
HAL Id: hal-01541544
https://hal.science/hal-01541544

Submitted on 25 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of preferences using Answer Set
Programming

Claudia Zepeda-Cortes, Mauricio Osorio, Juan Carlos Nieves, Christine
Solnon, D. Sol

To cite this version:
Claudia Zepeda-Cortes, Mauricio Osorio, Juan Carlos Nieves, Christine Solnon, D. Sol. Applications
of preferences using Answer Set Programming. Answer Set Programming: Advances in Theory and
Implementation (ASP 2005), Sep 2005, Bath, United Kingdom. �hal-01541544�

https://hal.science/hal-01541544
https://hal.archives-ouvertes.fr

Applications of preferences using Answer Set
Programming

Claudia Zepeda1,3,Mauricio Osorio1, Juan Carlos Nieves2, Christine Solnon3,
and David Sol1

1 Universidad de las Américas, CENTIA, Sta. Catarina Mártir, Cholula, Puebla,
72820 México

{josorio,sc098382,sol}@mail.udlap.mx,
2 Universitat Politecnica de Catalunya, Departament de Lleguatges i Sistemes

Informatics, c/Jordi Girona 1-3, E08034, Barcelona, Spain
jcnieves@lsi.upc.edu,

3 LIRIS UMR 5205 CNRS, Université Lyon 1 and INSA de Lyon, 43 bd du 11
novembre, 69622 Villeurbanne cedex, France

{claudia.zepeda,christine.solnon}@liris.cnrs.fr

Abstract. Preferences are useful when the space of feasible solutions of
a given problem is dense but not all these feasible solutions are equiv-
alent w.r.t. some additional requirements. In this case, the goal is to
find feasible solutions that most satisfy these additional requirements.
In order to represent preferences, in this paper we use an extension of
ordered disjunction programs. Ordered disjunction is an approach based
on answer sets that allows us to represent alternative, ranked options for
a problem. Moreover, we give a brief overview of two real applications of
extended ordered programs in two different domains. The first one is in
planning: evacuation planning. The second one is in argumentation: or-
gan transplantation. In particular, we show the role of negated negative
literals in extended ordered programs to obtain the preferred solution of
each application.
Key words: Preferences, Answer Set Programming, Ordered Disjunc-
tion Programs, Planning.

1 Introduction

Preferences are useful when the space of feasible solutions of a given problem is
dense but not all these feasible solutions are equivalent w.r.t. some additional
requirements. In this case, the goal is to find feasible solutions that most sat-
isfy these additional requirements. In [3] Brewka introduced logic programs with
ordered disjunction (LPODs) where the connective ×, called ordered disjunc-
tion, allows a natural and simple representation of preferences. However, if we
only want to specify a preference ordering among the answer sets of a program
with respect to an ordered list of atoms then ordered disjunction as defined
by Brewka does not work since it corresponds to a disjunction where an or-
dering is defined. For instance, the answer sets of the program P defined as

{ a ← . b ← ¬c. c ← ¬b. d ← ¬a. f ← c,¬a. e ← b,¬a. } are
{a, b} and {a, c}. Then, if we consider the program P together with the ordered
disjunction rule {f × c} that stands for “if f is possible then f otherwise c” (see
[3]), we obtain two answer sets {a, b, f} and {a, c, f}. Thinking in a preference
sense, with {f × c} we would like to express the fact that we are more inter-
ested in answer sets containing f than answer sets containing c. Then, we would
expect to obtain only {a, c}.

In order to specify a preference ordering among the answer sets of a program
with respect to an ordered list of atoms, we propose to use double negation in
each atom of the ordered rule that represents the mentioned list of atoms. For-
mally, an atom with double negation corresponds to a negated negative literal
where the only negation used is default negation as we shall define in Section 2.
Then, in this paper we are taking advantage of the extension of ordered disjunc-
tion programs defined in [10]. For instance, if we consider again the program P
and the ordered list of atoms {f, c}, then the extended ordered disjunction pro-
gram is P ∪{¬¬f×¬¬c} and we obtain the desired answer set {a, c}. It is worth
mentioning that currently running Psmodels [5] we can obtain the different in-
clusion preferred answer sets for an ordered program as defined by Brewka, how-
ever we cannot obtain the inclusion preferred answer sets for extended ordered
programs. In particular, in this paper we show how we can easily translate an ex-
tended ordered disjunction program with negated negative literals to a standard
ordered disjunction program as defined by Brewka. Then using this translation
we can run Psmodels to obtain the preferred answer sets of an extended ordered
disjunction program.

Additionally, we can also use negated negative literals to obtain the maximal
answer sets of a program w.r.t. a set of atoms. In [8] there is a full description of
a real application using ASP to perform decision making based on an argument
framework (AF) in the domain of organ transplantation. Then, we propose to
use negated negative literals to obtain the maximal answer sets of a program
characterizing an AF such that these maximal answer sets correspond to the
preferred extensions of the AF.

In this paper, we also give a brief overview of an example of a real appli-
cation where negated negative literals in extended ordered programs are useful
to express preferences in planning domain: evacuation planning. The idea is to
specify an ordering among the feasible plans of a planning evacuation problem
using extended ordered programs.

The rest of the paper is structured as follows. In Section 2, we introduce
some fundamental definitions of Answer Sets and Logic Programs with Extended
Ordered Disjunction. In Section 3, we present the role of default negation in
extended ordered disjunction programs. In section 4, we show how extended
ordered disjunction programs may be translated to standard ordered programs
so that one can use existing solvers to compute answer sets. In Sections 5 we
introduce an example of a real application in planning domain where negated
negative literals in extended ordered programs are useful to express preferences:
evacuation planning. In Section 6 we present related work about how to use

extended ordered programs to obtain the maximal answer sets of a particular
program such that these maximal answer sets correspond to the preferred ex-
tensions of an argument framework. Finally in Section 7, we present conclusions
and future work.

2 Background

In this section we introduce some fundamental definitions of Answer Sets and
Logic Programs with Extended Ordered Disjunction.

2.1 Answer Set Programming

Using Answer Set Programming (ASP) makes it possible to describe a computa-
tional problem as a logic program whose answer sets correspond to the solutions
of the given problem. Currently, there are several answer set solvers, such as:
DLV1 and SMODELS2.

In this paper, logic programs are understood as propositional theories. We
shall use the language of propositional logic in the usual way, using propositional
symbols: p, q, . . . , propositional connectives ∧,∨,→,⊥ and auxiliary symbols:
(,). An atom is a propositional symbol. A literal is either an atom a (a posi-
tive literal) or the negation of an atom ¬a (a negative literal) where ¬ denotes
default negation and it is the only type of negation considered in this paper. A
negated literal is the negation sign ¬ followed by any literal, i.e. ¬a or ¬¬a.
We assume that for any well formed propositional formula f , ¬f is just an ab-
breviation of f → ⊥ and ⊤ is an abbreviation of ⊥ → ⊥. In particular, f → ⊥
is called constraint and it is also denoted as ← f . Given a set of formulas F ,
we define ¬F = {¬f | f ∈ F}. Sometimes we may use not instead of ¬ and
a, b instead of a∧ b, following the traditional notation of logic programming. We
shall define as a clause any well formed formula F . A regular theory or logic
program is just a finite set of clauses, it can be called just theory or program
where no ambiguity arises. We want to stress the fact that in our approach, a
program is interpreted as a propositional theory. For readers not familiar with
this approach, we recommend [12, 9] for further reading. We will restrict our
discussion to propositional programs. As usual in answer set programming, we
take for granted that programs with predicate symbols are only an abbreviation
of the ground program. The signature of a program P , denoted as LP , is the
set of atoms that occur in P . In some definitions we use Heyting’s intuitionistic
logic, which will be denoted by the subscript I. For a given set of atoms M and
a program P we will write P ⊢I M to abbreviate P ⊢I a for all a ∈ M and
P !I M to denote the fact that P ⊢I M and P is consistent w.r.t. logic I (i.e.
there is no formula A such that P ⊢I A and P ⊢I ¬A).

We shall define answer sets (or stable models) of logic programs. The sta-
ble model semantics was first defined in terms of the so called Gelfond-Lifschitz
1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/

reduction [6] and it is usually studied in the context of syntax dependent trans-
formations on programs. We follow an alternative approach started by Pearce
[12] and also studied by Osorio et.al. [9]. This approach characterizes the answer
sets for a propositional theory in terms of intuitionistic logic and it is presented
in the following theorem. The notation is based on [9].

Theorem 1. Let P be any theory and M a set of atoms. M is an answer set
for P iff P ∪ ¬(LP \ M) ∪ ¬¬M !I M .

2.2 Logic Programs with Extended Ordered Disjunction

In [3] Brewka introduced the connective×, called ordered disjunction, to allow an
easy and natural representation of preferences and desires. While the disjunctive
clause a∨ b is satisfied equally by either a or b, to satisfy the ordered disjunctive
clause a × b, a will be preferred to b, i.e. a model containing a will have a
better satisfaction degree than a model that contains b but does not contain
a. For example, the natural language statement “I prefer coffee to tea” can be
expressed as coffee × tea. The definition presented here is that of [10], where
ordered disjunctions is extended to wider classes of logic programs 3.

Definition 1 (Ordered Logic Programs). An extended ordered disjunction
rule is either a clause as defined in section 2.1, or a formula of the form:
f1 × . . . × fn ← g where f1, . . . , fn, g are (well formed) propositional formulas.
An extended ordered disjunction program is a finite set of extended ordered
disjunction rules.

The formulas f1 . . . fn are usually called the choices of a rule and their intuitive
reading is as follows: if the body is true and f1 is possible, then f1; if f1 is not
possible, then f2; . . . ; if none of f1, . . . , fn−1 is possible then fn. The particular
case where all fi are literals and g is a conjunction of literals corresponds to the
original LPODs as presented by Brewka in [3], and we shall call them standard
ordered disjunction programs4. If additionally n = 0 the clause is a constraint
(equiv. ⊥ ← g). If n = 1 it is an extended clause and if g = ⊤ the clause is a fact
and can be written as f1× . . .×fn. An extended ordered disjunction program and
a standard ordered disjunction program as defined by Brewka can be called just
extended ordered program and standard ordered program respectively where no
ambiguity arises.

Now, we present the semantics of programs with extended ordered disjunc-
tion. Most of the definitions presented here are taken from [3, 5]. The only rele-
vant difference is the satisfaction degree. The reader may see that the satisfaction
degree as defined here is just a straightforward generalization of Brewka’s defi-
nition, according to our notation and Definition 1 (see [10]).
3 Moreover, while the extension introduced in [10] is in the context of Answer Sets,

the extension introduced in [4] for the operator × is in a different context.
4 Brewka’s LPODs use the strong negation connective. Here we will consider only one

type of negation but this does not affect the results given in [3].

Definition 2. [3] Let r := f1 × . . .× fn ← g be an ordered rule. For k ≤ n the
k-th option of r is defined as follows: rk := fk ← g,not f1, . . .not fk−1. Let P
be an extended ordered program. P ′ is a split program of P if it is obtained by
replacing each rule r := f1 × . . .× fn ← g in P by one of its options r1, . . . , rn.
Let M be a set of atoms. M is an answer set of P iff it is an answer set5 of a
split program P ′ of P . Let M be an answer set of P and let r := f1× . . .×fn ← g
be a rule of P . We define the satisfaction degree of r, denoted by degM (r), as
follows:

– if M ∪ ¬(LP \ M) ̸⊢I g, then degM (r) = 1.
– if M ∪ ¬(LP \ M) ⊢I g then degM (r) = min {i | M ∪ ¬(LP \ M) ⊢I fi} .

For instance, the answer sets of the standard ordered program P1 = {a× b}
are {a} and {b} while the extended ordered program P2 = {¬¬a×¬¬b} has no
answer set.

Theorem 2. [3] Let P be an extended ordered program. If M is an answer set
of P then M satisfies all the rules in P to some degree.

Definition 3 (Preferred Answer Set). [5] Let P be an extended ordered pro-
gram and L a set of atoms. We define Si

L(P) = {r ∈ P | degL(r) = i}. Let M
and N be answer sets of an extended ordered program P . M is inclusion preferred
to N , denoted as M >i N , iff there is an i such that Si

N (P) ⊂ Si
M (P) and for all

j < i, Sj
M (P) = Sj

N (P). M is cardinality preferred to N , denoted as M >c N , iff
there is an i such that

∣∣Si
M (P)

∣∣ >
∣∣Si

N (P)
∣∣ and for all j < i,

∣∣∣Sj
M (P)

∣∣∣ =
∣∣∣Sj

N(P)
∣∣∣.

S is a k-preferred answer set (where k ∈ {inclusion, cardinality}) of P if S is
an answer set of P and there is no S′ answer set of P , S ̸= S′, such that S′ >k S.

For instance, the only inclusion preferred answer set of the standard ordered
program P3 = {a×b. b← ¬a.} is {a} while the only inclusion preferred answer
set of the extended ordered program P4 = {¬¬a×¬¬b. b← ¬a.} is {b}. As we
will see in Section 4, when a program has extended ordered rules using negated
negative literals we can easily translate it to a standard ordered program and
then use Psmodels to obtain the preferred answer sets. Then, the translation of
program P4 will be r• ∪A ∪ {b← ¬a} where r• = {a• × b•} and
A = {← ¬a, a•. a• ← ¬a◦ . a◦ ← ¬a. ← a, a◦ . ← ¬b, b•. b• ← ¬b◦ .b◦ ← ¬b.
← b, b◦ . } such that a•, b•, a◦ , b◦ are atoms that do not occur in P4. Then,
by running Psmodels we obtain the inclusion-preferred answer set of the stan-
dard ordered program r• ∪ A ∪ {b ← ¬a}: {b, b◦ }. Finally, we can see that the
intersection of the inclusion-preferred answer set with LP4 corresponds to the
inclusion-preferred answer sets of the original extended ordered program P4:
{b}.

5 Note that since we are not considering strong negation, there is no possibility of
having inconsistent answer sets.

3 The role of default negation in extended ordered
disjunction programs

In this section, we remark on the role of negated negative literals (for instance
¬¬a) in an extended ordered program with respect to the definition of Brewka,
that can be found in [3].

3.1 Specifying a preference ordering among the answer sets of a
program with respect to an ordered list of atoms

Since ¬¬a is equivalent to the restriction ← ¬a, the intuition behind ¬¬a is to
indicate that a must be in the answer set of a program. Moreover, the intuitive
reading of the extended ordered rule ¬¬a × ¬¬b is as follows: if there is an
answer set containing a then this answer set is preferred; if there is no answer
sets containing a, then it is preferred an answer set containing b; if there is
no answer sets containing a or b then none of the answer sets are preferred.
Then, while the preferred answer set of the standard ordered program {a × b}
is {a}, the extended ordered program {¬¬a × ¬¬b} has no answer set. Hence,
the intuition behind an extended ordered rule using negated negative literals
is to indicate that we want to specify a preference ordering among the answer
sets of a program with respect to an ordered list of atoms. An example of this
is in Section 1 where the program P and the ordered list of atoms {f, c} are
considered.

However, thinking in a preference sense and in case that the answer sets of
the program do not contain any of the atoms in the given ordered list of atoms,
then the extended ordered rule must allow to obtain all the answer sets of the
program. In order to obtain all the answer sets of the program we propose to
add an atom at the end of the extended ordered rule, this atom must be an atom
that does not occur in the original program. For example, let us consider again
program P of Section 1 and let us suppose that we are more interested in answer
sets containing e than answer sets containing f , but in case no answer set contains
either e or f , we are interested in all answer sets of P . This may be expressed by
adding the following extended ordered rule to program P : ¬¬e×¬¬f ×all pref
where all pref is an atom that does not occur in P . Therefore, we obtain two
answer sets {a, b, all pref} and {a, c, all pref} since answer sets of P do not
contain neither e nor f . These answer sets correspond to answer sets of P but
including the atom all pref . Note that the answer sets of P together with the
standard ordered rule e× f × all pref are {a, b, e} and {a, c, e}.

Definition 4 (Translation of a program w.r.t. an ordered list of atoms).
Let P be a program and C = {c1, c2, . . . , cn} be an ordered list of atoms such
that C ⊆ LP . We define a translation of P w.r.t. C, denoted as ordrule(P, C),
into an extended ordered program as follows: ordrule(P, C) := P ∪ rC such that
rC := ¬¬a1 × ¬¬a2 × . . .× ¬¬an × all pref is an extended ordered rule defined
from C where all pref is an atom that does not occur in P .

The following Lemma formalizes the previous discussion about the specifica-
tion of an ordering among the answer sets of an extended ordered program with
respect to an ordered list of atoms.

Lemma 1. Let P be a program and let C = {c1, c2, . . . , cn} be an ordered list
of atoms such that C ⊆ LP . Let rC be the extended ordered rule defined from C.
Then M is an inclusion-preferred answer set of ordrule(P, C) iff there does not
exist an inclusion preferred answer set N of ordrule(P, C) such that degN(rC) <
degM (rC).

3.2 Obtaining the maximal answer sets of a program with respect
to a set of atoms

We can also use negated negative literals in an extended ordered program to
obtain the maximal answer sets of a program w.r.t. a set of atoms A. For instance,
if the answer sets of a program P are {b, c, e}, {b, c, d} {f, e} and {e, a, c} then
{b, c, d} and {f, e} are the maximal answer sets with respect to the set of atoms
A = {b, d, f}. The formal definition of a maximal answer set with respect to a
set of atoms is based on the definition of maximal set with respect to a set.

Definition 5 (Maximal set w.r.t. a set A). [8] Let {Si : i ∈ I} be a collection
of subsets of U such that

⋃
i∈I Si = U and A ⊆ U . We say that Si is a maximal

set w.r.t. A among the collection {Si : i ∈ I} iff there is no Sj with j ̸= i such
that (Si ∩A) ⊂ (Sj ∩A).

Definition 6 (Maximal answer set w.r.t. a set A). [8] Let P be a consistent
program and {Mi : i ∈ I} be the collection of answer sets of P . Let A ⊆ LP . We
say that Mi is a maximal answer set w.r.t. A iff Mi is an answer set of P such
that Mi is a maximal set w.r.t. A among the collection of answer sets of P .

In order to obtain the maximal answer sets with respect to a set of atoms, the
original program P is extended with a set of extended ordered rules using negated
negative literals. Each extended ordered rule is defined from an atom in the given
set of atoms A. For instance, in the previous example where A = {b, d, f} the set
of extended ordered rules is the following: {¬¬b×b•. ¬¬d×d•. ¬¬f×f•.} where
b•, d• and f• are atoms that do not occur in the original program. Then the
extended ordered program is the following: P ∪{¬¬b×b•. ¬¬d×d•. ¬¬f×f•.}

The following Lemma formalizes our previous discussion about the use of
negated negative literals in an extended ordered program to obtain the maximal
answer sets of a program w.r.t. a set of atoms.

Definition 7. Let P be a program and S ⊆ LP . We define a translation of P
w.r.t. S into an ordered program, denoted by ordset(P, S): First, we define a set
of orderd clauses w.r.t. S as follows: CS = {¬¬a × a• | a ∈ S and a• ̸∈ LP }.
Then, ordset(P, S) = P ∪ CS.

Lemma 2. Let P be a program and M be an answer set of P . Let S ⊆ LP .
Then M is an inclusion-preferred answer set of ordset(P, S) iff M ∩ LP is a
maximal answer set of P w.r.t. S.

4 Computing preferred answer sets for extended ordered
programs

It is worth mentioning that neither running Psmodels [5] nor following the def-
inition given by Brewka [3] for ordered disjunction we can obtain the inclusion
preferred answer sets for extended ordered programs. The reason is that the defi-
nition given by Brewka for ordered disjunction has syntactical restrictions. How-
ever, in particular when this program has extended ordered rules using negated
negative literals we can easily translate it to a standard ordered program and
then use Psmodels to obtain the preferred answer sets. In the following definition
and lemma the atoms a•, a◦ , are atoms that do not occur in the original program
P .

Definition 8. Let ¬¬a be a negated negative literal. We define the associated
set of rules of ¬¬a as follows:
R(¬¬a) := { ← ¬a, a•. a• ← ¬a◦ . a◦ ← ¬a. ← a, a◦ . }.

Lemma 3. Let P be a program and let C = {c1, c2, . . . , cn} be a set of atoms
such that C ⊆ LP . Let rC := ¬¬c1×¬¬c2× . . .×¬¬cn×all pref be an extended
ordered rule defined from C where all pref is an atom that does not occur in
P . Let A = {R(¬¬ci)|¬¬ci ∈ rC and 1 ≤ i ≤ n} and r•C = {c•1 × c•2 × . . . ×
c•n × all pref} where c•i , 1 ≤ i ≤ n are atoms that occur in A. Then M is an
inclusion-preferred answer set of P ∪r•C ∪A iff M ∩LP is an inclusion-preferred
answer set of P ∪ rC .

For instance, if we consider the program P of Section 1 and the set of atoms
C = {f, c} then rC = ¬¬f × ¬¬c× all pref ,
A = {← ¬f, f•. f• ← ¬f ◦ . f ◦ ← ¬f. ← f, f ◦ .

← ¬c, c•. c• ← ¬c◦ . c◦ ← ¬c. ← c, c◦ . } and
r•C = {f• × c• × all pref}.

Then, by running Psmodels we obtain the following inclusion-preferred an-
swer set of the standard ordered program P ∪ r•C ∪ A: {a, c, c•, f ◦ }. Finally,
we can see that the intersection of the answer set with LP corresponds to the
inclusion-preferred answer sets of the original extended ordered program P ∪ rC

as it was described in Section ??, i.e., {a, c}.

5 Application to a real planning problem

In this section, we give a brief overview of a real application where negated
negative literals in extended ordered programs are useful: evacuation planning.
We start giving a short description of planning problems and we introduce how
we can express plan preferences as an extended ordered program. Then we give
a brief overview of a language for planning preference specification called PP
and we remark on the appropriateness of PP for expressing evacuation planning.
Finally, we briefly describe the solution to the real problem of finding alternative
evacuation routes in volcano Popocatepetl using extended ordered programs.

5.1 Defining planning problems with preferences

A planning problem (D, I, G) is defined by three components: the domain de-
scription D, the initial conditions I, and the goal G. A planning problem can be
formally represented using action languages [7]. One of these action languages
is language β. The alphabet of the language β consists of two nonempty disjoint
sets of symbols F and A. F is called the set of fluents and A is called the set
of actions. A fluent represents the property of an object in a world. A state of
the world σ is a collection of fluents. Language β is based on the concept of
a transition relation T ⊆ P(F) × A × P(F) such that (σi, aj ,σk) ∈ T means
that action aj allows one to go from state σi to state σk. The solution of a
planning problem corresponds to a plan or a sequence of actions a1, . . . , an to
achieve its goal G, i.e., the solution is a sequence of actions a1, . . . , an such that
D |=I G after a1, . . . , an. The sequence σ0, a1,σ1 . . . , an,σn where σ1, . . . ,σn

are states and (σi−1, ai,σi) ∈ T , 1 ≤ i ≤ n is called a history of the transi-
tion system T . A full description about language β can be found in [7]. Given
a planning problem expressed in language β, it is possible to define an answer
set encoding of it [2], denoted as Π(D, I, G). Then, it is possible to obtain the
solution of the planning problem (the plan) from the answer sets of Π(D, I, G)
[2].

Given a planning problem, we may obtain a high number of solutions. In
this case, we need to specify an ordered list of criteria of preference (c1, . . . , cn)
to select the “best” of those plans. To specify such preferences among feasible
plans, [13] introduced a new language named PP. We consider this language PP
because it allows us to express temporal preferences over plans: the preferences in
PP are based on the occurrence of an action in a plan, on the fluents that define
a state in the plan, on the moment when an action occurs or a fluent holds in a
state or on some combination of all them. The preferences representing time are
expressed using the temporal connectives next, always, until and eventually. The
combination of them can be defined using three different classes of preferences:

—A basic desire, denoted as ϕ, is a PP formula expressing a preference about
a trajectory with respect to the execution of some specific action or with respect
to the states that the trajectory gets when an action is executed.

—An atomic preference, denoted as ψ = ϕ1 ▹ ϕ2 ▹ . . . ▹ ϕk, is a formula that
gives the order in which a set of basic desires formulas should be satisfied.

—A general preference is a formula based on atomic preferences.

5.2 Computing answer sets of planning problems with preferences

In order to compute the preferred trajectories of a planning problem ⟨D, I, G⟩
w.r.t. ψ a preference of any of the three classes, [13] defines the answer set
encoding Π(D, I, G,ψ) asΠ(D, I, G)∪Πψ∪Πsat whereΠ(D, I, G) is the answer
set encoding of the planning problem as defined in [2], Πψ is the encoding of the
preference formula ψ and Πsat are the set of rules for checking of basic desire
formula satisfaction. Moreover, if M is an answer set of Π(D, I, G), then αM

denotes the trajectory achieving the goal G represented by M .

It is worth mentioning that in particular [13] shows how we can obtain the
most preferred trajectory with respect to a basic desire or an atomic preference.
It is assigned a weight to each component of the preference formula, then the
weight of each trajectory is obtained based on the weight of each component of
the preference formula satisfied by the trajectory. Finally, in order to obtain the
most preferred trajectory, i.e., the answer set with maximal weight it is used the
maximize construct in SMODELS. In [13] it is recommended to use jsmodels
since SMODELS has some restrictions on using the maximize construct. More-
over, in [13] it is showed how an atomic preference of PP can be mapped to a
collection of standard ordered rules as defined by Brewka in order to obtain the
most preferred trajectory. However, the use of weights or the mapping results in
a complicated encoding. We now show that extended ordered rules with negated
negative literals allows a simpler and easier encoding. This encoding is based on
Corollary 1 of Lemma 1.

Corollary 1. Let P = Π(D, I, G) be an answer set encoding of a planning
problem (D, I, G). Let C = {c1, c2, . . . , cn} be an ordered list of atoms such that
C ⊆ LP . Let A be the set of actions such that A ⊂ LP .Then M ∩A is a preferred
plan w.r.t. C iff M is an inclusion-preferred answer set of ordrule(P, C).

In order to obtain the most preferred trajectory using Corollary 1, given
P = ⟨D, I, G⟩ a planning problem and ψ = ϕ1▹ϕ2▹. . .▹ϕn an atomic preference
formula of P we do the following :

— First, we obtain Cψ the ordered list of atoms from ψ: We define the
transformation function T of the basic desire ϕi, 1 ≤ i ≤ n as follow: T (ϕi) :=
ci ← ϕi such that ci ̸∈ LP . Then, we define the associated ordered list of rules of
ψ as follow: Sψ = {T (ϕi)|ϕi ∈ ψ, 1 ≤ i ≤ n}. And we define Cψ the associated
ordered list of atoms w.r.t. ψ as follow: {c1, . . . , cn|ci ← ϕi ∈ Sψ and 1 ≤ i ≤ n}.

— Finally, we apply Corollary 1 to obtain αM the most preferred trajectory
w.r.t. ψ from M an inclusion-preferred answer set of ordrule(P ′, Cψ) where
P ′ = Π(D, I, G,ψ) ∪ Sψ.

An example where the most preferred trajectory with respect to an atomic
preference is obtained using the Corollary 1 is presented in the following subsec-
tion. Obviously, the most preferred trajectory w.r.t. a basic desire is a particular
case of an atomic preference. Hence, Corollary 1 works in order to obtain the
most preferred trajectory w.r.t. a basic desire.

5.3 Finding alternative routes in the risk zone of the Popocatepelt

In order to illustrate the use of Lemma 1, let us consider the real problem of
finding alternative evacuation routes in the risk zone of volcano Popocatepetl
in Mexico. In [15, 16] we presented a detailed description of this problem and
we proposed a partial solution to it using CR-Prolog [1], an extension of ASP
with consistency restoring rules. Another partial solution to this problem was
presented in [11] where we showed how CR-Prolog programs can be translated
into standard ordered disjunction logic programs as defined by Brewka [3].

In this paper we give an overview of a more complete solution of the problem
about finding alternative evacuation routes using language PP. We considered
to use PP because it allows us to express preferences over plans where the satis-
faction of these preferences depends on time and on their temporal relationships.
We think that in particular in evacuation planning it is very useful to express
preferences in terms of time. For instance, it is always preferred to evacuate
people from a place in risk following the defined evacuation routes. However,
if at any moment part of the evacuation route becomes blocked then evacuees
will travel by an alternative evacuation route until they arrive to any place out
of risk. Nowadays, “Plan Operativo Popocatepetl” office in Mexico (POP of-
fice) is responsible of assuring safety of the people living in the risk zone of the
volcano in case of an eruption. For this purpose, POP office has defined ten
evacuation routes. However, some hazards that can accompany volcano erup-
tions (mud flows, flash floods, landslides and rockfalls, etc.) can result on the
blocking of the pre-established routes. The alternative evacuation route problem
can be stated as follows:

There is a set of predefined evacuation routes for people living in the risk
area. Evacuees should travel by these routes. In case part of an evacuation route
becomes inaccessible, then evacuees should search an alternative path. This alter-
native path can belong or not to another evacuation route. If it does not belong
to an evacuation route then it should arrive to some point belonging to an evac-
uation route, to some refuge or to some place out of risk.

Fig. 1. Three evacuation routes: A short example.

We represent the network of roads between towns in the risk zone as a directed
graph. This representation was created from an extract of our GIS database
and contains real evacuation routes, towns (mostly in risk, but nearby towns
not in direct risk are also included) and some additional segments that do not

belong to any evacuation route, since these segments are necessary to obtain the
alternative evacuation plans. We define a directed graph where nodes represent
towns and evacuation routes are paths in the graph. Each segment is represented
by road(P,Q) where P and Q are nodes. Some segments belong to evacuation
routes. An exogenous action which causes road(P,Q) to become blocked results
in a fact of the form blocked(P,Q). The action travel(P,Q) allows to travel
from P to Q if there is an unblocked segment of road from P to Q. We assumed
that each action takes one unit of time.

Example 1 (Evacuation in volcano Popocatepetl).
We can define Π(D, I, G) as follows:

% initial and final conditions
initially(position(busA, 1)).
initially(position(busB, 12)).
initially(position(busC, 14)).
finally(position(B,N)) :- bus(B), node(N).
% fluents
fluent(position(B,X)) :- bus(B), node(X).
fluent(blocked (P,Q)) :- road(P,Q).
% actions travel by a segment of road
action(travel(B,P,Q)) :- bus(B),road(P,Q).
% Dynamic causal laws
caused(position(B,Q),travel(B,P,Q)) :- bus(B),road(P,Q).
caused(neg(position(B,P)),travel(B,P,Q)) :- bus(B),road(P,Q).
% Executability Conditions
noaction_if(travel(B,P,Q),neg(position(P))):- bus(B),road(P,Q).
noaction_if(travel(B,P,Q),blocked(P,Q)) :- bus(B),road(P,Q).

We can use the following abbreviations of basic desires to define the associated
atomic preference of this planning problem: “travel by evacuation route assigned
by the government” as travelERass, “travel by evacuation route not assigned
by the government” as travelER, “travel by a road out of an evacuation route
until arrive to any point of an evacuation route” as arriveER, “travel by a road
out of an evacuation route until arrive to any refuge” as arriveRef, “travel by
a road out of an evacuation route until arrive to any place out of risk” as ar-
riveOR. In particular, if we consider the directed graph in Figure 1 we have the
following definition of travelERass basic desire.

travelERass := always(occ(travel(busB,12,13)) ∨ occ(travel(busB,13,8)) ∨
occ(travel(busB,8,9)) ∨ occ(travel(busB,9,11)) ∨ (position(busB,11))) ∧
always(occ (travel(busC,14,16)) ∨ (position(busC,16))) ∧
always (occ (travel(busA,1,2)) ∨ occ(travel(busA,2,3)) ∨ (position(busC,3))).

Let’s notice that travelERass considers the three buses described in Figure
1. Due to lack of space we do not define the other basic desires, however it
is not difficult to define them in a similar way. Then, the atomic preference is

the following: ψ = travelERass▹travelER▹arriveER▹arriveRef▹arriveOR.

Then in order to obtain the most preferred trajectory of the planning prob-
lem P = Π(D, I, G,ψ) with respect to the atomic preference ψ we follow the
indications given in Subsection 5.2:

1. We obtain the associated ordered list of rules of ψ:
Sψ = {c1 ← travelERass. c2 ← travelER. c3 ← arriveER.

c4 ← arriveRef. c5 ← arriveOR.}
2. We obtain the associated ordered list of atoms w.r.t. ψ representing the

ordered list of criteria of preference: Cψ = {c1, c2, c3, c4, c5}.
3. Then by Definition 4 the extended ordered rule defined from Cψ is: rCψ =

¬¬c1×¬¬c2×¬¬c3×¬¬c4¬¬c5×no pref , where no pref is an atom that
does not occur in P . Also by Definition 4 the translation of P w.r.t. Cψ is:
ordrule(P ∪ Sψ, Cψ) = P ∪ Sψ ∪ rCψ .

4. Finally, we apply Corollary 1 to obtain αM a most preferred trajectory w.r.t.
ψ from M an inclusion-preferred answer set of ordrule(P ∪ Sψ, Cψ). At this
point, it is worth describing how we can easily translate the extended or-
dered program ordrule(P ∪Sψ , Cψ) to a standard ordered program and then
use Psmodels to obtain the preferred answer sets. Then, using Definition 8
to obtain the set A of associated rules for each ¬¬ci with 1 ≤ i ≤ 5 we have,

A = { ← ¬c1, c•1. c•1 ← ¬c◦1. c◦1 ← ¬c1. ← c1, c◦1.
← ¬c2, c•2. c•2 ← ¬c◦2. c◦2 ← ¬c2. ← c2, c◦2.
← ¬c3, c•3. c•3 ← ¬c◦3. c◦3 ← ¬c3. ← c3, c◦3.
← ¬c4, c•4. c•4 ← ¬c◦4. c◦4 ← ¬c4. ← c4, c◦4.
← ¬c5, c•5. c•5 ← ¬c◦5. c◦5 ← ¬c5. ← c5, c◦5. }

and the standard ordered rule is r•Cψ = {c•1 × c•2 × c•3 × c•4 × c•5 × all pref}.

Hence thanks to Lemma 3, the intersection of an inclusion-preferred answer
set of P ∪ Sψ ∪ r•Cψ ∪ A with LP is an inclusion-preferred answer set of
P ∪ Sψ ∪ rC , i.e., it is an inclusion-preferred answer set of the extended
ordered program ordrule(P ∪ Sψ, Cψ). Therefore, we can run Psmodels to
obtain the inclusion-preferred answer sets of the standard ordered program
P ∪ Sψ ∪ r•Cψ ∪A.

In particular, if we consider the set of segments of the directed graph in Fig-
ure 1 with no blocked segments then the most preferred trajectory w.r.t. ψ is:

time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,2);
time 2: travel(busB,13,8), travel(busA,2,3);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

We can see that this most preferred trajectory satisfies the travelERass ba-
sic desire of the atomic preference ψ since all the buses travel by the evacuation

route assigned by the government exactly as POP office indicates. Now, if we con-
sider the set of segments of the directed graph in Figure 1 with segment from node
1 to node 2 blocked, i.e., if we add the initial condition initially(blocked(1, 2))
to the program P then the most preferred trajectory w.r.t. ψ is:

time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,14);
time 2: travel(busB,13,8), travel(busA,14,16);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

Now, the most preferred trajectory satisfies the travelER basic desire of the
atomic preference ψ since busA travels by a road out of the evacuation route
assigned by the government until it arrives to node 14 of evacuation route 1.

6 Related work

Another possible real application of negated negative literals in extended ordered
programs is in argumentation and in particular in the domain of organ transplan-
tation. CARREL [14] is an agent-based platform to mediate organ transplants. In
[8] there is a full description about CARREL-ASP, namely CARREL extended
with ASP to perform decision making based on an argumentation framework
in the domain of organ transplantation. The idea is to use Lemma 2 to obtain
the preferred extension of an argumentation framework by getting the inclusion
preferred answer sets of the extended ordered program ordset(P, A) as defined
in Definition 7 where P corresponds to the encoding of an argumentation frame-
work AF and A corresponds to the translation of the set of arguments of AF
to the program P . It is worth mentioning that in [8] extended ordered programs
are not used to obtain the preferred extensions. For details see [8] .

7 Conclusions

In this paper we have shown how we can easily translate an extended ordered
program with negated negative literals to a standard ordered disjunction pro-
gram as defined by Brewka thanks to the characterization of the answer sets for
a propositional theory in terms of intuitionistic logic. It is worth mentioning that
it is also possible to use a different approach to represent preferences instead of
ordered disjunction programs like abductive logic programs, since the kind of
preferences that we are using in this paper is not very complex.

We are interested in expressing more sophisticated preferences in evacuation
planning. Then we will see if using general preferences of PP language is possible
to express them. For instance, if a represents “arrive to a refuge (a place out
of risk with provisions and water)”, b represents “arrive to a place in risk with
water” and c represents “arrive to a place in risk with food” then we would like
to express a preference to indicate that we prefer the answer sets containing a
to the answer sets containing b and c, but neither b is preferred to c nor c is
preferred to b.

References

1. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-
Restoring Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams,
editors, International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, Mar 2003.

2. Chitta Baral. Knowledge Representation, reasoning and declarative problem solving
with Answer Sets. Cambridge University Press, Cambridge, 2003.

3. Gerhard Brewka. Logic Programming with Ordered Disjunction. In Proceedings
of the 18th National Conference on Artificial Intelligence, AAAI-2002. Morgan
Kaufmann, 2002.

4. Gerhard Brewka, Salem Benferhat, and Daniel Le Berre. Qualitative choice logic.
Artif. Intell., 157(1-2):203–237, 2004.

5. Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Implementing Ordered
Disjunction Using Answer Set Solvers for Normal Programs. In Proceedings of the
8th European Workshop Logic in Artificial Inteligence JELIA 2002. Springer, 2002.

6. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

7. Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif.
Intell., 2:193–210, 1998.

8. Juan Carlos Nieves, Mauricio Osorio, Claudia Zepeda, and Ulises Cortés. Argu-
mentation for decision making in CARREL using Answer Set Programming. In to
appear in Proceedings of Encuentro Internacional de Ciencias de la Computación
(ENC 2005), http://correo.udlap.mx/∼sc098382/dungsPaper/, 2005.

9. Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Applications of Intu-
itionistic Logic in Answer Set Programming. Theory and Practice of Logic Pro-
gramming (TPLP), 4:325–354, May 2004.

10. Mauricio Osorio, Magdalena Ortiz, and Matilde Hernandez. Generalized Or-
dered Disjunctions and its Applicatons. Unpublished. http://mail.udlap.mx/∼
is103378/research/pubs/iclp/genOrdDisj.pdf, 2004.

11. Mauricio Osorio, Magdalena Ortiz, and Claudia Zepeda. Using CR-rules for evacu-
ation planning. In Guillermo De Ita Luna, Olac Fuentes Chaves, and Mauricio Os-
orio Galindo, editors, IX Ibero-american Workshops on Artificial Inteligence, pages
56–63, 1994.

12. David Pearce. Stable Inference as Intuitionistic Validity. Logic Programming,
38:79–91, 1999.

13. Tran Cao Son and Enrico Pontelli. Planning with preferences using logic program-
ming. In LPNMR, pages 247–260, 2004.

14. J. Vázquez-Salceda, U. Cortés, J. Padget, A. López-Navidad, and F. Caballero.
Extending the CARREL system to mediate in the organ and tissue allocation
processes: A first approach. Artificial Intelligence in Medicine, 3:233–258, 2003.

15. Claudia Zepeda, Mauricio Osorio, and David Sol. Towards the use of Cr-rules and
Semantic Contents in ASP for planning in GIS. Technical Report RR-2004-010,
Université Lyon I, Mars 2004.

16. Claudia Zepeda, Christine Solnon, and David Sol. Planning Operation: An exten-
sion of a Geographical Information System. In LA-NMR 2004 CEUR Workshop
proceedings, volume 92, 2004.

