Fanny Pascual
email: fanny.pascual@lip6.fr.

Speaker) † Krzysztof Rzadca

Optimizing egalitarian performance in the side-effects model of colocation for data center resource management

Introduction

The modern data center, the back-bone of cloud computing, redefines how industry and academia use computers. In data centers, up to dozens of tasks are colocated on a single physical machine [START_REF] Reiss | Heterogeneity and dynamicity of clouds at scale: Google trace analysis[END_REF]. Machines are used more efficiently, but, despite significant advances in both OS-level fairness and VM hypervisors, tasks' performance deteriorates [START_REF] Podzimek | Analyzing the impact of cpu pinning and partial cpu loads on performance and energy efficiency[END_REF], as colocated tasks compete for shared resources. Suspects include difficulties in sharing CPU cache or the memory bandwidth. As tasks are heterogeneous (CPU-, memory-, network-or disk-intensive), the resulting performance dependencies are complex. The data center resource manager should thus try to colocate tasks that are compatible, i.e., that use different kinds of resources -it should thus optimize tasks' performance. This, however, requires a performance model.

Our side-effects model [START_REF] Pascual | Partition with side effects[END_REF] bridges the gap between colocation in datacenters and classic scheduling, bulk of which has been developed for non-shared machines. Rather than trying to predict tasks' performance from OS-level metrics, we abstract by characterizing a task by two characteristics: its type (e.g.: a database, or a computationally-intensive job) and its load relative to other tasks of the same type (e.g.: number of requests per second). For each type we then use a performance function mapping a vector of loads (an element being the total load of tasks of a certain type) to a type-relevant performance metric. As datacenters execute multiple instances of tasks we believe that such function can be inferred by a monitoring module matching task's reported performance (such as the 95th percentile response time) with observed or reported loads.

Our Results

In this work, we consider optimization of the worst-off performance (analogous to makespan in classic multiprocessor scheduling problem, P ||C max). We use a linear performance function: on each machine, the influence a type t has on t's performance is a product of the load of type t and a coefficient α t ,t . The coefficient α t ,t describes how compatible t load is with t performance (the coefficient is similar to interference/affinity metrics proposed in [START_REF] Podzimek | Analyzing the impact of cpu pinning and partial cpu loads on performance and energy efficiency[END_REF]). Low values (0 ≤ α t ,t < 1) describe small impact, thus compatible types (e.g.: colocating a memory-intensive and a CPU-intensive task): it is preferable to colocate a task t with tasks of the other type t , rather than with other tasks of its own type t. High values (α t ,t > 1) denote incompatible types competing for resources, i.e., less incentive to colocate (at least from the tasks' owner's point of view).

Our main results are the following (see [START_REF] Pascual | Optimizing egalitarian performance in the side-effects model of colocation for data center resource management[END_REF] for proofs). We prove that the notion of type adds complexity, as makespan minimization with unit tasks P |p i = 1|C max (a polynomially solvable variant of P ||C max) becomes NP-hard and hard to approximate when the number of types T is not constant.

We then show how to cope with that added complexity. First, we propose a PTAS for a constant T . Our PTAS has a similar structure to the PTAS for P ||C max [START_REF] Hochbaum | Using dual approximation algorithms for scheduling problems theoretical and practical results[END_REF]. The two main differences are the treatment of short tasks (which we pack into containers, and not simply greedy schedule); and sizing of long tasks.

We also propose a fast greedy approximation algorithm. The algorithm groups tasks by clusters. All the tasks of the same type are in the same cluster. Two tasks of type i and j are in the same cluster iff their types are compatible (α i,j ≤ 1 and α j,i ≤ 1). Clusters are processed one by one. Each cluster is dedicated at least one machine. The algorithm puts tasks from a cluster on a machine until machine load reaches max{2L, L + p max }, then opens the next machine (L = W/(m -T)).

To characterize in detail the optimal schedules in function of the coefficient α, we study a series of special cases with two types. We identify two tipping points, i.e., values of α for which the shape of the optimal schedule changes. For 0 ≤ α ≤ 1, all machines should be shared between types (if possible). For 1 < α < 2, there are some instances that share all machines, but for divisible load (i.e., many small tasks), there is at most one shared machine. Finally, for α ≥ 2 at most one machine is shared. For each case, we show fast approximation algorithms.

In addition to worst-case performance proofs, we test our algorithm by simulation on a trace derived from one of Google clusters. We show that our algorithms lead to more efficient allocations compared with P ||C max baseline.