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Purpose: The microenvironment of breast tumors plays a critical role in tumorigenesis. As long as
the structural integrity of the microenvironment is upheld, the tumor is suppressed. If tissue structure
is lost through disruptions in the normal cell cycle, the microenvironment may act as a tumor pro-
moter. Therefore, the properties that distinguish between healthy and tumorous tissues may not be
solely in the tumor characteristics but rather in surrounding non-tumor tissue. The goal of this paper
was to show preliminary evidence that tissue disruption and loss of homeostasis in breast tissue
microenvironment and breast bilateral asymmetry can be quantitatively and objectively assessed from
mammography via a localized, wavelet-based analysis of the whole breast.
Methods: A wavelet-based multifractal formalism called the 2D Wavelet Transform Modulus Max-
ima (WTMM) method was used to quantitate density fluctuations from mammographic breast tissue
via the Hurst exponent (H). Each entire mammogram was cut in hundreds of 360 9 360 pixel subre-
gions in a gridding scheme of overlapping sliding windows, with each window boundary separated
by 32 pixels. The 2D WTMM method was applied to each subregion individually. A data mining
approach was set up to determine which metrics best discriminated between normal vs. cancer cases.
These same metrics were then used, without modification, to discriminate between normal vs. benign
and benign vs. cancer cases.
Results: The density fluctuations in healthy mammographic breast tissue are either monofractal

anti-correlated (H < 1/2) for fatty tissue or monofractal long-range correlated (H>1/2) for dense tis-
sue. However, tissue regions with H~1/2, as well as left vs. right breast asymetries, were found prefer-
ably in tumorous (benign or cancer) breasts vs. normal breasts, as quantified via a combination

metric yielding a P-value ~ 0.0006. No metric considered showed significant differences between
cancer vs. benign breasts.
Conclusions: Since mammographic tissue regions associated with uncorrelated (H~1/2) density fluc-
tuations were predominantly in tumorous breasts, and since the underlying physical processes associ-
ated with a H~1/2 signature are those of randomness, lack of spatial correlation, and free diffusion, it
is hypothesized that this signature is also associated with tissue disruption and loss of tissue homeosta-
sis.
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Abbreviations

CC craniocaudal
DDSM digital database for screening mammography
FFDM full field digital mammography
MLO mediolateral oblique
WTMMM
wavelet transform modulus maxima maxima
WTMMwavelet transform modulus maxima
WT wavelet transform
TME tumor microenvironment

1. INTRODUCTION

This paper examines the hypothesis that breast tissue disrup-
tion and loss of tissue homeostasis in the microenvironment
of malignant breast tumors is detectable via a quantitative
and objective roughness analysis of whole breast mammo-
grams.

Findings suggest that differences between normal and
cancerous cells and their interactions exist across multiple
size scales. Indeed, when functioning properly, the cellular
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microenvironment impedes cancerous cell growth, which
leads to death of the cancerous cells or quiescence of an
occult tumor.1 When functioning poorly, the environment of
cancerous lesions creates a niche favoring the survival of
cancerous stem cells and protecting cells from treatment or
therapy.2 Alteration of the stromal architecture and composi-
tion of the extracellular matrix is a well-recognized compo-
nent of both benign and malignant breast pathologies.1,3

Histologically normal breast tissues adjacent to breast tumors
frequently exhibit methylation changes in multiple genes.4

Highly methylated tumor suppressor genes have been found
in peritumoral breast tissue cells as far as 4 cm away from
tumors.5 The multicellular architecture and organization of
the ductal tree of the mammary gland exhibit coherent cellu-
lar movement within an extracellular matrix cocoon, which
guides formation of larger structural units of tissues impor-
tant for quiescence and homeostasis. A disruption of coherent
angular motion and the consequential adoption of random-
ized cellular motility are associated with malignant growth in
breast tissue.6

Many image analysis techniques were developed to detect
and/or assess masses and calcifications in mammograms.7–10

But, far fewer studies investigated the structure and arrange-
ment of the non-tumor tissue that contributes to bilateral
asymmetry and architectural distortion of breast tissue.11

Computational researchers explored breast tissue patterns on
mammograms, but most analyzed only the central part of the
image and/or failed to connect the texture analysis to known
biological tumor processes related to the onset and develop-
ment of cancer.12–15 Some used power spectral analysis to
seek correlations between b (the power-law exponent of the
power spectrum), obtained from a region of interest behind
the nipple, and genetic factors.16 These authors concluded
that BRCA1/2 gene mutation carriers and low-risk women
had different mammographic parenchymal patterns.
Researchers also showed that BRCA1/2 mutation carriers
could be identified via computer-extracted mammographic
texture patterns, but not by mammographic density analy-
sis.17

Power spectral analysis was also used to show that the
power spectrum exponent of mammograms is approximately
b = 3.18 Note that when averaging over many noisy processes
and many different mammograms, and/or different subre-
gions within a mammogram, one can expect subregions
where b ~ 2.5–2.8 and those where b ~ 3.2–3.5 to average
and yield b ~ 3. Since this is a possibility, analyses should
refrain from averaging processes when computing the rough-
ness of mammograms, and instead obtain sets of subregion-
specific b values. In addition, the spectral analysis yielding b
is intrinsically unable to discriminate between monofractal
signatures (where the roughness is homogeneously dis-
tributed — and quantified via a single exponent such as b)
vs. multifractal signatures (where the roughness is defined
locally — and quantified via a whole spectrum of roughness
exponents).10,19–30 This inability to discriminate between
monofractal vs. multifractal signatures is absolutely critical in
this context. It can lead to unknowingly averaging two

different monofractal signatures within the same image (e.g.,
a subregion contains anti-correlated structures and another
subregion with long-range correlations) to yield a false global
uncorrelated signature.

The Wavelet Transform Modulus Maxima (WTMM)
method is a multifractal formalism used to analyze complex
1D signals,19,20,29,30 2D images,10,23–28,31–36 3D images,37

and vector fields.38 By considering a partition function
obtained from the so-called wavelet-transform space-scale
skeleton, and by exploring several different statistical order
moments, one can extract a singularity spectrum yielding
quantitative information on the monofractal vs. multifractal
nature of a given image.

Fifteen years ago, in an exploratory analysis of digitized
mammograms using the 2D WTMM method, Kestener
et al.26 introduced the possibility of using the Hurst expo-
nent, H, which quantifies the global roughness of the image
density fluctuations,† as a potential tool to discriminate
between dense and fatty breast tissue. High mammographic
breast tissue density is a risk factor for breast cancer, by a ~5-
fold factor compared to low density.39 Kestener et al.’s results
showed that normal regions display monofractal scaling prop-
erties as characterized by H ~ 0.30 in fatty areas, which look
like anti-persistent self-similar random surfaces, vs. H ~ 0.65
in dense areas, which exhibit long-range correlations. Indeed,
for 0 < H < 1/2, density fluctuations are spatially anti-corre-
lated. For 1/2 < H < 1, the fluctuations are spatially posi-
tively correlated. Interestingly, for H~1/2, the fluctuations are
uncorrelated and are associated with random physical pro-
cesses like Brownian motion and free diffusion.

A high percentage of breast cancers go undetected, as evi-
denced by surveys of autopsy reports. Undiagnosed occult
breast cancers have been found in women who died from
unrelated causes at rates as high as 15.6% according to one
study40 and 19% according to another, which also found this
rate as high as 39% for women in their forties.41 Disrupted
tissue density fluctuations may be indicative of these occult
tumors, and detection of these fluctuations may pave the way
for further research into finding cancer at an earlier stage.

To study the architectural landscape of breast tissue den-
sity fluctuations, the 2D WTMM method10,23–28,31–36 was
used to analyze entire breast mammograms from normal,
cancer, and benign cases taken from the Digital Database for
Screening Mammography (DDSM).42,43 Only microcalcifica-
tion cases were analyzed for cancer and benign. The analysis
was performed on 43 normal, 49 cancer, and 35 benign cases.
Following the calculation of the monofractal scaling expo-
nent H at a fine level, using a sliding window analysis for
each mammogram studied, a data mining approach was
implemented to determine which parameters are most effec-
tive at distinguishing between normal and cancer cases. The
benign cases were then compared to both the normal cases
and cancer cases using these calibrated parameters. The
results demonstrate that disrupted regions associated with

†The relationship between H and b is given by H (b 2)/2 for

monofractal rough surfaces.
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loss of tissue homeostasis, as quantified by H~1/2 and loss of
breast symmetry, are found significantly in tumorous cases
(cancer or benign) when compared to normal cases (P ~

0.0006). Significant differences were also found individually
between cancer vs. normal cases (P ~ 0.0023) and benign vs.
normal cases (P ~ 0.0049), while no significant differences
were found between benign vs. cancer cases (P ~ 0.85).

2. METHODS

2.A. The data

Mammograms were obtained from the digital database for
screening mammography (DDSM) at the University of South
Florida.42,43 The databank contains over 2600 studies made
up of normal, benign, benign without call back, and cancer
mammograms, all categorized by expert radiologists. Each
study had two images of each breast: a mediolateral oblique
(MLO) view and a craniocaudal (CC) view. Non-normal
DDSM cases may have benign or malignant masses and/or
microcalcifications, but only cancer or benign cases contain-
ing exactly one tumor were looked at in this study. Only the
MLO view was analyzed. The lesion itself was not the center-
piece of this research. Instead, the study examined a lesion’s
influence on the whole breast. Nevertheless, in case masses
vs. microcalcifications differ in their effect on microenviron-
ments, all non-normal cases considered in this study were
microcalcification cases.

A total of 127 cases were considered, corresponding to
254 entire breast mammogram images: 43 normal cases (86
images), 49 cancerous cases (98 images), and 35 benign
cases (70 images). Tables I, II, III contain descriptive infor-
mation about all cases considered. Breast image masks were
created in ImageJ by manually encircling the breast, thus
ensuring that extraneous background tissue (i.e., the pectoral
muscle) did not influence the analysis.

2.B. The 2D WTMM method

The strategy behind the 2D Wavelet Transform Modulus
Maxima (WTMM) method10,23,26–28,31–33,35,36,44–48 is to use
the continuous wavelet transform (WT) as a mathematical
microscope to characterize image density fluctuations over a
continuous range of size scales. The WT of an image is the
gradient vector of the image smoothed by dilated versions of
a Gaussian filter. At each size scale, the WTMM are defined
by the positions where the modulus of the WT is locally max-
imal. These WTMM are organized as maxima chains, param-
eterized by position, at the considered scale. The maxima
chains for three different size scales are shown in black in
Figs 1(b1–3), 1(c1–3), 1(d1–3). Along each of these chains,
further local maxima are found, i.e., the WTMM maxima
(WTMMM), shown as blue, red, and yellow arrows, respec-
tively in Figs 1(b1–3), 1(c1–3), 1(d1–3). The WTMMM from
each scale are then linked to define the maxima lines that
form the WT skeleton (Figs 1(b4), 1(c4), 1(d4)). By consider-
ing how the WT modulus varies with scale along each

maxima line, one can obtain the so-called singularity spec-
trum23–25 for each subset (see below), which allows quantita-
tive discrimination between monofractal vs. multifractal

TABLE I. Normal cases.

Type Folder Case Scanner Resolution Age Density

Normal Normal 04 Case0412 DBA 42 49 2

Normal Normal 04 Case0415 DBA 42 41 1

Normal Normal 04 Case0416 DBA 42 53 3

Normal Normal 04 Case0417 DBA 42 78 2

Normal Normal 04 Case0418 DBA 42 43 4

Normal Normal 04 Case0419 DBA 42 68 2

Normal Normal 04 Case0420 DBA 42 51 1

Normal Normal 04 Case0422 DBA 42 57 1

Normal Normal 04 Case0423 DBA 42 63 2

Normal Normal 04 Case0424 DBA 42 48 3

Normal Normal 04 Case0425 DBA 42 61 2

Normal Normal 04 Case0426 DBA 42 50 4

Normal Normal 04 Case0427 DBA 42 52 2

Normal Normal 04 Case0431 DBA 42 71 2

Normal Normal 04 Case0432 DBA 42 40 3

Normal Normal 04 Case0433 DBA 42 41 3

Normal Normal 04 Case0434 DBA 42 65 4

Normal Normal 04 Case0435 DBA 42 45 4

Normal Normal 04 Case0436 DBA 42 66 3

Normal Normal 04 Case0437 DBA 42 42 4

Normal Normal 04 Case0438 DBA 42 70 2

Normal Normal 04 Case0439 DBA 42 71 3

Normal Normal 04 Case0440 DBA 42 47 4

Normal Normal 04 Case0441 DBA 42 40 3

Normal Normal 04 Case0442 DBA 42 80 2

Normal Normal 04 Case0443 DBA 42 78 3

Normal Normal 04 Case0444 DBA 42 68 3

Normal Normal 04 Case0445 DBA 42 75 2

Normal Normal 04 Case0447 DBA 42 42 1

Normal Normal 04 Case0448 DBA 42 51 4

Normal Normal 04 Case0449 DBA 42 60 2

Normal Normal 04 Case0450 DBA 42 64 2

Normal Normal 04 Case0462 DBA 42 62 2

Normal Normal 04 Case0463 DBA 42 66 3

Normal Normal 04 Case0464 DBA 42 71 2

Normal Normal 04 Case0465 DBA 42 56 1

Normal Normal 04 Case0466 DBA 42 68 3

Normal Normal 04 Case0467 DBA 42 70 4

Normal Normal 04 Case0468 DBA 42 62 2

Normal Normal 04 Case0469 DBA 42 64 3

Normal Normal 04 Case0470 DBA 42 51 4

Normal Normal 04 Case0471 DBA 42 71 2

Normal Normal 04 Case0472 DBA 42 70 1

Normal Normal 04 Case0475 DBA 42 57 3

Normal Normal 04 Case0477 DBA 42 56 1

Normal Normal 04 Case0478 DBA 42 67 1

Normal Normal 04 Case0479 DBA 42 61 2

Average 59.2 2.5

Stdev 11.5 1.0
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TABLE II. Cancer cases.

Type Folder Case Scanner Resolution Age Density Abnormality Assessment Subtlety

Cancer Cancer 03 Case1000 DBA 42 46 3 1 4 2

Cancer Cancer 03 Case1002 DBA 42 46 3 1 4 3

Cancer Cancer 03 Case1003 DBA 42 58 2 1 4 3

Cancer Cancer 03 Case1005 DBA 42 78 2 1 4 2

Cancer Cancer 03 Case1015 DBA 42 69 2 1 5 4

Cancer Cancer 03 Case1019 DBA 42 74 3 1 4 3

Cancer Cancer 03 Case1022 DBA 42 56 1 1 4 3

Cancer Cancer 03 Case1026 DBA 42 49 3 1 4 1

Cancer Cancer 03 Case1029 DBA 42 39 4 1 4 3

Cancer Cancer 03 Case1030 DBA 42 61 2 1 4 4

Cancer Cancer 03 Case1031 DBA 42 50 4 1 4 1

Cancer Cancer 03 Case1032 DBA 42 60 3 1 4 3

Cancer Cancer 03 Case1033 DBA 42 65 3 1 4 1

Cancer Cancer 03 Case1037 DBA 42 67 4 1 4 1

Cancer Cancer 03 Case1041 DBA 42 39 4 1 4 2

Cancer Cancer 03 Case1042 DBA 42 42 4 1 4 1

Cancer Cancer 03 Case1043 DBA 42 48 4 1 4 2

Cancer Cancer 03 Case1044 DBA 42 49 4 1 4 1

Cancer Cancer 03 Case1046 DBA 42 73 3 1 4 2

Cancer Cancer 03 Case1047 DBA 42 49 4 1 4 2

Cancer Cancer 03 Case1049 DBA 42 69 3 1 4 3

Cancer Cancer 03 Case1062 DBA 42 50 4 1 4 3

Cancer Cancer 03 Case1064 DBA 42 67 3 1 4 3

Cancer Cancer 03 Case1066 DBA 42 58 2 1 4 2

Cancer Cancer 03 Case1072 DBA 42 53 4 1 4 2

Cancer Cancer 03 Case1083 DBA 42 44 2 1 4 2

Cancer Cancer 03 Case1085 DBA 42 77 2 1 4 4

Cancer Cancer 03 Case1086 DBA 42 81 2 1 4 3

Cancer Cancer 04 Case1001 DBA 42 66 3 1 4 2

Cancer Cancer 04 Case1071 DBA 42 82 3 1 4 2

Cancer Cancer 04 Case1081 DBA 42 81 3 1 4 4

Cancer Cancer 04 Case1088 DBA 42 77 2 1 4 3

Cancer Cancer 04 Case1092 DBA 42 47 4 1 4 1

Cancer Cancer 04 Case1096 DBA 42 64 4 1 4 5

Cancer Cancer 04 Case1097 DBA 42 73 3 1 4 4

Cancer Cancer 06 Case1131 HOWTEK 43.5 86 2 1 4 3

Cancer Cancer 06 Case1133 HOWTEK 43.5 48 4 1 4 1

Cancer Cancer 06 Case1136 HOWTEK 43.5 62 2 1 4 2

Cancer Cancer 06 Case1141 HOWTEK 43.5 53 4 1 4 2

Cancer Cancer 06 Case1145 HOWTEK 43.5 59 4 1 4 3

Cancer Cancer 06 Case1148 HOWTEK 43.5 66 4 1 4 2

Cancer Cancer 06 Case1152 HOWTEK 43.5 50 4 1 4 3

Cancer Cancer 06 Case1153 HOWTEK 43.5 36 4 1 4 2

Cancer Cancer 06 Case1167 HOWTEK 43.5 67 3 1 4 1

Cancer Cancer 06 Case1175 HOWTEK 43.5 67 2 1 4 3

Cancer Cancer 06 Case1176 HOWTEK 43.5 76 3 1 5 4

Cancer Cancer 06 Case1181 HOWTEK 43.5 83 2 1 4 3

Cancer Cancer 06 Case1185 HOWTEK 43.5 32 4 1 4 3

Cancer Cancer 06 Case1186 HOWTEK 43.5 46 3 1 5 1

Cancer Cancer 06 Case1188 HOWTEK 43.5 54 4 1 4 3

Cancer Cancer 06 Case1191 HOWTEK 43.5 72 3 1 4 2

Average: 60.1 3.1 1.0 4.1 2.5

Stdev: 13.8 0.9 0.0 0.2 1.0
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processes. In the monofractal case, the tissue in the tumor
microenvironment is characterized by the roughness expo-
nent H one subregion at a time. A technical presentation fol-
lows.

Each subregion of the mammographic image can be
viewed as a single-valued, self-affine function, f(x).26 The
WT is defined as (in vectorial form)

Tw½f "ðb; aÞ ¼
Tw1

½f " ¼ a 2
R

d2xw1 a 1ðx& bÞð Þf ðxÞ
Tw2½f " ¼ a 2

R

d2xw2 a 1ðx& bÞð Þf ðxÞ

! "

;

(1)

where w1ðx; yÞ ¼
@/ðx;yÞ

@x , w2ðx; yÞ ¼
@/ðx;yÞ

@y , and ɸ(x, y) is a 2D
Gaussian isotropic function. The WT can be expressed in
terms of the modulus and argument

Mw½f "ðb; aÞ ¼ Tw1
½f "ðb; aÞ

# $2
þ Tw2

½f "ðb; aÞ
# $2

h i1=2
;

(2)

Aw½f "ðb; aÞ ¼ Arg Tw1
½f "ðb; aÞ þ iTw2

½f "ðb; aÞ
# $

;

The WTMM are defined as the positions where the
modulus is locally maximum in the direction of the argu-
ment. These WTMM form connected chains called max-
ima chains. The WTMMM are defined as the local
maxima along the maxima chains. The wavelet transform
space-scale skeleton can be calculated by linking all
WTMMM across all scales a > 0. Then let LðaÞ be the
set of maxima lines that exist at any scale a, and define
the partition functions

TABLE III. Benign cases.

Type Folder Case Scanner Resolution Age Density Abnormality Assessment Subtlety

Benign Benign 02 Case1123 HOWTEK 43.5 56 3 1 4 4

Benign Benign 02 Case1242 HOWTEK 43.5 79 3 1 4 2

Benign Benign 02 Case1265 HOWTEK 43.5 48 3 1 4 3

Benign Benign 02 Case1269 HOWTEK 43.5 44 3 1 4 3

Benign Benign 02 Case1270 HOWTEK 43.5 54 4 1 4 4

Benign Benign 02 Case1273 HOWTEK 43.5 51 2 1 4 1

Benign Benign 02 Case1275 HOWTEK 43.5 59 2 1 4 3

Benign Benign 02 Case1276 HOWTEK 43.5 80 3 1 4 4

Benign Benign 02 Case1278 HOWTEK 43.5 50 2 1 4 2

Benign Benign 02 Case1280 HOWTEK 43.5 50 4 1 4 2

Benign Benign 02 Case1285 HOWTEK 43.5 63 4 1 4 4

Benign Benign 02 Case1300 HOWTEK 43.5 52 3 1 4 4

Benign Benign 02 Case1306 HOWTEK 43.5 72 3 1 2 5

Benign Benign 02 Case1310 HOWTEK 43.5 48 1 1 4 1

Benign Benign 02 Case1315 HOWTEK 43.5 59 4 1 4 2

Benign Benign 02 Case1324 HOWTEK 43.5 50 4 1 4 3

Benign Benign 02 Case1326 HOWTEK 43.5 44 4 1 4 4

Benign Benign 02 Case1327 HOWTEK 43.5 58 4 1 4 4

Benign Benign 02 Case1328 HOWTEK 43.5 62 4 1 4 5

Benign Benign 02 Case1330 HOWTEK 43.5 64 3 1 4 2

Benign Benign 02 Case1331 HOWTEK 43.5 73 1 1 4 1

Benign Benign 02 Case1333 HOWTEK 43.5 58 1 1 4 2

Benign Benign 03 Case1259 HOWTEK 43.5 48 4 1 4 2

Benign Benign 03 Case1332 HOWTEK 43.5 65 2 1 4 2

Benign Benign 03 Case1364 HOWTEK 43.5 42 4 1 4 3

Benign Benign 03 Case1367 HOWTEK 43.5 50 4 1 4 3

Benign Benign 03 Case1368 HOWTEK 43.5 49 4 1 4 3

Benign Benign 03 Case1376 HOWTEK 43.5 73 2 1 4 4

Benign Benign 03 Case1382 HOWTEK 43.5 45 4 1 4 3

Benign Benign 03 Case1386 HOWTEK 43.5 69 3 1 4 1

Benign Benign 03 Case1390 HOWTEK 43.5 66 4 1 4 3

Benign Benign 03 Case1393 HOWTEK 43.5 77 4 1 4 2

Benign Benign 03 Case1406 HOWTEK 43.5 75 1 1 4 4

Benign Benign 03 Case1427 HOWTEK 43.5 59 3 1 4 3

Benign Benign 03 Case1433 HOWTEK 43.5 58 3 1 2 3

Average: 58.6 3.0 1.0 3.9 3.0

Stdev: 11.0 1.0 0.0 0.4 1.3
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Zðq; aÞ ¼
X

L2LðaÞ

sup
ðb; a0Þ 2 L; a0 ( a

Mw½f "ðb; a
0Þ

! "q

;

(3)

where q are statistical order moments. From the power-law
behavior of the partition function one can define the s qð Þ
exponents

Zðq; aÞ) asðqÞ; a ! 0þ: (4)

The D hð Þ singularity spectrum of f can be determined
from the Legendre transform of the partition function scaling
exponent

(a)

(e) (f) (g)

(h) (i) (j)

(b)

(c)

(d)

(b1)

(c1)

(d1)

(b2)

(c2)

(d2)

(b3)

(c3)

(d3)

(b4)

(c4)

(d4)

FIG. 1. Sliding window WTMM analysis of DDSM cancer 03, case 1022. (a) Color coded MLO views of the right breast (shown on left) and the cancerous left

breast (shown on right). Each pixel represents a 360 9 360 pixel mammogram subregion colored according to its H value. Subregions where H ≤ 0.45 (fatty)

are colored blue, 0.45 < H < 0.55 (disrupted) are yellow, and H ≥ 0.55 (dense) are red. Gray pixels correspond to rejected subregions (see text). [(b) (d), 1 3]

WTMM maxima chains (black) and WTMMM (colored, with arrows representing the WT vector) at small (b1), (c1), (d1), medium (b2), (c2), (d2), and large

(b3), (c3), (d3) scales. [(b) (d), 4] WTMM skeletons formed from chaining WTMMM across every scale. (e) (g) Plots of Zðq; aÞ [Eq. (3)], D q; að Þ [Eq. (8)],
and h q; að Þ [Eq. (7)] vs.log2(a), respectively, for values of q from 1 (bottom) to 2 (top), from a range of scales of log2 að Þ 1.0 to 3.0 (in rw units, where

rw 7 pixels). (H) Plot of s(q) [Eq. (4)] displaying the monofractal nature of selected subregions and estimations of H. (i) Plot of D hð Þ [Eqs. (9), (10)] showing
the monofractal nature of selected subregions and estimations of D. (j) h q; að Þ vs. log2 að Þ for two example subregions rejected due to multifractality (black) and

bad scaling (green).
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DðhÞ ¼ minq qh& sðqÞð Þ: (5)

Due to computational instabilities when using the Legen-
dre transform, one can alternatively use h and D hð Þ as mean
quantities defined in a canonical ensemble, i.e., with respect
to their Boltzmann weights computed from the WTMMM

Ww f½ " q;L; að Þ ¼

%

%

%

%

%

supðb;a0Þ2L;a0 ( aMw f½ " b; a0ð Þ

%

%

%

%

%

Z q; að Þ

q

: (6)

Then the expectations can be computed by:

h q; að Þ ¼
X

L2L að Þ
ln

%

%

%

%

%

sup

b; a0ð Þ 2 L; a0 ( a
Mw f½ " b; a0ð Þ

%

%

%

%

%

Ww f½ " q;L; að Þ;

(7)
and

Dðq; aÞ ¼
X

L2LðaÞ
Ww½f "ðq;L; aÞ lnðWw½f "ðq;L; aÞÞ;

(8)

and so

h qð Þ ¼
ds qð Þ

dq
¼ lima!0þ hðq; aÞ= ln a; (9)

and

DðqÞ ¼ lima!0þ Dðq; aÞ= ln a; (10)

which gives D hðqð ÞÞ.
D hð Þ is the fractal dimension of all points in the image

having a local Holder exponent value of h.20,21,23,27,48 A mul-
tifractal process has a heterogeneous spatial distribution of
singularity strengths, which means that its roughness is
assessed locally, and therefore has a corresponding singular-
ity spectrum D hð Þ with a concave down parabola shape, and
the corresponding s qð Þ spectrum is curved (non-linear). For a
monofractal process, the spatial distribution of singularity
strengths is homogeneous (i.e., the roughness is the same
everywhere) and can be assessed globally. In this case, the
singularity spectrum D hð Þ collapses to a single point, where
the global roughness is quantified via the Hurst exponent H,
and the corresponding s qð Þ spectrum is a linear function and
is mathematically related to H by s qð Þ ¼ qH & 2.20,21,23,27,48

An investigation of monofractal vs. multifractal processes
therefore requires access to a range of q values, i.e.,
q 2 (qmin, qmax), that is as large as possible. Generally
speaking, the size of the image analyzed determines the range
of q-values: the larger the image, the larger the range of q-
values.20,21,23,27,48

Clearly, there must be a balance between the size of the
image and the risk of averaging out different monofractal sig-
natures within the same image. It is that balancing effort that
led to the choice of the size of the images in this study
(360 9 360 pixels, of which only the central 256 9 256-
pixel part was kept for analysis to avoid edge effects). This

allowed investigation of a range of q-values in the interval q ~

&2 to q ~ 3, with more weight granted to q-values closer to
0, as discussed below.

2.C. Image sliding window analysis

Each mammogram and its corresponding mask were fed to
in-house 2D WTMM software, which consists of ~130,000
lines of C subroutines. A sliding 360 9 360-pixel window
was used to divide mammograms into overlapping subregions,
with 32-pixel shifts between subregion boundaries, running
from left to right and top to bottom, starting at the top left cor-
ner of each image. For each subregion, the program first
checked that the central 256 9 256-pixel section was entirely
contained within the mask. If this condition was met, the pro-
gram wavelet-transformed the subregion at 50 different size
scales, from a ~ 7 pixels (~0.30 mm) to a ~ 120 pixels
(~5.0 mm) and calculated the maxima chains (WTMM) and
their WTMMM, the maxima lines, and the partition functions
[Eq. (3)], h q; að Þ [Eq. (7)], and D q; að Þ [Eq. (8)]. After per-
forming the WTMM calculations on each 360 9 360 subre-
gion, only the central 256 9 256 pixels were considered for
the WT skeleton to avoid edge effects.10,27,28

2.D. Range of scales for multifractal analysis

For each subregion that passed the mask test, a different
sliding window technique was used to objectively determine
the best range of scales to fit the power-law curves in the plots
of D q; að Þ vs. log2 að Þ (Fig. 1(f)) and h q; að Þ vs. log2 að Þ
(Figs. 1(g) and 1(j)). The window varied along log2 að Þ and
was defined by a lower bound (amin) and an upper bound (amax)
of a, which varied from log2 aminð Þ = 0, 0.1, . . ., 2.1 and from
log2 amaxð Þ = 2.0, 2.1, . . ., 4.1, respectively, in rw units, where
rw = 7 pixels. All possible combinations of the lower and
upper bounds, where the window was at least log2 amaxð Þ —

log2 aminð Þ = 1.0 wide, were considered. For each such (amin,
amax) window, h(q = 0) and D q ¼ 0ð Þ were calculated, as well
as the goodness of fit R2 of h q ¼ 0ð Þ, denoted R2

hð0Þ. The
weighted standard deviation of h over all values of q, denoted
sdw, and the weighted average of R2 of h q; að Þ over all values
of q, denoted \R2

w [ , were also calculated, according to the
weights listed in Table IV. For a (amin, amax) window to be fur-
ther considered, it had to satisfy all of the following conditions.

2.D.1. &0.2 < h(q = 0) < 1.0

h(q = 0) is the Holder exponent, which represents the
strength of the singularities of the image corresponding to the
support dimension D q ¼ 0ð Þ.20,21,23,27,48 Although values
outside of this range were not encountered in this study,
obtaining very low values (high roughness) or high values
(low roughness–note that a Hurst value of H > 1 would mean
that the underlying process is not only continuous, but differ-
entiable) could be a flag for abnormally high noise levels or
artificially smooth processes, respectively.
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2.D.2. 1.7 < D(q = 0) < 2.5

D q ¼ 0ð Þ is the fractal dimension of the support of the
image, also called the support dimension.20,21,23,27,48 Theoret-
ically, for a rough surface representing an everywhere singu-
lar process, such as one would expect for the mammograms
considered in this study, D should be around 2.0. However,
finite size effects may affect the manner in which the maxima
lines multiply as the scale parameter a approaches 0.

2.D.3. R2
hð0Þ > 0.96

This condition ensured that the h q ¼ 0ð Þ curve was suffi-
ciently linear to extract a reliable exponent from it.

2.D.4. sdw < 0.06

Requiring a low weighted standard deviation for h ensured
that subregions displaying multifractal scaling would be
rejected, specifically when the slopes of the h q; að Þ curves
were not within 0.06 of each other as q varied. An example
of a rejected subregion’s h q; að Þ curves due to this condition
not being satisfied is shown in Fig. 1(j) (black).

2.D.5. \R2
w [ > 0.96

This condition ensured that all h q; að Þ curves were suffi-
ciently linear, with more weight given to those curves closer
to a value of q = 0. An example of a rejected subregion’s
h q; að Þ curves due to this condition not being satisfied is
shown in Fig. 1(j) (green).

If all possible (amin, amax) windows of scales were rejected,
the entire subregion was rejected (and displayed in gray as in
Fig. 1(a)). If not, the subregions were classified via colors
corresponding to the value of h q ¼ 0ð Þ (referred to simply as
H) obtained from the (amin, amax) window having the highest
value of R2

hð0Þ. After doing this for each subregion, the mam-
mogram was returned as a small image of colored squares
(Fig. 1(a)). Each square corresponded to one subregion of the
original mammogram. Subregions where H ≤ 0.45 (anti-cor-
related density fluctuations — fatty tissue) were colored blue,
0.45 < H < 0.55 (uncorrelated density fluctuation — dis-
rupted tissue) were yellow, and H ≥ 0.55 (long-range corre-
lated density fluctuation — dense tissue) were red. A sample
case (DDSM, cancer 03, case 1022) is presented in Fig. 1(a),
where the left (cancerous) and right MLO views were
returned by the custom software.

2.E. Left vs. right breast image registration

To examine tissue differences between a patient’s tumor-
ous breast vs. opposite (healthy) breast, the tumorous breast

was aligned with its opposite using a thin-plate spline,49 post
sliding window WTMM analysis (Fig. 2). In the normal pop-
ulation, a breast was chosen at random (left or right) and
aligned to the opposite breast. The thin-plate spline tools in
the Momocs R library50 were used to predict a shift in coordi-
nate positions from points in the breast undergoing registra-
tion to the opposite breast. These shifts were added to the
breast undergoing registration. A resulting point in the regis-
tered breast that matched a coordinate of a point in the oppo-
site breast was called a corresponding point. Corresponding
points in registered breasts were compared to opposite breasts
for color changes (blue, red, yellow). The total number of
squares that changed color were called the number of squares
transitioned (see section 2.F. below).

2.F. Metrics

To explore potential differences in spatial organization of
the mammogram roughness of different subregions (either
blue, H < = 0.45; yellow 0.45 < H < 0.55; red,
H > = 0.55), the following metrics were used: (a) the number
of yellow squares (subregions) per breast (NY), (b) the num-
ber of clusters of yellow squares (allowing horizontal, verti-
cal, and diagonal connections between squares) (NCY), (c)
the number of squares transitioned (NT), and (d) a combina-
tion score

NðaÞ ¼
ðNYÞ * ðNCYÞ * ðNTÞ

ð
P

All SquaresÞa
; (11)

where a is an exploratory exponent that was allowed to vary
from 0 to 4.0. A continuous density fluctuation score

q ¼
ð
P

Red SquaresÞ

ð
P

Red Squares)þ ðcÞð
P

Blue SquaresÞ
; (12)

where c was an adjustment factor, was used to objectively
describe the density of breasts. This was compared to the sub-
jective Breast Imaging Reporting and Data System (BIR-
ADS) scoring of breast density by radiologists: (a) fatty, (b)
scattered areas of fibroglandular density, (c) heterogeneously
dense, (d) extremely dense, which are subjective and based
on individual radiologist experience. The numerical determi-
nation of a and c is discussed below.

2.G. Data mining

A data mining approach was used to maximize quantifi-
able observed differences between normal and cancer cases.

Each mammogram contained rejected subregions (see sec-
tion 2.C.). If the percent of rejected subregions in the mam-
mogram was too high, the image was removed from the
analysis. To determine this empirically and objectively, the

TABLE IV. List of q values and their associated weights.

q 2 1.5 1 0.5 0.3 0.2 0.1 0 0.1 0.2 0.3 0.5 1 1.5 2 2.5 3

Weight 0.1 0.5 1 3 5 7 9 10 9 8 7 5 3 2 1 0.5 0.2
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maximum allowable percent of rejected subregions was var-
ied between 0 and 40 percent in increments of 1 percent.
Similarly, the minimum number of connected yellow squares
needed to qualify as a yellow cluster was varied between 5
and 200 in increments of 5. The a parameter for Ξ(a)
[Eq. (11)] was varied between 0 and 4 in increments of 0.5.
To calculate the c that yielded q [Eq. (12)] scores that best
correlated with BIRADS scores, c was varied from 0 to 1 in
increments of 0.01. For every possible combination of values
of the above parameters, the statistical significances of differ-
ences in normal and cancer cases given by each metric were
calculated. The combination that yielded the greatest

statistical significance for the greatest number of metrics was
selected. Using this approach, the objectively determined
allowable percent of rejected subregions was 30 percent. A
yellow cluster was defined as having 45 or more connected
yellow subregions. An a of 1.5 [Eq. (11)] and a c of 0.82
[Eq. (12)] were selected.

After these parameters were objectively determined via
the data mining approach on the normal vs. cancer cases, the
benign cases were analyzed (normal vs. benign and benign
vs. cancer) using the parameters unaltered.

2.H. Statistical analysis

All statistical distribution analyses, significance tests, den-
sity distribution, cumulative density, Wilcoxon tests, and
goodness of fit, were performed using the R language.

3. RESULTS

3.A. Quantitating loss of tissue homeostasis in
tumorous breasts

All metrics displayed statistically significant differences
between normal and tumorous (cancer or benign) cases
(Fig. 3). Tumorous breasts had a higher number of yellow
(disrupted) squares than normal breasts (P ~ 0.0423 for can-
cer, P ~ 0.0009 for benign, Figs. 3(a) and 3(b)), supporting
the hypothesis that tumor cases had greater loss of tissue
homeostasis than normal cases. The same was true for the
number of yellow clusters (P ~ 0.0032 for cancer, P ~ 0.0077
for benign, Fig. 3(c) and 3(d)), suggesting that tumor-affected
microenvironment may be identified by yellow clusters.
Tumor cases also had a higher number of transitioned squares
than normal cases (P ~ 0.0346 for cancer, P ~ 0.0009 for
benign, Fig. 3(e) and 3(f)), indicating that tumor cases exhib-
ited greater asymmetry between tumorous and opposite
breasts than normal cases exhibited between two healthy
breasts. Combining these relationships into Ξ(1.5) yielded
that both cancer and benign cases were distinguishable from
normal cases via this metric (P ~ 0.0023 for cancer, P ~

0.0049 for benign, Fig. 3(g) and 3(h)). Finally, when group-
ing the tumorous cases together (cancer and benign) and
comparing them as a unit to normal cases, the significance
level was even greater (P ~ 0.0006).

3.B. Tissue disruption and change in tissue
density vs. age

In the cancer population, the number and percent of yellow
squares, which represent disrupted tissue, did not vary signifi-
cantly with age (Figs. 4(a) and 4(b), stars). However, in the
normal and benign populations, the number of yellow squares
increased with age [P ~ 0.0376 for normal, Fig. 4(a), black
dots; P ~ 0.0309 for benign, Fig. 4(a), triangles], but not the
percent of yellow squares [Fig. 4(b), black dots and triangles].

The number and percent of blue squares, representing fatty
tissue, increased with age in the cancer population [P ~ 0.0029,

FIG. 2. Image registration of a breast to the opposite breast. Same case as

shown in Fig. 1 (DDSM cancer 03, case 1022), with the left breast shown on

right (dark gray) and the right breast shown on left (light gray). The left

breast (dark gray) is first flipped horizontally, and then aligned to the oppo

site breast using a thin plate spline algorithm. The bottom panel shows an

overlay of the registered breasts.
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FIG. 3. Density distribution and cumulative density of metrics in normal, cancer, and benign populations. (a), (b) Distribution of total number of yellow squares.

(c), (d) Distribution of total number of yellow clusters. (e), (f) Distribution of total number of squares transitioned. (g), (h) Distribution of the combination metric

Ξ(1.5) [Eq. (11)]. (i), (j) Distribution of the combination metric for normal vs. tumor (benign and cancer combined).
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Fig. 4(c), stars, and P ~ 3E-6, Fig. 4(d), stars, respectively] as
well as in the normal population [P ~ 0.0132, Fig. 4(c), black
dots, and P ~ 0.0347, Fig. 4(d), black dots, respectively]. For
the benign cases, the significance was only achieved in the per-
cent of blue squares [P ~ 0.0104, Fig. 4(d), triangles], but not
in the number of blue squares [Fig. 4(c), triangles].

The number and percent of red squares, representing
dense tissue, decreased with age in the cancer population [P
~ 0.0256, Fig. 4(e), stars, and P ~ 1E-7, Fig. 4(f), stars,
respectively], while in the normal and benign populations,
the number of red squares did not vary as a function of age
(Fig. 4(e), black dots and triangles, respectively), but the per-
cent of red squares decreased with age for both normal [P ~

0.0215, Fig. 4(f), black dots) and benign cases (P ~ 0.0022,
Fig. 4(f), triangles].

3.C. Toward a continuous density fluctuation score

A continuous density fluctuation score [Eq. (12) and
Fig. 5] was proposed to numerically and objectively score the
density of breasts and could eventually be considered an

accompaniment to subjective BIRADS scores. While the
continuous density fluctuation score was successfully able to
distinguish between most BIRADS density scores (P < 0.001
or better), it could not distinguish density 1 breasts from den-
sity 2 breasts, nor density 3 breasts from density 4 breasts.

4. DISCUSSION

For scale-invariant rough surfaces such as mammograms,
a Fourier-based power spectrum analysis (or related tech-
nique) yields a slope of b ¼ s 2ð Þ þ 4.20,21,23,27,48 Clearly, by
only investigating one specific value of q = 2, it is mathemat-
ically impossible for a power spectral analysis to discriminate
between monofractal (linear s qð Þ) vs. multifractal (nonlinear
s qð Þ) rough surfaces. This is a key argument, confirming the
need for a multifractal formalism to investigate mammo-
graphic breast tissue: some subregions may display multifrac-
tal scaling. However, these are likely false multifractal
signatures created by a juxtaposition of two or more regions
within a single image, each having their own monofractal sig-
natures. These regions were rejected from the analysis (see

FIG. 4. Metrics distinguishing tissue types. The left hand column (a), (c), (e) displays number of yellow, blue, and red squares, respectively, vs. age. The right

hand column (b), (d), (f), displays percent of yellow, blue, and red squares, respectively, vs. age. Red squares represent dense tissue, blue squares represent fatty

tissue, and yellow squares represent uncorrelated (disrupted) tissue. Linear fits are shown in full, dashed, and dotted lines for normal, cancer, and benign popula

tions, respectively.
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Fig. 1(j)). Again, it is important to emphasize that a power
spectral analysis would not have been able to correctly cate-
gorize these regions potentially composed of fatty tissue
(H < 1/2) and dense tissue (H > 1/2), and could have erro-
neously reported an uncorrelated process (H~1/2).

The relationships between metrics and age suggest the
general trend that dense tissue (red squares) decreases with
age while fatty tissue (blue squares) increases with age. This
is in line with the established relationship of mammographic
density and age.51 Another observable trend is that disrupted
tissue (yellow squares) stays relatively constant with age in
cancerous patients, but increases in normal and benign
patients (albeit for the number of squares only, not for the
percent). If this observation is further validated, it would sup-
port the hypothesis that loss of tissue homeostasis and cancer
risk increase in likelihood with age.1,2

It is worth noting there were significantly fewer density 1
cases than density 2 cases (4 vs. 17 cases, respectively) in the
normal population data, which likely affected statistics for the
continuous density fluctuation score. Applying the continu-
ous density fluctuation score to a larger population may
improve the correlations found with the radiologist BIRADS
score.

5. CONCLUSION

Differences in tumorous and normal breast cases were
observable and quantifiable using the objective sliding win-
dow WTMM analysis of entire breast mammograms devel-
oped and used in this paper. This was done on scanned
mammographic film from the (often imperfect) DDSM data.
This proof of concept suggests future work using high-quality
full field digital mammography (FFDM).

Several sets of parameters introduced in this paper are pre-
liminary and require future refinement. For example, the defi-
nition of the yellow range, (0.45 < H < 0.55), the weights
that were chosen for each q value, the step size for the image

sliding window approach (32 pixels), etc., should all be revis-
ited, with FFDM. The fully objective and automated
approach to determine the choice of minimum and maximum
scales to extract critical exponents was introduced here for
the first time using the 2DWTMM method.

The metrics presented here are also objective and are
likely to exhibit quantifiable changes over the lifetime of a
patient, based on identified correlations with age. Given this,
it may be possible to observe tissue disruption early and use
it to pre-identify potential danger zones. Future work should
not only employ FFDMs, but should be longitudinal. This
will enable examination of changes in these (and new) met-
rics over time in greater detail and ultimately on a patient-by-
patient basis (rather than in population studies like this one).
Indeed, in the breast, signs of aberrant stroma and epithelia
may exist long before there is overt carcinoma.1–3,52 In fact, it
has already been suggested that tissue disruption might not
always be reactive, but might sometimes play an initial role in
breast carcinogenesis.1–3,52 This motivates the development
of new metrics such as the ones presented herein that could
detect cancer at an earlier stage and help better understand
the biophysics of loss of tissue homeostasis.
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