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Optimizing egalitarian performance in the side-effects model

of colocation for data center resource management

Fanny Pascual ∗ Krzysztof Rzadca (Speaker) †

1 Introduction

The modern data center, the back-bone of cloud computing, redefines how industry and
academia use computers. In data centers, up to dozens of tasks are colocated on a single
physical machine [1]. Machines are used more efficiently, but, despite significant advances
in both OS-level fairness and VM hypervisors, tasks’ performance deteriorates [2], as
colocated tasks compete for shared resources. Suspects include difficulties in sharing
CPU cache or the memory bandwidth. As tasks are heterogeneous (CPU-, memory-,
network- or disk-intensive), the resulting performance dependencies are complex. The
data center resource manager should thus try to colocate tasks that are compatible, i.e.,
that use different kinds of resources — it should thus optimize tasks’ performance. This,
however, requires a performance model.

Our side-effects model [3] bridges the gap between colocation in datacenters and clas-
sic scheduling, bulk of which has been developed for non-shared machines. Rather than
trying to predict tasks’ performance from OS-level metrics, we abstract by characterizing
a task by two characteristics: its type (e.g.: a database, or a computationally-intensive
job) and its load relative to other tasks of the same type (e.g.: number of requests per
second). For each type we then use a performance function mapping a vector of loads (an
element being the total load of tasks of a certain type) to a type-relevant performance
metric. As datacenters execute multiple instances of tasks we believe that such function
can be inferred by a monitoring module matching task’s reported performance (such as
the 95th percentile response time) with observed or reported loads.

2 Our Results

In this work, we consider optimization of the worst-off performance (analogous to
makespan in classic multiprocessor scheduling problem, P ||Cmax). We use a linear per-
formance function: on each machine, the influence a type t′ has on t’s performance is a
product of the load of type t′ and a coefficient αt′,t. The coefficient αt′,t describes how
compatible t′ load is with t performance (the coefficient is similar to interference/affinity
metrics proposed in [2]). Low values (0 ≤ αt′,t < 1) describe small impact, thus compati-
ble types (e.g.: colocating a memory-intensive and a CPU-intensive task): it is preferable
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to colocate a task t with tasks of the other type t′, rather than with other tasks of its
own type t. High values (αt′′,t > 1) denote incompatible types competing for resources,
i.e., less incentive to colocate (at least from the tasks’ owner’s point of view).

Our main results are the following (see [5] for proofs). We prove that the notion
of type adds complexity, as makespan minimization with unit tasks P |pi = 1|Cmax (a
polynomially solvable variant of P ||Cmax) becomes NP-hard and hard to approximate
when the number of types T is not constant.

We then show how to cope with that added complexity. First, we propose a PTAS
for a constant T . Our PTAS has a similar structure to the PTAS for P ||Cmax [4]. The
two main differences are the treatment of short tasks (which we pack into containers,
and not simply greedy schedule); and sizing of long tasks.

We also propose a fast greedy approximation algorithm. The algorithm groups tasks
by clusters. All the tasks of the same type are in the same cluster. Two tasks of type i and
j are in the same cluster iff their types are compatible (αi,j ≤ 1 and αj,i ≤ 1). Clusters
are processed one by one. Each cluster is dedicated at least one machine. The algorithm
puts tasks from a cluster on a machine until machine load reaches max{2L,L + pmax},
then opens the next machine (L = W/(m− T )).

To characterize in detail the optimal schedules in function of the coefficient α, we
study a series of special cases with two types. We identify two tipping points, i.e., values
of α for which the shape of the optimal schedule changes. For 0 ≤ α ≤ 1, all machines
should be shared between types (if possible). For 1 < α < 2, there are some instances
that share all machines, but for divisible load (i.e., many small tasks), there is at most
one shared machine. Finally, for α ≥ 2 at most one machine is shared. For each case,
we show fast approximation algorithms.

In addition to worst-case performance proofs, we test our algorithm by simulation
on a trace derived from one of Google clusters. We show that our algorithms lead to
more efficient allocations compared with P ||Cmax baseline.
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