yk

dxp−1
(α) = 0

and
dpYk

dxp
(α) 6= 0 .

Taylor’s formula with integral remainder term gives

Yk(x) = Bk,α(x − α)p + (x − α)p+1Rk,α(x) ,
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where Bk,α = 1
p!

dpYk

dxp (α) 6= 0. The boundary condition at α implies that
dYk

dx
(α) = 0, and hence that p ≥ 2. By Lemma 2.3, we can write

Yk+1(x) = Bk+1,α(x − α)p−2 + (x − α)p−1Rk+1,α(x) ,

with Bk+1,αBk,α > 0 .
If p = 2, then Yk+1(α) 6= 0. If p > 2, one can continue. If p = 2q, one
arrives at

Yk+q(x) = Bk+q,α + (x − α)Rk+q,α(x) ,

with Yk+q(α) = Bk+q,α and Bk+q,αBk,α > 0 .
If p = 2q + 1, one arrives at

Yk+q(x) = Bk+q,α(x − α) + (x − α)2Rk+q,α(x) ,

with Bk+qαBk,α > 0 and dYk+q

dx
(α) = Bk+q,α 6= 0 .

On the other-hand, since Yk+q satisfies (1.2) and Yk+q(α) = 0 , we must
have dYk+q

dx
(α) = 0 . This yields a contradiction and proves that the

case p = 2q + 1 cannot occur. The lemma is proved. �

2.2. Counting zeros. Let U denote one of the functions Yk, and U1

the function Yk+1 which is related to U by (2.8).

Under the Assumptions (1.9), we can consider the multiplicities of the
zeros of the functions U and U1.

From Lemma 2.2, we know that U cannot vanish at infinite order at a
point ξ ∈ [α, β]. If U(ξ) = 0, we define the multiplicity m(U, ξ) of the
zero ξ by

(2.10) m(U, ξ) = min{p |
dpU

dxp
(ξ) 6= 0} .

From Lemma 2.4, we know that the multiplicity m(U, α) is even if
h ∈ [0, ∞[, and that the multiplicity m(U, β) is even if H ∈ [0, ∞[ . We
define the reduced multiplicity of α by

(2.11) m(U, α) =

{ 1
2
m(U, α) if h ∈ [0, ∞[ ,

0 if h = ∞ ,

and a similar formula for the reduced multiplicity of β.

By Lemma 2.2, the function U has finitely many distinct zeros
ξ1(U) < ξ2(U) < · · · < ξp(U) in the interval ]α, β[ . We define the
number of zeros of U in ]α, β[ , counted with multiplicities, by

(2.12) Nm(U, ]α, β[) =
p
∑

j=1

m(U, ξi(U)) ,

and use the notation Nm(U) whenever the interval is clear.
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We define the number of zeros of U in [α, β], counted with multiplicities,
by

(2.13) Nm(U, [α, β]) =
p
∑

j=1

m(U, ξi(U)) + m(U, α) + m(U, β) ,

and use the notation Nm(U) whenever the interval is clear.

We define the number of zeros of U in ]α, β[ (multiplicities not ac-
counted for) by

(2.14) N(U, ]α, β[) = p ,

and use the notation N(U) whenever the interval is clear.

Finally, we define the number of sign changes of U in the interval ]α, β[
by

(2.15) Nv(U, ]α, β[) =
p
∑

j=1

1
2

[

1 − (−1)m(U,ξj(U))
]

.

3. Sturm’s o.d.e. proof of Theorem 1.8

In this section, we work under the Assumptions (1.9). Sturm’s proof
uses a careful analysis of where U1 vanishes and possibly changes sign,
in terms of the zeros of U .

We fix some k ∈ Z and use the notation U = Yk and U1 = Yk+1.

Lemma 3.1. Let ξ < η be two zeros of U in [α, β]. Then, there exists
some aξ,η ∈]ξ, η[ such that U(aξ,η) U1(aξ,η) < 0.

Remark 3.2. We do not assume that ξ, η are consecutive zeros.

Proof. Since U cannot vanish identically in ]ξ, η[ (Lemma 2.2), there
exists some x0 ∈]ξ, η[ such that U(x0) 6= 0. Let ε0 = sign(U(x0)). Then
ε0U takes a positive value at x0, and hence M := sup{ε0U(x) | x ∈
[ξ, η]} is positive and achieved at some aξ,η ∈]ξ, η[. Denote this point by
a for short, then, ε0U(a) > 0, dU

dx
(a) = 0, and ε0

d2U
dx2 (a) ≤ 0. It follows

from (2.8) that ε0U1(a) < 0, or equivalently, that U(a)U1(a) < 0. The
lemma is proved. �

Lemma 3.3. Let ξ ∈]α, β]. Assume that U(ξ) = 0, and that U does
not change sign in ]α, ξ[. Then, there exists some aξ ∈ [α, ξ[ such that
U(aξ)U1(aξ) < 0.
Let η ∈ [α, β[. Assume that U(η) = 0, and that U does not change sign
in ]η, β[. Then, there exists some bη ∈]η, β] such that U(bη)U1(bη) < 0.

Proof. Since U cannot vanish identically in ]α, ξ[ (Lemma 2.2), there
exists x0 ∈]α, ξ[ such that U(x0) 6= 0. Let εξ = sign(U(x0)). Since U
does not change sign in ]α, ξ[, εξU(x) ≥ 0 in ]α, ξ[. Then,

Mξ := sup{εξU(x) | x ∈ [α, ξ]} > 0 .
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Let
aξ := inf{x ∈ [α, ξ] | εξU(x) = Mξ} .

Then aξ ∈ [α, ξ[.

If aξ ∈]α, ξ[, then εξU(aξ) > 0, dU
dx

(aξ) = 0, and εξ
d2U
dx2 (aξ) ≤ 0. By

(2.8), this implies that εξU1(aξ) < 0. Equivalently, U(aξ)U1(aξ) < 0.

Claim 3.4. If aξ = α , then εξU(α) > 0 , h = 0 , dU
dx

(α) = 0, and

εξ
d2U
dx2 (α) ≤ 0 .

Proof of the claim. Assume that aξ = α, then εξU(α) > 0, and hence
h 6= ∞. If h belonged to ]0, ∞[ we would have εξ

dU
dx

(α) = hεξU(α) > 0
and hence aξ > α. It follows that the assumption aξ = α implies
that h = 0 and dU

dx
(α) = 0. If εξ

d2U
dx2 (α) where positive, we would

have aξ > α. Therefore, the assumption aξ = α also implies that
εξ

d2U
dx2 (α) ≤ 0. The claim is proved.

If aξ = α, then by Claim 3.4 and (2.8), we have εξU1(α) < 0. Equiva-
lently, U(α)U1(α) < 0. The first assertion of the lemma is proved. The
proof of the second assertion is similar. �

Remark 3.5. Lemma 3.3 actually holds without the assumption that U
does not change sign in ]α, ξ[.

Proposition 3.6. Let k ∈ Z. Then, under the Assumptions (1.9),

(3.1) Nv(Yk+1, ]α, β[) ≥ Nv(Yk, ]α, β[) ,

i.e., the function Yk+1 changes sign in ]α, β[ at least as many times as
the function Yk.

Proof. We keep the notation U = Yk and U1 = Yk+1. By Lemma 2.2,
the functions U and U1 have finitely many zeros in ]α, β[, with finite
multiplicities. Note that the sign changes of U correspond to the zeros
of U with odd multiplicities. Since α and β are fixed, we skip the
mention to the interval ]α, β[ in the proof, and we examine several
cases.

Case 1. If Nv(U) = 0, there is nothing to prove.

Case 2. Assume that Nv(U) = 1. Then U admits a unique zero
ξ ∈]α, β[ having odd multiplicity. Without loss of generality, we may
assume that U ≥ 0 in ]α, ξ[ and U ≤ 0 in ]ξ, β[ . By Lemma 3.3, there
exist a ∈ [α, ξ[ and b ∈]ξ, β] such that U1(a) < 0 and U1(b) > 0 .

It follows that the function U1 vanishes and changes sign at least once
in ]α, β[ , so that Nv(U1) ≥ 1 = Nv(U), which proves the lemma in
Case 2.

Case 3. If Nv(U) = 2, the function U has exactly two zeros, having
odd multiplicities, ξ and η in ]α, β[ , α < ξ < η < β , and we may
assume that U |]α,ξ[ ≥ 0 , U |]ξ,η[ ≤ 0, and U |]η,β[ ≥ 0. The arguments
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given in Case 2 imply that there exist a ∈ [α, ξ[ such that U1(a) < 0
and b ∈]η, β] such that U1(b) < 0 . In ]ξ, η[ the function U does not
vanish identically and therefore achieves a global minimum at a point
c such that U(c) < 0 , dU

dx
(c) = 0 , and d2U

dx2 (c) ≥ 0 . Equation(2.8) then
implies that U1(c) > 0 .

We can conclude that the function U1 vanishes and changes sign at
least twice in ]α, β[, so that Nv(U1) ≥ 2 = Nv(U).

Case 4. Assume that Nv(U) = p ≥ 3 . Then, U has exactly p zeros,
with odd multiplicities, in ]α, β[ , α < ξ1 < ξ2 < · · · < ξp < β , and one
can assume that

U |]α,ξ1[ ≥ 0 , (−1)pU |]ξp,β[ ≥ 0 , and

(−1)iU |]ξi,ξi+1[ ≥ 0 for 1 ≤ i ≤ p − 1 .

One can repeat the arguments given in the Cases 2 and 3, and conclude
that there exist a0, . . . , ap with a0 ∈ [α, ξ1[ , ai ∈]ξi, ξi+1[ for 1 ≤ i ≤
p − 1, and ap ∈]ξp, β] such that (−1)iU1(ai) < 0 .

We can then conclude that the function U1 vanishes and changes sign
at least p times in ]α, β[ , i.e. that Nv(U1) ≥ p = Nv(U) .

This concludes the proof of Proposition 3.6. �

Proposition 3.7. Let k ∈ Z, U = Yk and U1 = Yk+1. Then, under the
Assumptions (1.9),

(3.2) Nm(Yk+1, ]α, β[) ≥ Nm(Yk, ]α, β[) ,

i.e., counting multiplicities, the number of zeros of Yk+1 in ]α, β[ is not
less than the number of zeros of Yk in ]α, β[ .

Proof. We use the same notation as in the proof of Proposition 3.6,
U = Yk and U1 = Yk+1. If U does not vanish in ]α, β[ , there is nothing
to prove. We now assume that U has at least one zero in ]α, β[ . By
Lemma 2.2, U and Uk have finitely many zeros in ]α, β[ . Let

α < ξ1 < · · · < ξk < β

be the distinct zeros of U , with multiplicities pi = m(U, ξi) for 1 ≤ i ≤
k. Let σ0 be the sign of U in ]α, ξ1[, σi the sign of U in ]ξi, ξi+1[ for
1 ≤ i ≤ k − 1, and σk the sign of U in ]ξk, β[. Note that

σi = sign

(

dpiU

dxpi
(ξi)

)

for 1 ≤ i ≤ k .

By Lemma 3.3, there exist a0 ∈ [α, ξ1[ and ak ∈]ξk, β] such that
U(a0)U1(a0) < 0 and U(ak)U1(ak) < 0. By Lemma 3.1, there exists
ai ∈]ξi, ξi+1[, 1 ≤ i ≤ k − 1, such that U(ai)U1(ai) < 0. Summarizing,

(3.3) For 0 ≤ i ≤ k, U(ai)U1(ai) < 0 .
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We have the relation

(3.4) Nm(U, ]α, β[=
k
∑

i=1

Nm(U, ]ai−1, ai[) =
k
∑

i=1

pi .

For U1, we have the inequality

(3.5) Nm(U1, ]α, β[≥
k
∑

i=1

Nm(U1, ]ai−1, ai[) ,

because U1 might have zeros in the interval ]α, a0[ if a0 > α (resp. in
the interval ]ak, β[ if ak < β).
For 1 ≤ i ≤ k the interval ]ai−1, ai[ contains precisely one zero of U , ξi

with multiplicity pi .

Claim 3.8. For 1 ≤ i ≤ k, Nm(U1, ]ai−1, ai[) ≥ Nm(U, ]ai−1, ai[) = pi .

To prove the claim, we consider several cases.

• If pi = 1 , then U(ai−1)U(ai) < 0 and, by (3.3), U1(ai−1)U1(ai) < 0 ,
so that Nm(U1, ]ai−1, ai[) ≥ 1 .

• If pi ≥ 2, we apply Lemma (2.3) at ξi : there exist real numbers B, B1

and smooth functions R and R1, such that, in a neighborhood of ξi ,

(3.6)

{

U(x) = B(x − ξi)pi + (x − ξi)pi+1R(x) ,

U1(x) = B1(x − ξi)pi−2 + (x − ξi)pi−1R1(x) ,

where sign(B) = sign(B1) = σi .
We now use (3.3) and the fact that sign(U(ai)) = σi .

⋄ If pi ≥ 2 is odd, then σi−1σi = −1 . It follows that

σiU(ai) < 0 and σiU(ai−1) > 0 .

By (3.6), for ε small enough, we also have

σiU(ξi + ε) > 0 and σiU(ξi − ε) < 0 .

This means that U1 vanishes at order pi − 2 at ξi , and at least once in
the intervals ]ai−1, ξi − ε[ and ]ξi + ε, ai[, so that

Nm(U1, ]ai−1, ai[) ≥ pi − 2 + 2 = pi = Nm(U, ]ai−1, ai[) .

⋄ If pi ≥ 2 is even, then σi−1σi = 1 . It follows that

σiU(ai) < 0 and σiU(ai−1) < 0 .

By (3.6), for ε small enough, we also have

σiU(ξi + ε) > 0 and σiU(ξi − ε) > 0 .

This means that U1 vanishes at order pi − 2 at ξi , and at least once in
the intervals ]ai−1, ξi − ε[ and ]ξi + ε, ai[ , so that

Nm(U1, ]ai−1, ai[) ≥ pi − 2 + 2 = pi = Nm(U, ]ai−1, ai[) .

The claim is proved, and the proposition as well. �
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Proposition 3.9. Let k ∈ Z . Then, under the Assumptions (1.9),

(3.7) Nm(Yk+1, [α, β]) ≥ Nm(Yk, [α, β]) ,

i.e., counting multiplicities of interior zeros, and reduced multiplicities
of α and β, the number of zeros of Yk+1 in [α, β] is not less than the
number of zeros of Yk in [α, β] .

Proof. Recall that the reduced multiplicity of α (resp. β) is zero
if Dirichlet condition holds at α (resp. at β) or if U(α) 6= 0 (resp.
U(β) 6= 0). Furthermore, according to Lemma 2.4, if h ∈ [0, ∞[ and
U(α) = 0 (resp. if H ∈ [0, ∞[ and U(β) = 0), then m(U, α) = 2p (resp.
m(U, β) = 2q).

Case 1. Assume that Nm(U, ]α, β[) = 0 . Without loss of generality,
we may assume that U > 0 in ]α, β[ .

• If U(α) 6= 0 and U(β) 6= 0, there is nothing to prove.

• Assume that U(α) = U(β) = 0. Then, there exists a ∈]α, β[ such
that U(a) = sup{U(x) | x ∈ [α, β]}, with U(a) > 0, dU

dx
(a) = 0 and

d2U
dx2 (a) ≤ 0. It follows from (2.8) that U1(a) < 0, and that

(3.8) Nm(U1, [α, β] = N(U1, [α, a]) + N(U1, [a, β]) .

It now suffices to look separately at the intervals [α, a] and [a, β] .
⋄ Interval [α, a]. If the Dirichlet condition holds at α, there is nothing
to prove. If h ∈ [0, ∞[, m(U, α) = 2p ≥ 2 and, by Lemma 2.3,

(3.9)

U(x) = B(x − α)2p + (x − α)2p+1R(x) ,

U1(x) = B1(x − α)2p−2 + (x − α)2p−1R1(x) ,

with B > 0 and B1 > 0 .

It follows that U1(α + ε) > 0 for any positive ε small enough so that
Nm(U1, ]α, a[) ≥ 1. It follows that

(3.10)

Nm(U1, [α, a]) = m(U1, α) + Nm(U1, ]α, a[) ≥ p − 1 + 1 ,

i.e.

Nm(U1, [α, a]) ≥ N(U, [α, a]) .

⋄ Interval [a, β]. The proof is similar.

• Assume that U(α) = 0 and U(β) 6= 0 . The proof is similar to the
previous one with a ∈]a, β] .

• Assume that U(α) 6= 0 and U(β) = 0 . The proof is similar to the
previous one with a ∈ [α, a[ .

Case 2. Assume that Nm(U, ]α, β[) ≥ 1 .

• If U(α) 6= 0 (resp. U(β) 6= 0), there is nothing to prove for the
boundary α (resp. β).
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• If U(α) = 0 (resp. U(β) = 0), the number a0 (resp. ak) which
appears in the proof of Proposition 3.7 belongs to the open interval
]α, ξ1[ (resp. to the open interval ]ξk, β[), where ξ1 (resp. ξk) is the
smallest (resp. largest) zero of U in ]α, β[. We can then apply the
proof of Step. 1 to the interval [α, a0] (resp. to the interval [ak, β])
to prove that Nm(U1, [α, a0]) ≥ Nm(U, [α, a0]) (resp. to prove that
Nm(U1, [ak, β]) ≥ Nm(U, [ak, β]). This proves Proposition 3.9. �

We can now prove the following refined version of Theorem 1.8.

Theorem 3.10. With the notation of Sections 1 and 2.2, let Y be the
linear combination

(3.11) Y =
n
∑

p=m

ApVp ,

where 1 ≤ m ≤ n, and where {Ap, m ≤ p ≤ n} are real constants such
that A2

m +· · ·+A2
n 6≡ 0, which is equivalent to saying that Y 6≡ 0. Then,

(3.12)

(m − 1) ≤ Nv(Y, ]α, β[) ≤ (n − 1) ,

(m − 1) ≤ Nm(Y, ]α, β[) ≤ (n − 1) ,

(m − 1) ≤ Nm(Y, [α, β]) ≤ (n − 1) .

Proof. Let N(V ) be any of the above functions. We may of course
assume that Am 6= 0 and An 6= 0. In the preceding lemmas, we have
proved that N(Yk+1) ≥ N(Yk) for any k ∈ Z, which can also be rewrit-
ten as

(3.13) N(Y(−k)) ≤ N(Y ) ≤ N(Yk) for any k ≥ 1 .

Letting k tend to infinity, we see that

(3.14) N(Vm) ≤ N(Y ) ≤ N(Vn) ,

and we can apply Theorem 1.3. �

Remark. For a complete proof of the limiting argument when k tends
to infinity, we refer to Appendix A.

4. Liouville’s proof of Sturm’s theorem

We keep the notation of Section 1.

Remark 4.1. In his proof, Liouville [19] only considers the zeros in the
open interval ]α, β[ .

Let 1 ≤ m ≤ n, and let Y =
∑n

j=m AjVj be a linear combination of
eigenfunctions of the eigenvalue problem (1.1)–(1.3).

Assume that Y 6≡ 0, i.e.,
∑n

j=m A2
j 6= 0 . Without loss of generality, we

may assume that AmAn 6= 0 .

Theorem 4.2. Counting multiplicities, the function Y has, in the in-
terval ]α, β[ ,
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(1) at most (n − 1) zeros and,
(2) at least (m − 1) zeros.

Proof. Liouville uses the following version of Rolle’s theorem (Michel
Rolle (1652-1719) was a French mathematician). This version of Rolle’s
theorem seems to go back to Cauchy and Lagrange.

Lemma 4.3. Let f be a function in ]α0, β0[ . Assume that f(x′) =
f(x′′) = 0 for some x′, x′′, α0 < x′ < x′′ < β0 .

(1) If the function f is differentiable and has ν −1 distinct zeros in
the interval ]x′, x′′[ , then the derivative f ′ has at least ν distinct
zeros in ]x′, x′′[ .

(2) If the function f is smooth and has µ − 1 zeros counted with
multiplicities in the interval ]x′, x′′[ , then the derivative f ′ has
at least µ zeros counted with multiplicities in ]x′, x′′[ .

Proof of the lemma. Call x1 < x2 < · · · xν−1 the distinct zeros of
f in ]x′, x′′[ . Since f(x′) = f(x′′) = 0 , by Rolle’s theorem [27], the
function f ′ vanishes at least once in each open interval determined by
the xj , 1 ≤ j ≤ ν − 1 , as well as in the intervals ]x′, x1[ and ]xν−1, x′′[ .
It follows that f ′ has at least ν distinct zeros in ]x′, x′′[ , which proves
the first assertion.

Call mj the multiplicity of the zero xj , 1 ≤ j ≤ ν − 1 . Then f ′ has at
least ν zeros, one in each of the open intervals determined by x′, x′′ and
the xj ’s, and has a zero at each xj with multiplicity mj − 1 , provided
that mj > 1. It follows that the number of zeros of f ′ in ]x′, x′′[ ,
counting multiplicities, is at least

ν−1
∑

j=1

(mj − 1) + ν =
ν−1
∑

j=1

mj + 1 ,

which proves the second assertion. �

4.1. Proof of the assertion “Y has at most (n − 1) zeros in

]α, β[, counting multiplicities”. Write (1.1) for V1 and for Vp, for
some m ≤ p ≤ n. Multiply the first equation by −Vp, the second by
V1, and add the resulting equations. Then

(4.1) V1
d

dx

(

K
dVp

dx

)

− Vp

d

dx

(

K
dV1

dx

)

+ (ρp − ρ1)GV1Vp = 0 .

Use the identity

(4.2) V1
d

dx

(

K
dVp

dx

)

− Vp

d

dx

(

K
dV1

dx

)

=
d

dx

(

V1K
dVp

dx
− VpK

dV1

dx

)

,

and integrate from α to t to get the identity

(4.3) (ρ1 − ρp)
∫ t

α
GV1Vp dx = K(t)

(

V1(t)
dVp

dx
(t) − Vp(t)

dV1

dx
(t)

)

.
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Here we use the boundary condition (1.2) which implies that
(

V1(α)
dVp

dx
(α) − Vp(α)

dV1

dx
(α)

)

= 0 .

Multiply the preceding identity by Ap and sum for p from m to n to
obtain

(4.4)
∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx = K(t)

(

V1
dY

dx
− Y

dV1

dx

)

(t) .

or

(4.5)
∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx = K(t)V 2
1 (t)

d

dt

(

Y

V1

)

(t) ,

where we have used the fact that the function V1 does not vanish in
the interval ]α, β[ .

Let Ψ(x) = Y
V1

(x). The zeros of Y in ]α, β[ are the same as the zeros
of Ψ. Let µ be the number of zeros of Y , counted with multiplicities.
By Lemma 4.3, Assertion (2), dΨ

dx
has at least µ − 1 zeros in ]α, β[ , and

hence so does the left-hand side of (4.5),
∫ t

α
GV1

n
∑

p=m

(ρ1 − ρp)ApVp dx .

On the other hand, this function vanishes at α and β (because of the
boundary condition (1.3) or orthogonality). By Lemma 4.3, its deriv-
ative,

(4.6) V1

n
∑

p=m

(ρ1 − ρp)ApVp

has at least µ zeros counted with multiplicities in ]α, β[ . We have
proved the following

Lemma 4.4. If the function Y =
∑n

p=m ApVp has at least µ zeros
counted with multiplicities in the interval ]α, β[ , then the function
Y1 =

∑n
p=m(ρ1 − ρp)ApVp has at least µ zeros, counted with multiplici-

ties, in ]α, β[ .

Applying this lemma iteratively, we deduce that if Y has at least µ
zeros counted with multiplicities in ]α, β[ , then, for any k ≥ 1, the
function

(4.7) Yk =
n
∑

p=m

(ρ1 − ρp)kApVp

has at least µ zeros, counted with multiplicities, in ]α, β[ .

Remark 4.5. Applying Lemma 4.3, Assertion (1), we obtain a result on
the number of zeros, multiplicities not accounted for.
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We may of course assume that the coefficient An is non-zero. The above
assertion can be rewritten as the statement:

For all k ≥ 0, the equation

(4.8) Am

(

ρm − ρ1

ρn − ρ1

)k

Vm + · · · + An−1

(

ρn−1 − ρ1

ρn − ρ1

)k

Vn−1 + AnVn = 0

has at least µ solutions in ]α, β[, counting multiplicities.
Letting k tend to infinity, and using the fact that Vn has exactly (n−1)
zeros in ]α, β[ , this implies that µ ≤ (n − 1). This proves the first
assertion. �

4.2. Proof of the assertion “Y has at least (m − 1) zeros in

]α, β[, counting multiplicities”. We have seen that the number of
zeros of Yk is less than or equal to the number of zeros of the function
Yk+1. This assertion actually holds for any k ∈ Z and can also be
rewritten as, for any k ≥ 0,

(4.9) Nm(Y−k) ≤ Nm(Y ) ,

where, for k ≥ 0,

(4.10) Y−k = Am(ρm − ρ1)−kVm + · · · + An(ρn − ρ1)−kVn

and we can again let k tend to infinity. The second assertion is proved
and Theorem 4.2 as well. �

4.3. Liouville’s second approach to the second part of Theo-

rem 4.2. If the function Y has µ1 distinct zeros, then it changes sign µ
times, with µ1 ≥ µ , at points ai which satisfy α < a1 < · · · < aµ < β .

Claim 4.6. The function Y changes sign at least (m − 1) times in the
interval ]α, β[.

Proof of the claim. Assume that µ ≤ (m−2). Consider the function

(4.11) x 7→ W (x) := ∆(a1, . . . , aµ; x) ,

where the function ∆ is defined by the determinant

(4.12)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V1(a1) V1(a2) · · · V1(aµ) V1(x)
V2(a1) V2(a2) · · · V2(aµ) V2(x)

...
...

...
...

...
Vµ+1(a1) Vµ+1(a2) · · · Vµ+1(aµ) Vµ+1(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The function W vanishes at the points ai, 1 ≤ i ≤ µ. According to the
first part Theorem 4.2, W being a linear combination of the first µ + 1
eigenfunctions, vanishes at most µ times in ]α, β[, counting multiplic-
ities. This implies that each zero ai of W has order one, and that W
does not have any other zero in ]α, β[ . It follows that the function Y W
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vanishes only at the points {ai}, and that it does not change sign. We
can assume that Y W ≥ 0 . On the other hand, we have

(4.13)
∫ β

α
GY W dx = 0 ,

because Y involves the functions Vp with p ≥ m and W the functions
Vq with q ≤ µ + 1 ≤ m − 1 . This gives a contradiction. �

Remark 4.7. Liouville does actually not use the determinant (4.12),
but a similar approach, see [18, p. 259], Lemme 1er.

5. Sturm’s results under weaker assumptions

We proved Theorems 3.10 and 4.2 under the Assumptions (1.9). In
this section, we consider the weaker assumptions

(5.1)



























[α, β] ⊂]α0, β0[ ,

K ∈ C1(]α0, β0[) ,

G, L ∈ C0(]α0, β0[) ,

K, G, L > 0 on ]α0, β0[ .

Under these assumptions, the functions Vj are C2 on ]α0, β0[. This
follows easily for example from Liouville’s existence proof [18], and we
have the following lemma, whose proof is analogous to the proof of
Lemma 2.2.

Lemma 5.1. Let k ∈ Z .

(1) The function Yk satisfies the boundary conditions (1.2) and
(1.3).

(2) The functions Yk and Yk+1 satisfy the relation

(5.2) G Yk+1 = K
d2Yk

dx2
+

dK

dx

dYk

dx
− L Yk .

(3) Under the Assumptions (5.1), the function Yk cannot vanish
identically on an open interval ]α1, β1[⊂]α0, β0[, unless Yk ≡ 0 .

In Subsection 4.1, we have used Lemma 4.3 (2) which uses the fact
that the functions Vj are C∞. If the functions Vj are only C2, we can
apply Lemma 4.3 (1). It is easy to conclude that Liouville’s proofs in
Subsection 4.1 and 4.2 go through, under the weaker Assumptions (5.1),
if we only count distinct zeros, see (2.13). More precisely, we can prove
the following claim.

Claim 5.2. Under the Assertions (5.1), for any k ∈ Z , if the function
Yk has at least µ distinct zeros in the interval ]α, β[ , then the function
Yk+1 has at least µ distinct zeros in the interval ]α, β[ .
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We can then deduce from this claim, as in Section 4, that a linear
combination Y =

∑n
j=m AjVj has at most (n − 1) distinct zeros (in

particular it has finitely many zeros).
Once this result secured, we can define zeros at which Y changes sign
(without using the multiplicity) and apply Sturm’s argument to con-
clude that the function Y must change sign at least (m − 1) times.

Appendix A. The limiting argument in (4.8)

Recall that we assume the An 6= 0. Define

(A.1) ω =

(

ρn−1 − ρ1

ρn − ρ1

)k

.

One can rewrite (4.8) as

Vn(x) + ωΠ(x) = 0 ,

where

(A.2) Π(x) =
n−1
∑

p=m

Ap

An

(

ρp − ρ1

ρn−1 − ρ1

)k

Vp .

It follows that Π is uniformly bounded by

(A.3) |Π(x)| ≤ M := n max
p

∣

∣

∣

∣

Ap

An

∣

∣

∣

∣

max
p

sup
[α,β]

|Vp| .

Similarly,

(A.4)

∣

∣

∣

∣

∣

dΠ
dx

(x)

∣

∣

∣

∣

∣

≤ N := n max
p

∣

∣

∣

∣

Ap

An

∣

∣

∣

∣

max
p

sup
[α,β]

|
dVp

dx
| .

Call ξ1 < ξ2 < · · · < ξn−1 the zeros of the function Vn in the interval
]α, β[.

• Assume that Vn(α) 6= 0 and Vn(β) 6= 0 .
Since dVn

dx
(ξi) 6= 0 , there exist δ1, ε1 > 0 such that |dVn

dx
(x)| ≥ ε1 for

x ∈ [ξi − δ1, ξi + δ1] , and |Vn(x)| ≥ ε1 in [α, β] \ ∪ ]ξi − δ1, ξi + δ1[ .
For k large enough, we have ωM, ωN ≤ ε1/2. It follows that in the
interval [ξi − δ1, ξi + δ1] ,

∣

∣

∣

∣

∣

d

dx
(Vn + ωΠ)

∣

∣

∣

∣

∣

≥ |
dVn

dx
| − ωN ≥ ε1/2 .

Furthermore,

Vn(ξi ± δ1) + ωΠ(ξi ± δ1) ≥ |Vn(ξi ± δ1)| − ωM ≥ ε1/2 .

Since Vn(ξi + δ1)Vn(ξi − δ1) < 0 , we can conclude that the function
Vn + ωΠ has exactly one zero in each interval ]ξi − δ1, ξi + δ1[ .
In [α, β] \ ∪ ]ξi − δ1, ξi + δ1[ , we have

|Vn(x) + ωΠ(x)| ≥ |Vn(x)| − ωM ≥ ε1/2 ,

which implies that Vn(x) + ωΠ(x) 6= 0 .
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• Assume that Vn(α) = 0 and Vn(β) 6= 0 . This corresponds to the
case h = +∞ and H 6= +∞. Hence the Vj verify Dirichlet at α and Π
verifies Dirichlet at α. Observing that V ′

n(α) 6= 0, it is immediate to see
that there exists δ1 > 0, such that, for k large enough, Vn(x) + ωΠ(x)
has only α as zero in [α, α + δ1].

• The other cases are treated in the same way. �
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Appendix B. Translations for the citations from [33, 34]

Citation from [33, Introduction].

On ne sait [ces équations] les
intégrer que dans un très petit
nombre de cas particuliers hors
desquels on ne peut pas même
en obtenir une intégrale pre-
mière ; et lors même qu’on pos-
sède l’expression de la fonction
qui vérifie une telle équation,
soit sous forme finie, soit en
série, soit en intégrales définies
ou indéfinies, il est le plus sou-
vent difficile de reconnaître dans
cette expression la marche et
les propriétés caractéristiques
de cette fonction. . . .
S’il importe de pouvoir déter-
miner la valeur de la fonction
inconnue pour une valeur isolée
quelconque de la variable dont
elle dépend, il n’est pas moins
nécessaire de discuter la marche
de cette fonction, ou en d’autres
termes, d’examiner la forme et
les sinuosités de la courbe dont
cette fonction serait l’ordonnée
variable, en prenant pour ab-
scisse la variable indépendante.
Or on peut arriver à ce but par
la seule considération des équa-
tions différentielles elles-mêmes,
sans qu’on ait besoin de leur
intégration. Tel est l’objet du
présent mémoire. . . .

One only knows how to inte-
grate these equations in a very
small number of particular cases
and one can otherwise not even
obtain a first integral; even
when one knows the expression
of the function which satisfies
such an equation, in finite form,
as a series, as integrals either
definite or indefinite, it is most
generally difficult to recognize
in this expression the behaviour
and the characteristic proper-
ties of this function. . . .

Although it is important to be
able to determine the value of
the unknown function for an iso-
lated value of the variable it de-
pends upon, it is not less nec-
essary to discuss the behaviour
of this function, or otherwise
stated, the form and the twists
and turns of the curve whose
ordinate would be the func-
tion and the abscissa the in-
dependent variable. It turns
out that one can achieve this
goal by the sole consideration of
the differential equation them-
selves, without having to inte-
grate them. This is the purpose
of the present memoir. . . .
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Citation from [33, p. 108].

L’intégrale complète de
l’équation (I) doit contenir
deux constantes arbitraires,
pour lesquelles on peut prendre
les valeurs de V et de dV

dx

correspondantes à une valeur
particulière de x. Lorsque ces
valeurs sont fixées, la fonction
V est entièrement définie par
l’équation (I), elle a une valeur
déterminée et unique pour
chaque valeur de x.

The complete integral of equa-
tion (I) must contain two arbi-
trary constants, for which one
can take the values of V and of
dV
dx

corresponding to some par-
ticular value of x. Once these
values are fixed, the function V
is fully determined by equation
(I), it has a uniquely determined
value for each value of x.

Citation from [34, p. 379].

M. Liouville a démontré directe-
ment ce théorème, qui n’était
pour moi qu’un corollaire du
précédent, sans s’occuper du cas
particulier où la fonction serait
nulle à l’une des extrémités de
la barre. J’en ai aussi trouvé
après lui une autre démonstra-
tion directe que je donne dans ce
mémoire. M. Liouville a fait us-
age du même théorème dans un
très beau Mémoire qu’il a pub-
lié dans le numéro de juillet de
son journal et qui a pour ob-
jet le développement d’une fonc-
tion arbitraire en une série com-
posée de fonctions V que nous
avons considérées.

M. Liouville gave a direct proof
of this theorem, which for me
only was a corollary of the pre-
ceding one, without taking care
of the particular case in which
the function vanishes at one of
the extremities of the bar. I
have also found, after him, an-
other direct proof which I give
in this memoir. M. Liouville
made use of the same theorem
in a very nice memoir which he
published in the July issue of
his journal and which deals with
the expansion of an arbitrary
function into a series made of
the functions V which we have
considered.
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