
HAL Id: hal-01541584
https://hal.science/hal-01541584v1

Submitted on 19 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing egalitarian performance in the side-effects
model of colocation for data center resource

management
Fanny Pascual, Krzysztof Rzadca

To cite this version:
Fanny Pascual, Krzysztof Rzadca. Optimizing egalitarian performance in the side-effects model of
colocation for data center resource management. 13th Workshop on Models and Algorithms for Plan-
ning and Scheduling Problems (MAPSP 2017), Jun 2017, Seeon-Seebruck, Germany. �hal-01541584�

https://hal.science/hal-01541584v1
https://hal.archives-ouvertes.fr

Optimizing egalitarian performance in the side-effects model

of colocation for data center resource management

Fanny Pascual ∗ Krzysztof Rzadca (Speaker) †

1 Introduction

The modern data center, the back-bone of cloud computing, redefines how industry and
academia use computers. In data centers, up to dozens of tasks are colocated on a single
physical machine [1]. Machines are used more efficiently, but, despite significant advances
in both OS-level fairness and VM hypervisors, tasks’ performance deteriorates [2], as
colocated tasks compete for shared resources. Suspects include difficulties in sharing
CPU cache or the memory bandwidth. As tasks are heterogeneous (CPU-, memory-,
network- or disk-intensive), the resulting performance dependencies are complex. The
data center resource manager should thus try to colocate tasks that are compatible, i.e.,
that use different kinds of resources — it should thus optimize tasks’ performance. This,
however, requires a performance model.

Our side-effects model [3] bridges the gap between colocation in datacenters and clas-
sic scheduling, bulk of which has been developed for non-shared machines. Rather than
trying to predict tasks’ performance from OS-level metrics, we abstract by characterizing
a task by two characteristics: its type (e.g.: a database, or a computationally-intensive
job) and its load relative to other tasks of the same type (e.g.: number of requests per
second). For each type we then use a performance function mapping a vector of loads (an
element being the total load of tasks of a certain type) to a type-relevant performance
metric. As datacenters execute multiple instances of tasks we believe that such function
can be inferred by a monitoring module matching task’s reported performance (such as
the 95th percentile response time) with observed or reported loads.

2 Our Results

In this work, we consider optimization of the worst-off performance (analogous to
makespan in classic multiprocessor scheduling problem, P ||Cmax). We use a linear per-
formance function: on each machine, the influence a type t′ has on t’s performance is a
product of the load of type t′ and a coefficient αt′,t. The coefficient αt′,t describes how
compatible t′ load is with t performance (the coefficient is similar to interference/affinity
metrics proposed in [2]). Low values (0 ≤ αt′,t < 1) describe small impact, thus compati-
ble types (e.g.: colocating a memory-intensive and a CPU-intensive task): it is preferable

∗fanny.pascual@lip6.fr. Sorbonne Universités, UPMC (Université Paris 6), LIP6, CNRS, UMR
7606, Paris, France.
†krz@mimuw.edu.pl. Institute of Informatics University of Warsaw, Warsaw, Poland.

1

to colocate a task t with tasks of the other type t′, rather than with other tasks of its
own type t. High values (αt′′,t > 1) denote incompatible types competing for resources,
i.e., less incentive to colocate (at least from the tasks’ owner’s point of view).

Our main results are the following (see [5] for proofs). We prove that the notion
of type adds complexity, as makespan minimization with unit tasks P |pi = 1|Cmax (a
polynomially solvable variant of P ||Cmax) becomes NP-hard and hard to approximate
when the number of types T is not constant.

We then show how to cope with that added complexity. First, we propose a PTAS
for a constant T . Our PTAS has a similar structure to the PTAS for P ||Cmax [4]. The
two main differences are the treatment of short tasks (which we pack into containers,
and not simply greedy schedule); and sizing of long tasks.

We also propose a fast greedy approximation algorithm. The algorithm groups tasks
by clusters. All the tasks of the same type are in the same cluster. Two tasks of type i and
j are in the same cluster iff their types are compatible (αi,j ≤ 1 and αj,i ≤ 1). Clusters
are processed one by one. Each cluster is dedicated at least one machine. The algorithm
puts tasks from a cluster on a machine until machine load reaches max{2L,L + pmax},
then opens the next machine (L = W/(m− T)).

To characterize in detail the optimal schedules in function of the coefficient α, we
study a series of special cases with two types. We identify two tipping points, i.e., values
of α for which the shape of the optimal schedule changes. For 0 ≤ α ≤ 1, all machines
should be shared between types (if possible). For 1 < α < 2, there are some instances
that share all machines, but for divisible load (i.e., many small tasks), there is at most
one shared machine. Finally, for α ≥ 2 at most one machine is shared. For each case,
we show fast approximation algorithms.

In addition to worst-case performance proofs, we test our algorithm by simulation
on a trace derived from one of Google clusters. We show that our algorithms lead to
more efficient allocations compared with P ||Cmax baseline.

References

[1] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity
and dynamicity of clouds at scale: Google trace analysis,” in SoCC, Proc. ACM,
2012.

[2] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing the
impact of cpu pinning and partial cpu loads on performance and energy efficiency,”
in CCGrid Proc., 2015.

[3] F. Pascual and K. Rzadca, “Partition with side effects,” in HiPC 2015, Procs., 2015.

[4] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation algorithms for
scheduling problems theoretical and practical results,” JACM, vol. 34, no. 1, pp.
144–162, 1987.

[5] F. Pascual and K. Rzadca, “Optimizing egalitarian performance in the side-effects
model of colocation for data center resource management,” arXiv:1610.07339, 2016.

2

