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Chapter I

An Ant Colony Optimization

Meta-Heuristic for Subset

Selection Problems

Christine Solnon I.1 Derek Bridge I.2

Subset selection problems involve finding an optimal feasible subset of an initial set
of objects with respect to an objective function and/or some constraints. Many
well-known combinatorial problems are members of this class, e.g., maximum clique
problems, knapsack problems, boolean satisfiability problems, constraint satisfaction
problems, and graph matching problems.

In this chapter we define a generic ant colony optimization (ACO) algorithm
for this class of problems. Basically, this algorithm successively generates subsets
through the repeated selection of objects, and uses “pheromone trails” as a greedy
heuristic to choose, at each step, the next object to be selected. The algorithm is
parameterized by a pheromonal strategy and we propose and compare two different
instantiations of it: a first one where pheromone is laid on objects and a second
one where pheromone is laid on cliques of objects. The proposed algorithm is also
parameterized by problem-specific features, and we present and evaluate instantia-
tions of it for solving maximum clique problems, knapsack problems and constraint
satisfaction problems.

I.1LIRIS CNRS UMR 5205, University Lyon 1, France, christine.solnon@liris.cnrs.fr,

http://www710.univ-lyon1.fr/~csolnon
I.2Department of Computer Science, University College Cork, Ireland, d.bridge@cs.ucc.ie,

www.cs.ucc.ie/dbridge.html

1



I. AN ACO META-HEURISTIC FOR SS PROBLEMS

I.1 Introduction

The Ant Colony Optimization (ACO) meta-heuristic is one of the best-known ex-
amples of swarm intelligence systems. This meta-heuristic has recently joined the
arsenal of methods for finding solutions and near-solutions to intractable discrete
optimization problems [9, 10, 11]. The problem to be solved is modelled as a search
for a minimum cost path in a graph. Artificial ants walk the graph, each path
corresponding to a potential solution to the problem. The behavior of the ants is
inspired by that of real ants: they deposit pheromone on the path in a quantity
proportional to the quality of the solution represented by that path; they resolve
choices between competing destinations probabilistically, where the probabilities are
proportional to the pheromone accumulated on previous iterations. This indirect
form of communication, known as stigmergy, intensifies the search around the most
promising parts of the search space. On the other hand, there is also a degree of
pheromone evaporation, which allows some past history to be forgotten, to diversify

the search to new, and hopefully more successful, areas of the search space. The
trade-off between intensification and diversification is influenced by modifying the
values of parameters.

Ant algorithms in general, and instantiations of the ACO meta-heuristic in par-
ticular, have been applied to many discrete optimization problems. Many of these
problems are ordering or sequencing problems, which are easily modelled as best
hamiltonian path-finding problems, where ants must visit every vertex in a graph.
Examples include traveling salesperson problems [8], quadratic assignment problems
[27], vehicle routing problems [6], and permutation constraint satisfaction problems
[22]. To solve such best hamiltonian path-finding problems with the ACO meta-
heuristic, a pheromone trail τij is associated with each edge (i, j). This pheromone
trail represents the learned desirability of visiting vertex j immediately after vertex
i, and it is used to guide ants during their path construction step.

Many combinatorial problems, however, involve selection rather than ordering
or sequencing. Given a set S, some subset S ′ ⊆ S that satisfies certain properties
and/or that optimizes some objective function is to be selected. We will refer to the
class of such problems as Subset Selection problems —abbreviated by SS problems.
Some well-known examples of SS problems are, e.g., the maximum clique problem,
the multidimensional knapsack problem, the boolean satisfiablility problem, and
the constraint satisfaction problem. For these problems, the order in which objects
are selected is not significant. Therefore, it is meaningless to model them as path-
finding problems and lay pheromone trails on consecutively visited vertices. Two
main pheromonal strategies may be considered for solving SS problems with ACO:

• One may associate a pheromone trail τi with each object i ∈ S, so that τi rep-
resents the learned desirability of selecting object i. This pheromonal strategy
has been proposed in [17] for the general subset selection problem, where it
has been experimentally validated on the multiple knapsack problem. It also
has been proposed for constraint satisfaction problems [30], maximum clique
problems [25], and edge-weighted k-cardinality tree problems [5].
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I.2. SUBSET SELECTION PROBLEMS

• One may associate a pheromone trail τij with each pair of different objects
(i, j) ∈ S×S, so that τij represents the learned desirability that objects i and
j belong to the same subset. This pheromonal strategy has been proposed
for different specific SS problems: maximum clique problems [12], multiple
knapsack problems [2], constraint satisfaction problems [23], edge-weighted
k-cardinality tree problems [5], and graph matching problems [21].

A goal of this chapter is to present these different algorithms in a unified framework.
Hence, we introduce a generic ACO algorithm for SS problems. This algorithm is
parameterized by problem-specific features and by a pheromonal strategy which
determines whether ants lay pheromone on objects or on pairs of objects.

We introduce the class of SS problems and give example members of it in Sec-
tion I.2. We define the generic Ant Colony Optimization algorithm for this class of
problems in Section I.3. We describe instantiations of this algorithm with respect
to two different pheromonal strategies in Section I.4, and we describe instantiations
of this algorithm to solve well-known SS problems in Section I.5. We discuss pa-
rameter settings and their influence on the solution process in Section I.6. Finally
in Section I.7, we present some experimental results.

I.2 Subset Selection Problems

Subset Selection problems (SS problems) involve finding an optimal feasible subset
of objects within an initial set of objects. More formally, an SS problem may be
defined by a triple (S, Sfeasible , f) where

• S is a set of objects;

• Sfeasible ⊆ P(S) is a set that contains all feasible subsets of S;

• f : Sfeasible → IR is an objective function that associates a real-valued cost
f(S′) with every feasible subset of objects S ′ ∈ Sfeasible .

The goal of an SS problem (S, Sfeasible , f) is to find S∗ ⊆ S such that S∗ ∈ Sfeasible

and f(S∗) is maximal. Here are a few examples of SS problems.

Maximum Clique. The goal is to find a largest set of pairwise adjacent vertices in a
graph [4], i.e.,

• S contains all the vertices of the graph;

• Sfeasible contains all the cliques of G, i.e., all the sets S ′ ⊆ S such that every
pair of distinct vertices in S ′ is connected by an edge in the graph;

• f is the cardinality function.
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I. AN ACO META-HEURISTIC FOR SS PROBLEMS

Multidimensional Knapsack. The goal is to find a subset of objects that maximizes
a total profit while satisfying some resource constraints, i.e.,

• S is the set of objects;

• Sfeasible contains every subset that satisfies all the resource constraints, i.e.,
Sfeasible = {S′ ⊆ S | ∀i ∈ 1..m,

∑
j∈S′ rij ≤ bi} where m is the number

of resources, rij is the consumption of resource i by object j, and bi is the
available quantity of resource i;

• f returns the total profit, i.e., ∀S ′ ∈ Sfeasible , f(S′) =
∑

j∈S′ pj where pj is the
profit associated with object j.

Maximum Boolean Satisfiability. The goal is to find a truth assignment of boolean
variables that satisfies a maximum number of boolean formulas, i.e.,

• S contains all boolean variables;

• Sfeasible contains all the subsets of S, i.e., Sfeasible = P(S);

• f returns the number of satisfied formulas, i.e., ∀S ′ ∈ Sfeasible , f(S′) is the
number of boolean formulas that are satisfied when all variables of S ′ are set
to True and all others to False.

The classical boolean satisfiability (SAT) problem is a special case of the Maximum
Boolean Satisfiability where the goal is to find a truth assignment of boolean vari-
ables that satisfies all boolean formulas. This problem may be modelled as a subset
selection problem by defining f as the function that returns 1 if all formulas are
satisfied and 0 otherwise.

Maximum Constraint Satisfaction. The goal is to find an assignment of values to
variables that satisfies a maximum number of constraints [31], i.e.,

• S contains every label 〈Xi, vi〉 pairing a variable Xi with a value vi from that
variable’s domain D(Xi);

• Sfeasible contains all the subsets of S that do not contain two different labels
for the same variable, i.e.,

Sfeasible = {S′ ⊆ S | ∀(〈Xi, vi〉, 〈Xj , vj〉) ∈ S′ × S′, Xi = Xj ⇒ vi = vj}

• f returns the number of satisfied constraints, i.e., ∀S ′ ∈ Sfeasible , f(S′) is the
number of constraints such that every variable involved in the constraint is as-
signed a value by a label of S ′ and the constraint is satisfied by this assignment
of values to variables.

As with SAT problems, constraint satisfaction problems (CSPs) are special cases of
Maximum Constraint Satisfaction and can easily be modelled as SS problems.
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I.3. A GENERIC ACO ALGORITHM FOR SS PROBLEMS

Minimum Vertex Cover. The goal is to find the smallest subset of the vertices
of a graph G that contains at least one vertex of every edge of G. As this is a
minimization problem, we may consider the dual problem that involves finding the
largest set of vertices such that no edge has its two vertices in this set, i.e.,

• S contains all the vertices of the graph;

• Sfeasible contains all the subsets S ′ ⊆ S such that for all edges (i, j) of the
graph, i 6∈ S ′ or j 6∈ S′;

• f is the cardinality function.

Graph Matching. Given two labelled graphs, the goal is to find a multivalent map-
ping of their vertices that maximizes their similarity [7], i.e.,

• S contains all pairs of vertices (i, j) such that i is a vertex of the first graph
and j is a vertex of the second graph;

• Sfeasible contains all the subsets of S, i.e., Sfeasible = P(S);

• f evaluates the similarity of the two graphs with respect to the mapping
defined by a subset of S: for each subset S ′ ⊆ S that defines a multivalent
mapping —associating each vertex of one graph to a set of vertices of the other
graph— f(S ′) depends on (1) the number of features of each graph that are
mapped to at least one similar feature of the other graph and (2) the number
of vertices that are mapped to more than one vertex of the other graph.

Edge-Weighted k-Cardinality Tree. This problem is a generalization of the minimum
weight spanning tree problem. Given a weighted graph, the goal is to find a minimum
weight subtree with exactly k edges, i.e.,

• S contains all the vertices of the graph;

• Sfeasible contains all the subsets S ′ ⊆ S such that |S ′| ≤ k and S′ is a tree;

• f(S′) = 0 if |S′| 6= k, and f(S ′) = −
∑

(i,j)∈S′ weight(i, j) otherwise.

Numerous other problems are naturally modelled as SS problems. We should
point out that, of course, many problems can be modelled in multiple ways. In
particular, a problem might be modelled as either a SS problem or as the kind of
ordering problem that we mentioned in Section I.1. It is well-known, for example,
that traveling salesperson problems can be modelled as constraint satisfaction prob-
lems (e.g. variables represent cities, values are integers that represent the order in
which the cities are visited) and hence can be alternatively solved as SS problems.
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I. AN ACO META-HEURISTIC FOR SS PROBLEMS

Algorithm I.1 The ACO meta-heuristic for SS problems

Input: A SS problem (S, Sfeasible , f)
A pheromonal strategy φ ∈ {Vertex ,Clique}
A set of parameters {α, β, ρ, τmin , τmax ,nbAnts}

Output: A feasible subset of objects S ′ ∈ Sfeasible

01. Let C be the set of pheromonal components w.r.t. the strategy φ
02. Initialize the pheromone trail τ(c) associated with each c ∈ C to τmax

03. repeat

04. for each ant k ∈ [1;nbAnts ], construct a solution Sk as follows:
05. Randomly choose a first object oi ∈ S
06. Sk ← {oi}
07. Candidates ← {oj ∈ S | Sk ∪ {oj} ∈ Sfeasible}
08. while Candidates 6= ∅ do

09. Choose an object oi ∈ Candidates with probability

10. p(oi, Sk) =
[τfactor (oi,Sk)]α·[ηfactor (oi,Sk)]β∑

oj∈Candidates
[τfactor (oj ,Sk)]α·[ηfactor (oj ,Sk)]β

11. Sk ← Sk ∪ {oi}
12. Remove oi from Candidates

13. Remove from Candidates every object oj such that Sk∪{oj} 6∈ Sfeasible

14. end while

15. end for

16. Optionally, apply local search to one or more solutions of {S1, . . . , SnbAnts}
17. for each c ∈ C, update the pheromone trail τ(c) as follows:
18. τ(c)← τ(c) · ρ + δτ (c, {S1, . . . , SnbAnts})
19. if τ(c) < τmin then τ(c)← τmin

20. if τ(c) > τmax then τ(c)← τmax

21. end for

22. until maximum number of cycles reached or acceptable solution found
23. return the best solution found since the beginning

I.3 A Generic ACO Algorithm for SS Problems

Algorithm I.1 describes a generic ACO algorithmic scheme for solving SS problems.
We refer to this algorithmic scheme as Ant-SS. This algorithm is parameterized by:

• the actual SS problem to be solved, described by a triple (S, Sfeasible , f); instan-
tiations of this algorithm for solving maximum clique, knapsack and constraint
satisfaction problems are described in Section I.5.

• a pheromonal strategy φ which defines the set of pheromonal components
on which ants lay pheromone trails; two different pheromonal strategies are
described in Section I.4.

• a set of numeric parameters, the role and setting of which are discussed in
Section I.6.
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This algorithm first initializes all pheromone trails to τmax and then iterates on a
repeat-until loop (lines 03 to 22). Each iteration is composed of a solution con-
struction step —where ants exploit pheromone trails to construct solutions— and a
pheromone updating step —where pheromone trails are intensified with respect to
these constructed solutions.

I.3.1 Solution construction step

Lines 05 to 14 of algorithm I.1 describe the procedure used by ants to construct
subsets. The first object is chosen randomly; subsequent objects are chosen within
the set Candidates —that, for a given ant, contains all feasible objects with respect
to the objects the ant has chosen so far— using a probabilistic state transition rule.
More precisely, the probability p(oi, Sk) of selecting oi ∈ Candidates when ant k has
already selected the subset of objects Sk depends on two factors:

• The pheromone factor τfactor (oi, Sk) evaluates the learned desirability of adding
object oi to subset Sk based on the pheromone trails that have been deposited
previously on pheromonal components. The definition of this factor depends
on the pheromonal strategy φ as discussed in Section I.4.

• The heuristic factor ηfactor (oi, Sk) evaluates the promise of object oi based
on information local to the ant, i.e., the solution it has built so far Sk. The
definition of this factor is dependent on the problem (S, Sfeasible , f) as discussed
in Section I.5.

As usual in ACO algorithms, α and β are two parameters that determine the relative
importance of these two factors.

Note that such an incremental construction of solutions —where feasible objects
are iteratively added to a solution that is initially empty— supposes that Sfeasible is
defined in such a way that every feasible subsets can be incrementally constructed,
i.e., for each non empty feasible subset S ′ ∈ Sfeasible , there must exist at least one
object oi ∈ S′ such that S ′ − {oi} is also feasible. Let us consider for example the
edge-weighted k-cardinality tree problem defined in Section I.2. For this problem,
we have defined Sfeasible as the set of all trees having a number of vertices that is
smaller or equal to k, so that we can incrementally build a tree with k vertices
starting from the empty tree. Had we defined Sfeasible as the set of all trees having
exactly k vertices, this would no longer have been possible.

Once each ant has constructed a feasible subset, one or more constructed solu-
tions may be improved by using a problem-dependent form of local search (line 16):
in some cases local search is applied to all constructed solutions; in other cases it is
applied to the best solution of the cycle.

I.3.2 Pheromone updating step

Lines 17 to 21 of algorithm I.1 describe the updating of pheromone trails at the end
of each cycle. Evaporation is simulated by multiplying the quantity of pheromone on
each pheromonal component by a pheromone persistence rate ρ such that 0 ≤ ρ ≤ 1.
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I. AN ACO META-HEURISTIC FOR SS PROBLEMS

Then a quantity δτ of pheromone is added. In the standard ACO meta-heuristic,
an ant can deposit pheromone while constructing its solution, i.e., while walking, or
after a solution has been built, or both [10]. However, we avail only of the option of
depositing pheromone after ants have constructed their solutions. This is because,
for SS problems, the quality of partial solutions is not necessarily a good estimate of
the quality of complete solutions, which depends on problem-specific criteria some
of which can only be evaluated on complete solutions (e.g. the size of Sk).

Also, in some of the very earliest ant algorithms (e.g. [8]), it was realised that
not every ant should get to deposit pheromone. Accordingly, we allow for an elitist

strategy, where only the best ants in each cycle, i.e., one or more of those whose so-
lutions are no worse than any other ant’s solution, deposit pheromone. The amount
of pheromone deposited by these best ants depends on the quality of the constructed
solution. In many cases, it is inversely proportional to the gap in quality between
the constructed solution and the best constructed solution since the beginning of
the run Sbest, i.e., the amount of pheromone deposited on component c with respect
to the constructed solutions {S1, . . . , SnbAnts} is defined as follows:

δτ (c, {S1, . . . , SnbAnts}) = 1
1+f(Sbest)−f(Sk) if ∃k ∈ [1;nbAnts ] such that

c is a pheromonal component of Sk

and ∀i ∈ [1;nbAnts ], f(Sk) ≥ f(Si)

δτ (c, {S1, . . . , SnbAnts}) = 0 otherwise

The algorithm follows theMAX -MIN Ant System [28]: we explicitly impose lower
and upper bounds τmin and τmax on pheromone trails (with 0 < τmin < τmax ) (lines
19-20). These bounds restrict differences between the pheromone on components,
which encourages wider exploration. All components are initialized to the maximum
allowed τmax (line 02). This makes all choices quite attractive in early cycles, keeping
exploration high in these cycles. However, in Section I.6.2, we discuss an alternative
way of initializing the trails based on a preprocessing step.

I.4 Instantiations of Ant-SS w.r.t. Pheromonal Strategies

The generic algorithm Ant-SS is parameterized by a pheromonal strategy φ and we
now describe two instantiations of this algorithm: Ant-SS(Vertex) —where pheromone
is laid on objects— and Ant-SS(Clique) —where pheromone is laid on pairs of ob-
jects. For each pheromonal strategy φ ∈ {Vertex ,Clique}, we have to define:

• the set C of pheromonal components associated with an SS problem (S, Sfeasible , f),
i.e., the set of components on which ants may lay pheromone trails;

• the set of pheromonal components associated with a solution Sk ∈ Sfeasible ,
i.e., the set of pheromonal components on which some pheromone is actually
laid when solution Sk is rewarded;

• the pheromone factor τfactor (oi, Sk) associated with an object oi and a partial
solution Sk used in the probabilistic transition rule.
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I.4. INSTANTIATIONS OF ANT-SS W.R.T. PHEROMONAL

STRATEGIES

I.4.1 The “vertex” pheromonal strategy

In ACO algorithms, ants lay pheromone on components of the best constructed
solutions in order to attract other ants towards the corresponding areas of the search
space. For SS problems, solutions constructed by ants are subsets of objects, and
the order in which objects are selected is not significant. Hence, a first pheromonal
strategy consists in laying pheromone on objects of the best constructed solutions.

• The set C of pheromonal components contains all objects, i.e., C = S. In-
tuitively, the quantity of pheromone on every pheromonal component oi ∈ C
—τ(oi)— represents the learned desirability of selecting oi when constructing
a solution.

• The set of pheromonal components associated with a solution Sk is the set of
objects oi ∈ Sk.

• The pheromone factor in the probabilistic transition rule corresponds to the
quantity of pheromone on the considered object, i.e., τfactor (oi, Sk) = τ(oi).

I.4.2 The “clique” pheromonal strategy

The “vertex” pheromonal strategy implicitly supposes that an object’s desirability
is rather independent of the other selected objects. However, in some cases the
desirability of an object may depend on the subset of already selected objects. Let
us consider for example a constraint satisfaction problem that contains two variables
x and y that can be assigned either 0 or 1, so that the initial set of objects S contains
the labels 〈x, 0〉, 〈x, 1〉, 〈y, 0〉, and 〈y, 1〉. Let us now suppose that this problem
contains the constraint x 6= y. In this case, the desirability of selecting either
label 〈y, 0〉 or label 〈y, 1〉 for y depends on the label selected for x (and vice-versa).
Hence, pheromone trails could be used to learn that (〈x, 0〉, 〈y, 1〉) and (〈x, 1〉, 〈y, 0〉)
are pairs of labels that fit well together whereas (〈x, 0〉, 〈y, 0〉) and (〈x, 1〉, 〈y, 1〉) are
less interesting pairs of labels.

Hence, a second pheromonal strategy for subset selection problems consists in
laying pheromone on pairs of objects.

• The set C of pheromonal components contains every pair of objects (oi, oj) ∈
S×S. Intuitively, the quantity of pheromone on every component (oi, oj) ∈ C
—τ(oi, oj)— represents the learned desirability of selecting both oi and oj

within the same solution.

• The set of pheromonal components associated with a solution Sk is the set of
pairs of objects (oi, oj) ∈ Sk × Sk.

• The pheromone factor in the probabilistic transition rule depends on the quan-
tity of pheromone on every pair of objects (oi, oj) such that oj is an object
that has already been selected in Sk, i.e.,

τfactor (oi, Sk) =
∑

oj∈Sk

τ(oi, oj)
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The ant’s walk Ant-SS(Vertex) Ant-SS(Clique)

Pheromone
factor of
a vertex
w.r.t. a
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4

5

Sk = {1, 2, 4}

1

2

3

4

5

τfactor (5, Sk) = τ(5)

1

2

3

4

5

τfactor (5, Sk) =
τ(1, 5) + τ(2, 5) + τ(4, 5)

Fig. I.1a. Fig. I.1b. Fig. I.1c.
Pheromonal
components
that are
rewarded
w.r.t. a
complete
walk

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. I.1d. Fig. I.1e. Fig. I.1f.

Figure I.1. Pheromonal strategies

Note that this pheromone factor can be computed in an incremental way: once
the first object oi has been randomly chosen, for each candidate object oj , the
pheromone factor τfactor (oj , Sk) is initialized to τ(oi, oj); then, each time a new
object ol is added to the subset, for each candidate object oj, the pheromone
factor τfactor (oj , Sk) is incremented by τ(ol, oj).

I.4.3 Comparison of Ant-SS(Vertex) and Ant-SS(Clique)

Taking a graph-theoretic view, Figure I.1 illustrates the two pheromonal strate-
gies. Fig. I.1a depicts the current set of objects selected by an ant as vertices
visited in a walk of a complete graph. In Fig. I.1b and I.1c, we highlight in black
the pheromonal components respectively considered by Ant-SS(Vertex) and Ant-
SS(Clique) to define the probability of selecting object 5: whereas the pheromonal
factor in Ant-SS(Vertex) only depends on the pheromone trail laying on the can-
didate vertex, the pheromonal factor in Ant-SS(Clique) depends on all pheromone
trails laying between the candidate vertex and the current set of objects.

Then, Fig. I.1d depicts the final set of objects selected by an ant. In Fig. I.1e
and I.1f, we highlight in black the pheromonal components onto which pheromone
will be respectively deposited by Ant-SS(Vertex) and Ant-SS(Clique). In the latter
case, note that all edges belonging to the clique of visited vertices and not just the
edges that were traversed are updated.

This figure illustrates differences in the time complexities of Ant-SS(Vertex) and
Ant-SS(Clique). Indeed, to construct subsets (lines 04 to 16 of Algorithm I.1), Ant-
SS(Vertex) and Ant-SS(Clique) perform nearly the same number of operations: the
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I.5. INSTANTIATIONS OF ANT-SS W.R.T. DIFFERENT

PROBLEMS

only difference is in the computation of pheromone factors for the probabilistic tran-
sition rule and, as pointed out in Section I.4.2, pheromone factors in Ant-SS(Clique)
may be computed in an incremental way, i.e., each time a new object is selected,
the pheromone factor of each candidate object can be updated by a simple addi-
tion, which further reduces the differences between the time complexities of the two
instantiations of the algorithm.

However, to update the pheromone trails of pheromonal components (lines 17 to
21 of Algorithm I.1), Ant-SS(Vertex) and Ant-SS(Clique) perform a different num-
ber of operations: in Ant-SS(Vertex), the evaporation step requires O(| S |) op-
erations and the reward of a subset Sk requires O(| Sk |) operations, whereas in
Ant-SS(Clique), the evaporation step requires O(| S |2) operations and the reward
of a subset Sk requires O(| Sk |

2) operations.

I.5 Instantiations of Ant-SS w.r.t. Different Problems

To solve a specific SS problem with Ant-SS, one has to define (1) the heuristic factor
ηfactor (oi, Sk), which evaluates the promise of object oi with respect to the current
solution Sk, and which is used in the probabilistic transition rule; (2) optionally,
a local search procedure that may be applied to one or more of the constructed
solutions. In some cases, one may modify the definition of δτ , that specifies the
quantity of pheromone to be added onto pheromonal components.

I.5.1 The maximum clique problem

Heuristic factor. Interestingly, for maximum clique problems it has been found that
it is better, in general, for there to be no heuristic factor, i.e., ηfactor (oi, Sk) = 1 [12].
Hence, ants choose objects based on the pheromone factor alone.

The idea in typical heuristics for this problem is to favor vertices with the largest
degrees in the ‘residual graph’, i.e., the subgraph induced by the set Candidates. The
underlying motivation is that if the selected vertex has a large degree then a larger
number of candidates will remain for addition to the clique.

When using no pheromone, or at the beginning of the search when all pheromone
trails have the same value, this heuristic does allow ants to find larger cliques than
a random choice. But, when combined with learned pheromone, after a hundred
cycles or so, larger cliques are obtained without using the heuristic than when using
it [12]. This is because the heuristic causes a significant increase in the re-sampling
ratio, i.e., the percentage of solutions that are re-computed. This shows that the
search gets trapped around a set of locally optimal cliques and is not diversified
enough to find large cliques.

Local search. Many local search procedures are possible. The (2, 1)-exchange pro-
cedure used in GRASP [1] has been successfully applied to an ant algorithm for this
problem [25]. Given a solution (clique) Sk, this local search procedure looks for
three objects (vertices) oi, oj and ok such that

• oi belongs to Sk;

11



I. AN ACO META-HEURISTIC FOR SS PROBLEMS

• oj and ol do not belong to Sk; and

• oj and ol are adjacent to every vertex of Sk − {oi}.

It then replaces oi by oj and ol, thus increasing the clique size by one. This is
applied repeatedly to the largest clique of the cycle until it becomes locally optimal,
i.e., it cannot be improved by a further (2, 1)-exchange. Experiments show that
applying local search to more cliques than just the largest does not significantly
improve solution quality but is much more time-consuming.

I.5.2 The multidimensional knapsack problem

Heuristic factor. The following heuristic factor has been used in ant algorithms for
the multidimensional knapsack problem [17, 2]. Let cSk

(i) =
∑

j∈Sk
ri,j be the total

quantity of resource i consumed by the objects in ant k’s solution, Sk. And let
dSk

(i) = bi − cSk
(i) be the remaining capacity of resource i. The following ratio

hSk
(j) =

m∑

i=1

rij

dSk
(i)

represents the tightness of object j: the ratio of its consumption of each of the m
resources to their remaining capacity. The lower this ratio, the better is object j.

Finally, we define the heuristic factor for object j by incorporating j’s profit to
obtain a pseudo-utility factor:

ηfactor (j, Sk) =
pj

hSk
(j)

Local search. We do not have any experimental results for the performance of differ-
ent local search procedures on solutions constructed by ants for this problem. Most
of the available local search procedures are inspired by the one given in [14]. Space
precludes a more detailed description of their approach. In short, search is split
into iterations of two alternating phases: constructive, when objects are added to
the solution, and destructive, when objects are removed from the solution. “Criti-
cal events” occur when adding objects makes a feasible solution infeasible or when
deleting objects makes an infeasible solution feasible. The last solution encountered
prior to a critical event is subjected to local optimization; any better solution found
is remembered, prior to taking the move.

I.5.3 Maximum constraint satisfaction problems

Heuristic factor. The following heuristic factor has been successfully used in our
ant algorithms for constraint satisfaction [23, 30]. It is inversely proportional to the
number of additional constraints that would be violated. Formally, the heuristic
factor for adding object (label) 〈X, v〉 to set of labels Sk is given by:

ηfactor (〈X, v〉, Sk) =
1

1 + cost(〈X, v〉 ∪ Sk)− cost(Sk)

12
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where cost(S) is the number of constraints violated by the set of labels S. (Recall
that it is already part of our formulation of constraint satisfaction as a SS problem
—Section I.2— that the set Candidates w.r.t. Sk will not contain any labels that
would result in more than one value being assigned to the same variable; so this
does not need to be catered for in the definition of the heuristic factor.)

This heuristic factor is not cheap to compute. Furthermore, it may need to be
computed for large numbers of candidates: if there are n uninstantiated variables
then there are nm candidates, assuming a uniform domain size of m. We have found
that, for even quite small problems, the total cost of computing the heuristic factors
is unacceptably high.

To reduce the number of candidates for which the heuristic factor is computed,
we use what we have called a cascaded decision. We first select a variable Xj from
among those that are uninstantiated, i.e., {Xi | 〈Xi, vi〉 ∈ Candidates}. This is done
using a separate variable ordering heuristic (discussed below). Once the variable has
been selected, the heuristic factors of labels associated with all other variables are
set to 0 (i.e., the probability of selecting these labels is set to 0 and pheromone
factors need not be computed for these labels), whereas the heuristic factors of
labels associated with the selected variable are actually computed.

There is a good reason for choosing the next variable independently of the
pheromone in a cascaded fashion, quite apart from the time savings that result
by computing the heuristic factor fewer times. In any ant walk, there is no question
of whether or not a variable should be chosen (unlike the case of the values): each
variable must be chosen exactly once. Hence, the only decision an ant must make
about variables is the order in which they are chosen. The pheromone gives no
information about preferred orderings. It makes sense then to make this decision
separately using information that is predictive of good orderings.

In [30], seven common variable ordering heuristics are compared in an ant al-
gorithm for solving constraint satisfaction problems. The most competitive is the
smallest-domain-first where the uninstantiated variable with the smallest number
of values in its domain that are consistent with the existing labels Sk is chosen.

Local search. Local search using the min-conflicts heuristic [20] has been used in
ant algorithms for constraint satisfaction [23]. At each step in the local search, we
randomly choose a variable that is involved in one or more violated constraints and
then we choose a value for this variable which minimizes the number of conflicts.
This repair procedure stops when the number of violated constraints is not improved
for a certain number of successive iterations.

I.6 Influence of the parameters on the solution process

When solving a combinatorial optimization problem with a heuristic approach such
as evolutionary computation or ACO, one usually has to find a compromise between
two dual goals. On the one hand, one has to intensify the search around the most
“promising” areas, that are usually close to the best solutions found so far. On
the other hand, one has to diversify the search and favor exploration in order to
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discover new, and hopefully more successful, areas of the search space. The behavior
of ants with respect to this intensification/diversification duality can be influenced
by modifying parameter values.

I.6.1 Influence of τmin and τmax

As pointed out in [29], the goal of bounding pheromone trails within an interval
[τmin, τmax] is to avoid premature stagnation of search, i.e., a situation where all
ants construct the same solution over and over again so that no better solutions
can be found anymore. Indeed, by imposing explicit limits τmin and τmax on the
minimum and maximum pheromone trails, one ensures that relative differences be-
tween pheromone trails cannot become too extreme. Therefore, the probability of
choosing a vertex cannot become too small and stagnation situations are avoided.
Furthermore, by initializing pheromone trails to τmax at the beginning of the search,
one ensures that during early cycles the relative difference between pheromone trails
is rather small (after i cycles, it is bounded by a ratio of ρi). Hence, exploration is
emphasized at the beginning of the search.

In all the considered SS problems in [23, 12, 2, 30], τmin has been set to 0.01.
However, the setting of τmax is problem-dependent: [29] has shown that τmax should
be set to an estimate of the asymptotically maximum pheromone trail value, which
is defined by δavg/(1−ρ) where δavg is the average quantity of pheromone that is laid
on pheromonal components at each cycle. This quantity varies from one problem
to another. For example, τmax has been set to 6 for maximum clique problems
[12] and multiple knapsack problems [2] whereas it has been set to 4 for constraint
satisfaction problems [23, 30].

I.6.2 Influence of α and ρ

The two pheromonal parameters α and ρ have a great influence on the solution
process. Indeed, diversification can be emphasized either by decreasing the value of
the pheromone factor weight α —so that ants become less sensitive to pheromone
trails— or by increasing the value of the pheromone persistence rate ρ —so that
pheromone evaporates more slowly. When increasing the exploratory ability of ants
in this way, one usually finds better solutions, but as a counterpart it takes longer to
find them. Hence, one has to set these parameters depending on the availability of
time for solving: if CPU-time is limited, it is better to choose parameter values that
favor rapid convergence, such as α ∈ {3, 4} and ρ < 0.99; if CPU-time is not limited,
it is better to choose parameter values that favor exploration, such as α ∈ {1, 2}
and ρ ≥ 0.99. This duality has been observed on many different SS problems: max-
imum clique problems [12], multiple knapsack problems [2], constraint satisfaction
problems [23], and graph matching problems [21].

To speed-up the convergence process of algorithms such as Ant-SS, we have pro-
posed in [24] to introduce a preprocessing step. Indeed, with parameter values that
favor exploration, such as α ∈ {1, 2} and ρ ≥ 0.99, pheromone actually improves
the ants’ collective behaviour only after some 100 or so cycles, whereas pheromone
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is rather expensive to manage —especially for Ant-SS(Clique). The idea is to collect
a significant number of solutions in a greedy way —using just the heuristic factor,
without using pheromone— and repair them using local search. These solutions
constitute a kind of sampling of the search space. Then, we select from this sample
set the best ones and use them to initialize pheromone trails. Finally, we continue
the search, now guided by pheromone trails as well as the heuristic factor. This
preprocessing step has been shown to be effective —allowing us to find better so-
lutions more quickly— on constraint satisfaction problems in [23] and maximum
clique problems in [12].

I.6.3 Influence of nbAnts

To emphasize diversification and avoid premature stagnation, one can also increase
the number of ants so that more states are explored at each cycle. This parameter
is usually set experimentally. We will discuss it in the context of maximum clique
problems, but we observed very similar results for other SS problems.

We ran Ant-SS(Vertex) on maximum clique problems with different values for
nbAnts between 10 and 50 [25]. On average, the best results were obtained with
nbAnts = 30. With lower values, solution quality is often lower because the best
clique constructed in each cycle is usually significantly smaller. With greater values,
running time often increases while solution quality is not significantly improved
because the best clique constructed in each cycle is not significantly better than
those found with 30 ants. Increasing the number of ants also generally decreases
the number of cycles needed because the quality of the solutions constructed in each
cycle is improved. However, with more ants the time needed to compute one cycle
increases.

We also found that the preprocessing step that we described in Section I.6.2 al-
lows us to use fewer ants and more often rival the performance of using, for example,
four times as more ants without preprocessing.

Finally, note that the best setting for nbAnts clearly varies from a SS problem to
another, and also from an instance to another within a same SS problem. It might
be preferable to take a more analytic approach to setting this parameter, resulting
in a problem-dependent heuristic (similar to the case of τmax in Section I.6.1). In
the MAX -MIN Ant System for solving the traveling salesperson problem, for
example, the number of ants ordinarily equals the number of vertices [28]. However,
an analytic argument for this heuristic is not presented.

I.6.4 Influence of β

This parameter determines the sensitivity of ants to the heuristic factor in the state
transition rule. This heuristic factor is problem-dependant. Its relevancy depends on
the considered problem, and therefore the setting of β is different from one problem
to another.

For example, β has been set to 0 for maximum clique problems in [12, 25] (as no
significant heuristic factor has been found); it has been set to 1 for edge-weighted k-
cardinality tree problems in [5]; it has been set to 5 for multiple knapsack problems
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in both [2] and [17]; and it has been set to 10 for constraint satisfaction problems
in both [23] and [30]. For the graph matching problem [21], two different heuristic
factors have been combined: a first one that evaluates the immediate benefit of
adding an object, and a second one that anticipates the potential benefit of adding
this object. These two heuristic factors are weighted by two different parameters:
β1 = 8 for the immediate benefit and β2 = 3 for the anticipated potential benefit.

I.7 Experimental Results

For each of the SS problems described in the previous section, we have published
extensive experimental results in [12, 25, 2, 22, 30]. Here we display results that
exemplify the effects of the two pheromonal strategies on maximum clique, and
constraint satisfaction problems.

Test Suites. For maximum clique problems, we display results obtained on the six
Cn.9 graphs of the DIMACS challenge on clique coloring and satisfiabilityI.3. These
graphs respectively have 125, 250, 500, 1000 and 2000 vertices and maximum known
cliques of 34, 44, 57, 68 and 78 vertices respectively. This first test suite allows us
to exemplify the scale-up properties of Ant-SS.

For constraint satisfaction problems, we display results obtained on four sets of
randomly-generated solvable instances of the model-A class [19]. Each set contains
twenty different instances, each of them having 100 variables, a uniform domain size
of 8, and a connectivity of 0.14. The four sets of instances have been generated with
different tightness ratio pt in order to exemplify what happens around the phase
transition region. This phase transition region —that contains the more difficult
instances— occurs when the constrainedness κ is equal to 1 [13]. Hence, the four
sets of instances have been generated by respectively setting the tightness ratio pt

to 0.2, 0.23, 0.26, and 0.29, so that the constrainedness κ respectively is equal to
0.74, 0.87, 1.00, and 1.14.

Experimental setup. For all problems, we have set nbAnts to 30, α to 1, ρ to 0.99
and τmin to 0.01. For maximum clique problems, we have set τmax to 6 and β to 0;
for constraint satisfaction problems, we have set τmax to 4 and β to 10.

For maximum clique problems, we display average results over 50 runs for each
of the 6 graphs ; for constraint satisfaction problems, we display average results over
100 runs for each of the 4 sets of instances (5 runs for each of the 20 instances).

All runs have been performed on a 2GHz Pentium 4 processor.

Comparison of solution quality. The first two columns of Table I.1 show the quality
of the solutions found by Ant-SS(Vertex) and Ant-SS(Clique) when local search is
not applied to improve the solutions constructed by ants. On instances considered
in this table (and others not reported here), Ant-SS(Clique) generally outperforms
Ant-SS(Vertex): both variants are able to find optimal solutions to “easy” instances
(i.e., smaller graph C125.9 for the maximum clique problem, and instances that are

I.3This benchmark is available at http://dimacs.rutgers.edu/.
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Table I.1. Each row displays solution quality of the “vertex” and “clique”
pheromonal strategies, without and with local search. For maximum clique prob-
lems, it displays the average size of the best clique found; for constraint satisfaction
problems, it displays the percentage of runs that succeeded in finding a solution (we
only consider solvable instances).

Maximum Clique Problems

Without local search With local search
Graph ω(G) Ant-SS(Vertex) Ant-SS(Clique) Ant-SS(Vertex) Ant-SS(Clique)

C125.9 34 34.0 34.0 34.0 34.0
C250.9 44 43.9 44.0 44.0 44.0
C500.9 ≥ 57 55.2 55.6 55.3 55.9
C1000.9 ≥ 68 65.3 66.0 65.7 66.2
C2000.9 ≥ 78 73.4 74.1 74.5 74.3

Constraint Satisfaction Problems

Without local search With local search
pt κ Ant-SS(Vertex) Ant-SS(Clique) Ant-SS(Vertex) Ant-SS(Clique)

0.20 0.74 100% 100% 100% 100%
0.23 0.87 45% 93% 91% 100%
0.26 1.00 89% 97% 99% 100%
0.29 1.14 100% 100% 100% 100%

far enough from the phase transition region for constraint satisfaction problems);
however, on harder instances (i.e., when increasing the size of the graph for max-
imum clique problems, or when getting closer to the phase transition region for
constraint satisfaction problems), Ant-SS(Clique) always obtains better results than
Ant-SS(Vertex).

The last two columns of Table I.1 show the quality of the solutions found when
local search is used to improve solutions built by ants. It shows that integrating
local search into Ant-SS actually improves solution quality, for both pheromonal
strategies.

Comparison of CPU time. Table I.2 shows that the number of cycles —and therefore
the CPU time— needed to find the best solution depends on the problem size and
constrainedness. For example, Ant-SS(Vertex) requires respectively 60, 359, 722,
1219 and 1770 cycles on average to solve the six maximum clique instances that
have 125, 250, 500, 1000 and 2000 vertices respectively.

This table also shows that Ant-SS(Vertex) needs fewer cycles than Ant-SS(Clique)
on maximum clique problems, whereas it nearly always perform more cycles on con-
straint satisfaction problems. However, as Ant-SS(Clique) needs much more time
to perform one cycle than Ant-SS(Vertex), Ant-SS(Vertex) always converges sooner
than Ant-SS(Clique).
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Table I.2. Each row displays the average number of cycles and the CPU-time (in
seconds) spent to find the best solution.

Maximum Clique Problems

Without local search With local search
Ant-SS(Vertex) Ant-SS(Clique) Ant-SS(Vertex) Ant-SS(Clique)

Graph Cycles Time Cycles Time Cycles Time Cycles Time

C125.9 60 0.1 126 0.2 14 0.0 23 0.0
C250.9 359 0.8 473 1.7 172 0.5 239 1.0
C500.9 722 3.8 923 8.9 477 4.6 671 8.6
C1000.9 1219 13.2 2359 55.0 832 23.4 1242 49.8
C2000.9 1770 41.3 3268 214.4 1427 112.4 2067 238.7

Constraint Satisfaction Problems

Without local search With local search
Ant-SS(Vertex) Ant-SS(Clique) Ant-SS(Vertex) Ant-SS(Clique)

pt Cycles Time Cycles Time Cycles Time Cycles Time

0.20 90 1.2 63 4.8 2 0.0 2 0.0
0.23 1084 19.5 849 78.2 472 30.8 230 31.6
0.26 1019 18.1 737 66.1 365 26.9 260 38.7
0.29 449 7.8 516 45.2 27 1.8 38 5.4

Note also that the number of cycles is always decreased when local search is
used to improve solutions built by ants. However, as this local seach step is time
consuming, CPU-times are not always decreased.

CPU time vs solution quality. Tables I.1 and I.2 show us that to choose between
Ant-SS(Vertex) and Ant-SS(Clique), one has to consider the CPU time available for
the solution process. Indeed, Ant-SS(Clique) usually finds better solutions than Ant-
SS(Vertex) at the end of its solution process, but it is also more time consuming. As
a consequence, if one has to find a solution within a short time limit, one has better
use Ant-SS(Vertex), whereas for larger time limits, or when there is no time limit, one
has better use Ant-SS(Clique). This is illustrated in Figure I.2 on the maximum
clique problem with graph C500.9. This figure plots the evolution of the size of
largest clique with respect to CPU-time. It shows us that for time limits smaller
than 8 seconds, Ant-SS(Vertex) finds larger cliques than Ant-SS(Clique), whereas for
larger time limits Ant-SS(Clique) finds larger cliques than Ant-SS(Vertex).

Figure I.2 also compares Ant-SS with a multi-start local search procedure called
multi-start LS. This multi-start local search procedure iterates on the two follow-
ing steps: (1) randomly build a maximal clique, and (2) apply the local search pro-
cedure described in Section I.5.1 on this maximal clique. Figure I.2 shows us that
during the first second of CPU time multi-start LS finds better solutions than
Ant-SS. Indeed, Ant-SS spends time to manage pheromone whereas this pheromone
starts influencing ants only after a few hundreds or so cycles. Hence, Ant-SS(Vertex)
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Figure I.2. Convergence results for the different strategies.

(resp. Ant-SS(Clique)) finds better solutions than multi-start LS only after one
second (resp. five seconds) of CPU time.

Comparison with other approaches. Table I.1 shows that, for constraint satisfaction
problems, all runs of Ant-SS(Clique) with local search have been successfull, even
for the more difficult instances. In [16], we report more experimental results, and
we compare Ant-SS(Clique) performances with other state of the art evolutionary
approaches and with a constraint programming approach based on a complete tree
search. We show that Ant-SS(Clique) clearly outperforms evolutionary approaches
—as it nearly always succeeds in finding a solution whereas evolutionary approaches
much more often fail when getting closer to the phase transition region. We also show
that, if for small instances constraint programming is faster than Ant-SS(Clique),
run-times of constraint programming grow exponentially when increasing problem
size so that its efficiency becomes significantly lower than Ant-SS(Clique) on large
instances.

For maximum clique problems, we compare Ant-SS performances with three
other state of the art approaches in [25]: a reactive tabu search approach [3], an
adaptive greedy approach [15] and a genetic approach combined with local search
[18]. We show that Ant-SS(Clique) obtains very competitive results: it clearly out-
performs the genetic approach; it obtains results that are comparable with the
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adaptive greedy approach —outperforming it on some instances, and being outper-
formed on others; it is slightly outperformed by the reactive tabu search approach
—which is the best algorithm for the maximum clique problem we are aware of.

Also, in [21], we have compared Ant-SS(Clique) with the reactive tabu search
approach of [26] for solving graph matching problems, and we have shown that the
two approaches obtain very complementary results, each approach being able to
solve instances that the other one cannot solve.

I.8 Summary

We have defined the class of subset selection problems, in which the task is to
find a feasible and optimal subset of an initial set of objects S. We have shown
that problems such as maximum clique, multidimensional knapsack and maximum
constraint satisfaction are examples of this class of problems.

We have given a generic ACO algorithm for solving subset selection problems.
The algorithm is instantiated with respect to two main parameters: the subset
selection problem (S, Sfeasible , f) and the pheromonal strategy φ. The pheromonal
strategy determines the components on which pheromone is placed, and we have
defined and investigated two strategies that are suited to subset selection problems.
In one, the “vertex” strategy, pheromone is placed on each object of S to represent
the learned desirability of selecting that object; in the other, the “clique” strategy,
pheromone is placed on pairs of objects of S to represent the learned desirability
that the two objects belong to the same subset.

Then, we discussed the effect of the algorithm’s numeric parameters (α, β, ρ,
τmin , τmax and nbAnts). In particular, we described how to set these parameters
and the influence each has on the degree of exploration in runs of the algorithm.

We showed how to instantiate the algorithm for each of maximum clique, mul-
tidimensional knapsack and maximum constraint satisfaction. This required us to
define possible heuristic factors and local search procedures.

Finally, we included some selected experimental results for maximum clique and
constraint satisfaction problems. In particular, we compared the two pheromonal
strategies. We showed that the “clique” strategy typically finds better quality solu-
tions but the “vertex” strategy generally requires less CPU-time.
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[28] T. Stützle and H. Hoos: Improvements on the Ant System: Introducing the
MAX -MIN Ant System. In G. Smith, N. Steele and R. Albrecht (eds.), Procs.
of Artificial Neural Nets and Genetic Algorithms, pp.245–249, 1997
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