Claudia Zepeda
email: claudia.zepeda@liris.cnrs.fr

Mauricio Osorio
email: josorio@mail.udlap.mx

Juan Carlos Nieves
email: jcnieves@lsi.upc.edu

Christine Solnon
email: christine.solnon@liris.cnrs.fr

David Sol
email: sol@mail.udlap.mx

Applications of preferences using Answer Set Programming

Keywords: Preferences, Answer Set Programming, Ordered Disjunction Programs, Planning

Preferences are useful when the space of feasible solutions of a given problem is dense but not all these feasible solutions are equivalent w.r.t. some additional requirements. In this case, the goal is to find feasible solutions that most satisfy these additional requirements. In order to represent preferences, in this paper we use an extension of ordered disjunction programs. Ordered disjunction is an approach based on answer sets that allows us to represent alternative, ranked options for a problem. Moreover, we give a brief overview of two real applications of extended ordered programs in two different domains. The first one is in planning: evacuation planning. The second one is in argumentation: organ transplantation. In particular, we show the role of negated negative literals in extended ordered programs to obtain the preferred solution of each application.

Introduction

Preferences are useful when the space of feasible solutions of a given problem is dense but not all these feasible solutions are equivalent w.r.t. some additional requirements. In this case, the goal is to find feasible solutions that most satisfy these additional requirements. In [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF] Brewka introduced logic programs with ordered disjunction (LPODs) where the connective ×, called ordered disjunction, allows a natural and simple representation of preferences. However, if we only want to specify a preference ordering among the answer sets of a program with respect to an ordered list of atoms then ordered disjunction as defined by Brewka does not work since it corresponds to a disjunction where an ordering is defined. For instance, the answer sets of the program P defined as

{ a ← . b ← ¬c. c ← ¬b. d ← ¬a. f ← c, ¬a.
e ← b, ¬a. } are {a, b} and {a, c}. Then, if we consider the program P together with the ordered disjunction rule {f × c} that stands for "if f is possible then f otherwise c" (see [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF]), we obtain two answer sets {a, b, f } and {a, c, f }. Thinking in a preference sense, with {f × c} we would like to express the fact that we are more interested in answer sets containing f than answer sets containing c. Then, we would expect to obtain only {a, c}.

In order to specify a preference ordering among the answer sets of a program with respect to an ordered list of atoms, we propose to use double negation in each atom of the ordered rule that represents the mentioned list of atoms. Formally, an atom with double negation corresponds to a negated negative literal where the only negation used is default negation as we shall define in Section 2. Then, in this paper we are taking advantage of the extension of ordered disjunction programs defined in [START_REF] Osorio | Generalized Ordered Disjunctions and its Applicatons[END_REF]. For instance, if we consider again the program P and the ordered list of atoms {f, c}, then the extended ordered disjunction program is P ∪{¬¬f × ¬¬c} and we obtain the desired answer set {a, c}. It is worth mentioning that currently running Psmodels [START_REF] Brewka | Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs[END_REF] we can obtain the different inclusion preferred answer sets for an ordered program as defined by Brewka, however we cannot obtain the inclusion preferred answer sets for extended ordered programs. In particular, in this paper we show how we can easily translate an extended ordered disjunction program with negated negative literals to a standard ordered disjunction program as defined by Brewka. Then using this translation we can run Psmodels to obtain the preferred answer sets of an extended ordered disjunction program.

Additionally, we can also use negated negative literals to obtain the maximal answer sets of a program w.r.t. a set of atoms. In [START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF] there is a full description of a real application using ASP to perform decision making based on an argument framework (AF) in the domain of organ transplantation. Then, we propose to use negated negative literals to obtain the maximal answer sets of a program characterizing an AF such that these maximal answer sets correspond to the preferred extensions of the AF.

In this paper, we also give a brief overview of an example of a real application where negated negative literals in extended ordered programs are useful to express preferences in planning domain: evacuation planning. The idea is to specify an ordering among the feasible plans of a planning evacuation problem using extended ordered programs.

The rest of the paper is structured as follows. In Section 2, we introduce some fundamental definitions of Answer Sets and Logic Programs with Extended Ordered Disjunction. In Section 3, we present the role of default negation in extended ordered disjunction programs. In section 4, we show how extended ordered disjunction programs may be translated to standard ordered programs so that one can use existing solvers to compute answer sets. In Sections 5 we introduce an example of a real application in planning domain where negated negative literals in extended ordered programs are useful to express preferences: evacuation planning. In Section 6 we present related work about how to use extended ordered programs to obtain the maximal answer sets of a particular program such that these maximal answer sets correspond to the preferred extensions of an argument framework. Finally in Section 7, we present conclusions and future work.

Background

In this section we introduce some fundamental definitions of Answer Sets and Logic Programs with Extended Ordered Disjunction.

Answer Set Programming

Using Answer Set Programming (ASP) makes it possible to describe a computational problem as a logic program whose answer sets correspond to the solutions of the given problem. Currently, there are several answer set solvers, such as: DLV1 and SMODELS 2 .

In this paper, logic programs are understood as propositional theories. We shall use the language of propositional logic in the usual way, using propositional symbols: p, q, . . . , propositional connectives ∧, ∨, →, ⊥ and auxiliary symbols: (,). An atom is a propositional symbol. A literal is either an atom a (a positive literal) or the negation of an atom ¬a (a negative literal) where ¬ denotes default negation and it is the only type of negation considered in this paper. A negated literal is the negation sign ¬ followed by any literal, i.e. ¬a or ¬¬a. We assume that for any well formed propositional formula f , ¬f is just an abbreviation of f → ⊥ and ⊤ is an abbreviation of ⊥ → ⊥. In particular, f → ⊥ is called constraint and it is also denoted as ← f . Given a set of formulas F , we define ¬F = {¬f | f ∈ F }. Sometimes we may use not instead of ¬ and a, b instead of a ∧ b, following the traditional notation of logic programming. We shall define as a clause any well formed formula F . A regular theory or logic program is just a finite set of clauses, it can be called just theory or program where no ambiguity arises. We want to stress the fact that in our approach, a program is interpreted as a propositional theory. For readers not familiar with this approach, we recommend [START_REF] Pearce | Stable Inference as Intuitionistic Validity[END_REF][START_REF] Osorio | Applications of Intuitionistic Logic in Answer Set Programming[END_REF] for further reading. We will restrict our discussion to propositional programs. As usual in answer set programming, we take for granted that programs with predicate symbols are only an abbreviation of the ground program. The signature of a program P , denoted as L P , is the set of atoms that occur in P . In some definitions we use Heyting's intuitionistic logic, which will be denoted by the subscript I. For a given set of atoms M and a program P we will write P ⊢ I M to abbreviate P ⊢ I a for all a ∈ M and P I M to denote the fact that P ⊢ I M and P is consistent w.r.t. logic I (i.e. there is no formula A such that P ⊢ I A and P ⊢ I ¬A).

We shall define answer sets (or stable models) of logic programs. The stable model semantics was first defined in terms of the so called Gelfond-Lifschitz reduction [START_REF] Gelfond | The Stable Model Semantics for Logic Programming[END_REF] and it is usually studied in the context of syntax dependent transformations on programs. We follow an alternative approach started by Pearce [START_REF] Pearce | Stable Inference as Intuitionistic Validity[END_REF] and also studied by Osorio et.al. [START_REF] Osorio | Applications of Intuitionistic Logic in Answer Set Programming[END_REF]. This approach characterizes the answer sets for a propositional theory in terms of intuitionistic logic and it is presented in the following theorem. The notation is based on [START_REF] Osorio | Applications of Intuitionistic Logic in Answer Set Programming[END_REF].

Theorem 1. Let P be any theory and M a set of atoms. M is an answer set for P iff P ∪ ¬(L P \ M) ∪ ¬¬M I M .

Logic Programs with Extended Ordered Disjunction

In [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF] Brewka introduced the connective ×, called ordered disjunction, to allow an easy and natural representation of preferences and desires. While the disjunctive clause a ∨ b is satisfied equally by either a or b, to satisfy the ordered disjunctive clause a × b, a will be preferred to b, i.e. a model containing a will have a better satisfaction degree than a model that contains b but does not contain a. For example, the natural language statement "I prefer coffee to tea" can be expressed as cof f ee × tea. The definition presented here is that of [START_REF] Osorio | Generalized Ordered Disjunctions and its Applicatons[END_REF], where ordered disjunctions is extended to wider classes of logic programs3 . Definition 1 (Ordered Logic Programs). An extended ordered disjunction rule is either a clause as defined in section 2.1, or a formula of the form: f 1 × . . . × f n ← g where f 1 , . . . , f n , g are (well formed) propositional formulas. An extended ordered disjunction program is a finite set of extended ordered disjunction rules.

The formulas f 1 . . . f n are usually called the choices of a rule and their intuitive reading is as follows: if the body is true and f 1 is possible, then f 1 ; if f 1 is not possible, then f 2 ; . . . ; if none of f 1 , . . . , f n-1 is possible then f n . The particular case where all f i are literals and g is a conjunction of literals corresponds to the original LPODs as presented by Brewka in [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF], and we shall call them standard ordered disjunction programs 4 . If additionally n = 0 the clause is a constraint (equiv. ⊥ ← g). If n = 1 it is an extended clause and if g = ⊤ the clause is a fact and can be written as f 1 ×. . .×f n . An extended ordered disjunction program and a standard ordered disjunction program as defined by Brewka can be called just extended ordered program and standard ordered program respectively where no ambiguity arises. Now, we present the semantics of programs with extended ordered disjunction. Most of the definitions presented here are taken from [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF][START_REF] Brewka | Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs[END_REF]. The only relevant difference is the satisfaction degree. The reader may see that the satisfaction degree as defined here is just a straightforward generalization of Brewka's definition, according to our notation and Definition 1 (see [START_REF] Osorio | Generalized Ordered Disjunctions and its Applicatons[END_REF]).

Definition 2.

[3] Let r := f 1 × . . . × f n ← g be an ordered rule. For k ≤ n the k-th option of r is defined as follows: r k := f k ← g, not f 1 , . . . not f k-1 . Let P be an extended ordered program. P ′ is a split program of P if it is obtained by replacing each rule r := f 1 × . . . × f n ← g in P by one of its options r 1 , . . . , r n . Let M be a set of atoms. M is an answer set of P iff it is an answer set5 of a split program P ′ of P . Let M be an answer set of P and let r := f 1 ×. . .×f n ← g be a rule of P . We define the satisfaction degree of r, denoted by deg M (r), as follows:

-if M ∪ ¬(L P \ M) ̸ ⊢ I g, then deg M (r) = 1. -if M ∪ ¬(L P \ M) ⊢ I g then deg M (r) = min {i | M ∪ ¬(L P \ M) ⊢ I f i } .
For instance, the answer sets of the standard ordered program P 1 = {a × b} are {a} and {b} while the extended ordered program P 2 = {¬¬a × ¬¬b} has no answer set. Theorem 2. [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF] Let P be an extended ordered program. If M is an answer set of P then M satisfies all the rules in P to some degree. Definition 3 (Preferred Answer Set). [START_REF] Brewka | Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs[END_REF] Let P be an extended ordered program and L a set of atoms. We define

S i L (P) = {r ∈ P | deg L (r) = i}.
Let M and N be answer sets of an extended ordered program P . M is inclusion preferred to N , denoted as M > i N , iff there is an i such that S i N (P) ⊂ S i M (P) and for all j < i, S j M (P) = S j N (P). M is cardinality preferred to N , denoted as M > c N , iff there is an i such that S i M (P) > S i N (P) and for all j < i, S j M (P) = S j N (P) . S is a k-preferred answer set (where k ∈ {inclusion, cardinality}) of P if S is an answer set of P and there is no S ′ answer set of P , S ̸ = S ′ , such that S ′ > k S.

For instance, the only inclusion preferred answer set of the standard ordered program P 3 = {a × b. b ← ¬a.} is {a} while the only inclusion preferred answer set of the extended ordered program P 4 = {¬¬a × ¬¬b. b ← ¬a.} is {b}. As we will see in Section 4, when a program has extended ordered rules using negated negative literals we can easily translate it to a standard ordered program and then use Psmodels to obtain the preferred answer sets. Then, the translation of program P 4 will be r

• ∪ A ∪ {b ← ¬a} where r • = {a • × b • } and A = {← ¬a, a • . a • ← ¬a • . a • ← ¬a. ← a, a • . ← ¬b, b • . b • ← ¬b • .b • ← ¬b. ← b, b • . } such that a • , b • , a • , b
• are atoms that do not occur in P 4 . Then, by running Psmodels we obtain the inclusion-preferred answer set of the standard ordered program r • ∪ A ∪ {b ← ¬a}: {b, b • }. Finally, we can see that the intersection of the inclusion-preferred answer set with L P4 corresponds to the inclusion-preferred answer sets of the original extended ordered program P 4 : {b}.

The role of default negation in extended ordered disjunction programs

In this section, we remark on the role of negated negative literals (for instance ¬¬a) in an extended ordered program with respect to the definition of Brewka, that can be found in [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF].

3.1 Specifying a preference ordering among the answer sets of a program with respect to an ordered list of atoms

Since ¬¬a is equivalent to the restriction ← ¬a, the intuition behind ¬¬a is to indicate that a must be in the answer set of a program. Moreover, the intuitive reading of the extended ordered rule ¬¬a × ¬¬b is as follows: if there is an answer set containing a then this answer set is preferred; if there is no answer sets containing a, then it is preferred an answer set containing b; if there is no answer sets containing a or b then none of the answer sets are preferred. Then, while the preferred answer set of the standard ordered program {a × b} is {a}, the extended ordered program {¬¬a × ¬¬b} has no answer set. Hence, the intuition behind an extended ordered rule using negated negative literals is to indicate that we want to specify a preference ordering among the answer sets of a program with respect to an ordered list of atoms. An example of this is in Section 1 where the program P and the ordered list of atoms {f, c} are considered. However, thinking in a preference sense and in case that the answer sets of the program do not contain any of the atoms in the given ordered list of atoms, then the extended ordered rule must allow to obtain all the answer sets of the program. In order to obtain all the answer sets of the program we propose to add an atom at the end of the extended ordered rule, this atom must be an atom that does not occur in the original program. For example, let us consider again program P of Section 1 and let us suppose that we are more interested in answer sets containing e than answer sets containing f , but in case no answer set contains either e or f , we are interested in all answer sets of P . This may be expressed by adding the following extended ordered rule to program P : ¬¬e × ¬¬f × all pref where all pref is an atom that does not occur in P . Therefore, we obtain two answer sets {a, b, all pref } and {a, c, all pref } since answer sets of P do not contain neither e nor f . These answer sets correspond to answer sets of P but including the atom all pref . Note that the answer sets of P together with the standard ordered rule e × f × all pref are {a, b, e} and {a, c, e}.

Definition 4 (Translation of a program w.r.t. an ordered list of atoms).

Let P be a program and C = {c 1 , c 2 , . . . , c n } be an ordered list of atoms such that C ⊆ L P . We define a translation of P w.r.t. C, denoted as ord rule (P, C), into an extended ordered program as follows: ord rule (P, C) := P ∪ r C such that r C := ¬¬a 1 × ¬¬a 2 × . . . × ¬¬a n × all pref is an extended ordered rule defined from C where all pref is an atom that does not occur in P .

The following Lemma formalizes the previous discussion about the specification of an ordering among the answer sets of an extended ordered program with respect to an ordered list of atoms.

Lemma 1. Let P be a program and let C = {c 1 , c 2 , . . . , c n } be an ordered list of atoms such that C ⊆ L P . Let r C be the extended ordered rule defined from C. Then M is an inclusion-preferred answer set of ord rule (P, C) iff there does not exist an inclusion preferred answer set N of ord rule (P, C) such that deg N (r C) < deg M (r C).

Obtaining the maximal answer sets of a program with respect to a set of atoms

We can also use negated negative literals in an extended ordered program to obtain the maximal answer sets of a program w.r.

: i ∈ I} iff there is no S j with j ̸ = i such that (S i ∩ A) ⊂ (S j ∩ A).
Definition 6 (Maximal answer set w.r.t. a set A). [START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF] Let P be a consistent program and {M i : i ∈ I} be the collection of answer sets of P . Let A ⊆ L P . We say that M i is a maximal answer set w.r.t. A iff M i is an answer set of P such that M i is a maximal set w.r.t. A among the collection of answer sets of P .

In order to obtain the maximal answer sets with respect to a set of atoms, the original program P is extended with a set of extended ordered rules using negated negative literals. Each extended ordered rule is defined from an atom in the given set of atoms A. For instance, in the previous example where A = {b, d, f } the set of extended ordered rules is the following: {¬¬b×b • . ¬¬d×d • . ¬¬f ×f • .} where b • , d • and f • are atoms that do not occur in the original program. Then the extended ordered program is the following:

P ∪{¬¬b × b • . ¬¬d× d • . ¬¬f × f • .}
The following Lemma formalizes our previous discussion about the use of negated negative literals in an extended ordered program to obtain the maximal answer sets of a program w.r.t. a set of atoms. Definition 7. Let P be a program and S ⊆ L P . We define a translation of P w.r.t. S into an ordered program, denoted by ord set (P, S): First, we define a set of orderd clauses w.r.t. S as follows:

C S = {¬¬a × a • | a ∈ S and a • ̸ ∈ L P }. Then, ord set (P, S) = P ∪ C S .
Lemma 2. Let P be a program and M be an answer set of P . Let S ⊆ L P . Then M is an inclusion-preferred answer set of ord set (P, S) iff M ∩ L P is a maximal answer set of P w.r.t. S. programs It is worth mentioning that neither running Psmodels [START_REF] Brewka | Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs[END_REF] nor following the definition given by Brewka [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF] for ordered disjunction we can obtain the inclusion preferred answer sets for extended ordered programs. The reason is that the definition given by Brewka for ordered disjunction has syntactical restrictions. However, in particular when this program has extended ordered rules using negated negative literals we can easily translate it to a standard ordered program and then use Psmodels to obtain the preferred answer sets. In the following definition and lemma the atoms a • , a • , are atoms that do not occur in the original program P . Definition 8. Let ¬¬a be a negated negative literal. We define the associated set of rules of ¬¬a as follows: R(¬¬a

) := { ← ¬a, a • . a • ← ¬a • . a • ← ¬a. ← a, a • . }.
Lemma 3. Let P be a program and let C = {c 1 , c 2 , . . . , c n } be a of atoms such that C ⊆ L P . Let r C := ¬¬c 1 × ¬¬c 2 × . . .× ¬¬c n × all pref be an extended ordered rule defined from C where all pref is an atom that does not occur in

P . Let A = {R(¬¬c i)|¬¬c i ∈ r C and 1 ≤ i ≤ n} and r • C = {c • 1 × c • 2 × . . . × c • n × all pref } where c • i , 1 ≤ i ≤ n are atoms that occur in A. Then M is an inclusion-preferred answer set of P ∪ r • C ∪ A iff M ∩ L P is an inclusion-preferred answer set of P ∪ r C .
For instance, if we consider the program P of Section 1 and the set of atoms

C = {f, c} then r C = ¬¬f × ¬¬c × all pref , A = {← ¬f, f • . f • ← ¬f • . f • ← ¬f. ← f, f • . ← ¬c, c • . c • ← ¬c • . c • ← ¬c. ← c, c • . } and r • C = {f • × c • × all pref }.
Then, by running Psmodels we obtain the following inclusion-preferred answer set of the standard ordered program P ∪ r • C ∪ A: {a, c, c • , f • }. Finally, we can see that the intersection of the answer set with L P corresponds to the inclusion-preferred answer sets of the original extended ordered program P ∪ r C as it was described in Section ??, i.e., {a, c}.

Application to a real planning problem

In this section, we give a brief overview of a real application where negated negative literals in extended ordered programs are useful: evacuation planning. We start giving a short description of planning problems and we introduce how we can express plan preferences as an extended ordered program. Then we give a brief overview of a language for planning preference specification called PP and we remark on the appropriateness of PP for expressing evacuation planning. Finally, we briefly describe the solution to the real problem of finding alternative evacuation routes in volcano Popocatepetl using extended ordered programs.

Defining planning problems with preferences

A planning problem (D, I, G) is defined by three components: the domain description D, the initial conditions I, and the goal G. A planning problem can be formally represented using action languages [START_REF] Gelfond | Action languages[END_REF]. One of these action languages is language β. The alphabet of the language β consists of two nonempty disjoint sets of symbols F and A. F is called the set of fluents and A is called the set of actions. A fluent represents the property of an object in a world. A state of the world σ is a collection of fluents. Language β is based on the concept of a transition relation T ⊆ P(F) × A × P(F) such that (σ i , a j , σ k) ∈ T means that action a j allows one to go from state σ i to state σ k . The solution of a planning problem corresponds to a plan or a sequence of actions a 1 , . . . , a n to achieve its goal G, i.e., the solution is a sequence of actions a 1 , . . . , a n such that D |= I G after a 1 , . . . , a n . The sequence σ 0 , a 1 , σ 1 . . . , a n , σ n where σ 1 , . . . , σ n are states and (σ i-1 , a i , σ i) ∈ T , 1 ≤ i ≤ n is called a history of the transition system T . A full description about language β can be found in [START_REF] Gelfond | Action languages[END_REF]. Given a planning problem expressed in language β, it is possible to define an answer set encoding of it [START_REF] Baral | Knowledge Representation, reasoning and declarative problem solving with Answer Sets[END_REF], denoted as Π(D, I, G). Then, it is possible to obtain the solution of the planning problem (the plan) from the answer sets of Π(D, I, G) [START_REF] Baral | Knowledge Representation, reasoning and declarative problem solving with Answer Sets[END_REF].

Given a planning problem, we may obtain a high number of solutions. In this case, we need to specify an ordered list of criteria of preference (c 1 , . . . , c n) to select the "best" of those plans. To specify such preferences among feasible plans, [START_REF] Cao | Planning with preferences using logic programming[END_REF] introduced a new language named PP. We consider this language PP because it allows us to express temporal preferences over plans: the preferences in PP are based on the occurrence of an action in a plan, on the fluents that define a state in the plan, on the moment when an action occurs or a fluent holds in a state or on some combination of all them. The preferences representing time are expressed using the temporal connectives next, always, until and eventually. The combination of them can be defined using three different classes of preferences:

-A basic desire, denoted as ϕ, is a PP formula expressing a preference about a trajectory with respect to the execution of some specific action or with respect to the states that the trajectory gets when an action is executed.

-An atomic preference, denoted as ψ = ϕ 1 ▹ ϕ 2 ▹ . . . ▹ ϕ k , is a formula that gives the order in which a set of basic desires formulas should be satisfied.

-A general preference is a formula based on atomic preferences.

Computing answer sets of planning problems with preferences

In order to compute the preferred trajectories of a planning problem ⟨D, I, G⟩ w.r.t. ψ a preference of any of the three classes, [START_REF] Cao | Planning with preferences using logic programming[END_REF] defines the answer set encoding Π(D, I, G, ψ) as Π(D, I, G)∪Π ψ ∪Π sat where Π(D, I, G) is the answer set encoding of the planning problem as defined in [START_REF] Baral | Knowledge Representation, reasoning and declarative problem solving with Answer Sets[END_REF], Π ψ is the encoding of the preference formula ψ and Π sat are the set of rules for checking of basic desire formula satisfaction. Moreover, if M is an answer set of Π(D, I, G), then α M denotes the trajectory achieving the goal G represented by M .

It is worth mentioning that in particular [START_REF] Cao | Planning with preferences using logic programming[END_REF] shows how we can obtain the most preferred trajectory with respect to a basic desire or an atomic preference. It is assigned a weight to each component of the preference formula, then the weight of each trajectory is obtained based on the weight of each component of the preference formula satisfied by the trajectory. Finally, in order to obtain the most preferred trajectory, i.e., the answer set with maximal weight it is used the maximize construct in SMODELS. In [START_REF] Cao | Planning with preferences using logic programming[END_REF] it is recommended to use jsmodels since SMODELS has some restrictions on using the maximize construct. Moreover, in [START_REF] Cao | Planning with preferences using logic programming[END_REF] it is showed how an atomic preference of PP can be mapped to a collection of standard ordered rules as defined by Brewka in order to obtain the most preferred trajectory. However, the use of weights or the mapping results in a complicated encoding. We now show that extended ordered rules with negated negative literals allows a simpler and easier encoding. This encoding is based on Corollary 1 of Lemma 1.

Corollary 1. Let P = Π(D, I, G) be an answer set encoding of a planning problem (D, I, G). Let C = {c 1 , c 2 , . . . , c n } be an ordered list of atoms such that C ⊆ L P . Let A be the set of actions such that A ⊂ L P .Then M ∩A is a preferred plan w.r.t. C iff M is an inclusion-preferred answer set of ord rule (P, C).

In order to obtain the most preferred trajectory using Corollary 1, given P = ⟨D, I, G⟩ a planning problem and ψ = ϕ 1 ▹ϕ 2 ▹. . .▹ϕ n an atomic preference formula of P we do the following :

-First, we obtain C ψ the ordered list of atoms from ψ: We define the transformation function T of the basic desire ϕ i , 1 ≤ i ≤ n as follow: T (ϕ i) := c i ← ϕ i such that c i ̸ ∈ L P . Then, we define the associated ordered list of rules of ψ as follow:

S ψ = {T (ϕ i)|ϕ i ∈ ψ, 1 ≤ i ≤ n}.
And we define C ψ the associated ordered list of atoms w.r.t. ψ as follow: {c 1 , . . . , c n |c i ← ϕ i ∈ S ψ and 1 ≤ i ≤ n}.

-Finally, we apply Corollary 1 to obtain α M the most preferred trajectory w.r.t. ψ from M an inclusion-preferred answer set of ord rule (P ′ , C ψ) where

P ′ = Π(D, I, G, ψ) ∪ S ψ .
An example where the most preferred trajectory with respect to an atomic preference is obtained using the Corollary 1 is presented in the following subsection. Obviously, the most preferred trajectory w.r.t. a basic desire is a particular case of an atomic preference. Hence, Corollary 1 works in order to obtain the most preferred trajectory w.r.t. a basic desire.

Finding alternative routes in the risk zone of the Popocatepelt

In order to illustrate the use of Lemma 1, let us consider the real problem of finding alternative evacuation routes in the risk zone of volcano Popocatepetl in Mexico. In [START_REF] Zepeda | Towards the use of Cr-rules and Semantic Contents in ASP for planning in GIS[END_REF][START_REF] Zepeda | Planning Operation: An extension of a Geographical Information System[END_REF] we presented a detailed description of this problem and we proposed a partial solution to it using CR-Prolog [START_REF] Balduccini | Logic Programs with Consistency-Restoring Rules[END_REF], an extension of ASP with consistency restoring rules. Another partial solution to this problem was presented in [START_REF] Osorio | Using CR-rules for evacuation planning[END_REF] where we showed how CR-Prolog programs can be translated into standard ordered disjunction logic programs as defined by Brewka [START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF].

In this paper we give an overview of a more complete solution of the problem about finding alternative evacuation routes using language PP. We considered to use PP because it allows us to express preferences over plans where the satisfaction of these preferences depends on time and on their temporal relationships. We think that in particular in evacuation planning it is very useful to express preferences in terms of time. For instance, it is always preferred to evacuate people from a place in risk following the defined evacuation routes. However, if at any moment part of the evacuation route becomes blocked then evacuees will travel by an alternative evacuation route until they arrive to any place out of risk. Nowadays, "Plan Operativo Popocatepetl" office in Mexico (POP office) is responsible of assuring safety of the people living in the risk zone of the volcano in case of an eruption. For this purpose, POP office has defined ten evacuation routes. However, some hazards that can accompany volcano eruptions (mud flows, flash floods, landslides and rockfalls, etc.) can result on the blocking of the pre-established routes. The alternative evacuation route problem can be stated as follows:

There is a set of predefined evacuation routes for people living in the risk area. Evacuees should travel by these routes. In case part of an evacuation route becomes inaccessible, then evacuees should search an alternative path. This alternative path can belong or not to another evacuation route. If it does not belong to an evacuation route then it should arrive to some point belonging to an evacuation route, to some refuge or to some place out of risk. We represent the network of roads between towns in the risk zone as a directed graph. This representation was created from an extract of our GIS database and contains real evacuation routes, towns (mostly in risk, but nearby towns not in direct risk are also included) and some additional segments that do not belong to any evacuation route, since these segments are necessary to obtain the alternative evacuation plans. We define a directed graph where nodes represent towns and evacuation routes are paths in the graph. Each segment is represented by road(P,Q) where P and Q are nodes. Some segments belong to evacuation routes. An exogenous action which causes road(P,Q) to become blocked results in a fact of the form blocked(P,Q). The action travel(P,Q) allows to travel from P to Q if there is an unblocked segment of road from P to Q. We assumed that each action takes one unit of time.

Example 1 (Evacuation in volcano Popocatepetl). We can define Π(D, I, G) as follows:

% initial and final conditions initially(position(busA, 1)). initially(position(busB, 12)). initially(position(busC, 14)). finally(position(B,N)) :-bus(B), node(N). % fluents fluent(position(B,X)) :-bus(B), node(X). fluent(blocked (P,Q)) :-road(P,Q). % actions travel by a segment of road action(travel(B,P,Q)) :-bus(B),road(P,Q). % Dynamic causal laws caused(position(B,Q),travel(B,P,Q)) :-bus(B),road(P,Q). caused(neg(position(B,P)),travel(B,P,Q)) :-bus(B),road(P,Q). % Executability Conditions noaction_if(travel(B,P,Q),neg(position(P))):-bus(B),road(P,Q). noaction_if(travel(B,P,Q),blocked(P,Q)) :-bus(B),road(P,Q).

We can use the following abbreviations of basic desires to define the associated atomic preference of this planning problem: "travel by evacuation route assigned by the government" as travelERass, "travel by evacuation route not assigned by the government" as travelER, "travel by a road out of an evacuation route until arrive to any point of an evacuation route" as arriveER, "travel by a road out of an evacuation route until arrive to any refuge" as arriveRef, "travel by a road out of an evacuation route until arrive to any place out of risk" as ar-riveOR. In particular, if we consider the directed graph in Figure 1 we have the following definition of travelERass basic desire. Let's notice that travelERass considers the three buses described in Figure 1. Due to lack of space we do not define the other basic desires, however it is not difficult to define them in a similar way. Then, the atomic preference is the following: ψ = travelERass▹travelER▹arriveER▹arriveRef ▹arriveOR.

Then in order to obtain the most preferred trajectory of the planning problem P = Π(D, I, G, ψ) with respect to the atomic preference ψ we follow the indications given in Subsection 5.2:

1. We obtain the associated ordered list of rules of ψ:

S ψ = {c 1 ← travelERass. c 2 ←
A = { ← ¬c 1 , c • 1 . c • 1 ← ¬c • 1 . c • 1 ← ¬c 1 . ← c 1 , c • 1 . ← ¬c 2 , c • 2 . c • 2 ← ¬c • 2 . c • 2 ← ¬c 2 . ← c 2 , c • 2 . ← ¬c 3 , c • 3 . c • 3 ← ¬c • 3 . c • 3 ← ¬c 3 . ← c 3 , c • 3 . ← ¬c 4 , c • 4 . c • 4 ← ¬c • 4 . c • 4 ← ¬c 4 . ← c 4 , c • 4 . ← ¬c 5 , c • 5 . c • 5 ← ¬c • 5 . c • 5 ← ¬c 5 . ← c 5 , c • 5 . } and the standard ordered rule is r • C ψ = {c • 1 × c • 2 × c • 3 × c • 4 × c • 5 × all pref }.
Hence thanks to Lemma 3, the intersection of an inclusion-preferred answer set of P ∪ S ψ ∪ r • C ψ ∪ A with L P is an inclusion-preferred answer set of P ∪ S ψ ∪ r C , i.e., it is an inclusion-preferred answer set of the extended ordered program ord rule (P ∪ S ψ , C ψ). Therefore, we can run Psmodels to obtain the inclusion-preferred answer sets of the standard ordered program P ∪ S ψ ∪ r • C ψ ∪ A. In particular, if we consider the set of segments of the directed graph in Figure 1 with no blocked segments then the most preferred trajectory w.r.t. ψ is: time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,2); time 2: travel(busB,13,8), travel(busA,2,3); time 3: travel(busB,8,9); time 4: travel(busB,9,11).

We can see that this most preferred trajectory satisfies the travelERass basic desire of the atomic preference ψ since all the buses travel by the evacuation route assigned by the government exactly as POP office indicates. Now, if we consider the set of segments of the directed graph in Figure 1 with segment from node 1 to node 2 blocked, i.e., if we add the initial condition initially(blocked(1, 2)) to the program P then the most preferred trajectory w.r.t. ψ is: time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,14); time 2: travel(busB,13,8), travel(busA,14,16); time 3: travel(busB,8,9); time 4: travel(busB, [START_REF] Osorio | Applications of Intuitionistic Logic in Answer Set Programming[END_REF][START_REF] Osorio | Using CR-rules for evacuation planning[END_REF]. Now, the most preferred trajectory satisfies the travelER basic desire of the atomic preference ψ since busA travels by a road out of the evacuation route assigned by the government until it arrives to node 14 of evacuation route 1.

Related work

Another possible real application of negated negative literals in extended ordered programs is in argumentation and in particular in the domain of organ transplantation. CARREL [START_REF] Vázquez-Salceda | Extending the CARREL system to mediate in the organ and tissue allocation processes: A first approach[END_REF] is an agent-based platform to mediate organ transplants. In [START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF] there is a full description about CARREL-ASP, namely CARREL extended with ASP to perform decision making based on an argumentation framework in the domain of organ transplantation. The idea is to use Lemma 2 to obtain the preferred extension of an argumentation framework by getting the inclusion preferred answer sets of the extended ordered program ord set (P, A) as defined in Definition 7 where P corresponds to the encoding of an argumentation framework AF and A corresponds to the translation of the set of arguments of AF to the program P . It is worth mentioning that in [START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF] extended ordered programs are not used to obtain the preferred extensions. For details see [START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF] .

Conclusions

In this paper we have shown how we can easily translate an extended ordered program with negated negative literals to a standard ordered disjunction program as defined by Brewka thanks to the characterization of the answer sets for a propositional theory in terms of intuitionistic logic. It is worth mentioning that it is also possible to use a different approach to represent preferences instead of ordered disjunction programs like abductive logic programs, since the kind of preferences that we are using in this paper is not very complex. We are interested in expressing more sophisticated preferences in evacuation planning. Then we will see if using general preferences of PP language is possible to express them. For instance, if a represents "arrive to a refuge (a place out of risk with provisions and water)", b represents "arrive to a place in risk with water" and c represents "arrive to a place in risk with food" then we would like to express a preference to indicate that we prefer the answer sets containing a to the answer sets containing b and c, but neither b is preferred to c nor c is preferred to b.

Fig. 1 .

 1 Fig. 1. Three evacuation routes: A short example.

 t. a set of atoms A. For instance, if the answer sets of a program P are {b, c, e}, {b, c, d} {f, e} and {e, a, c} then {b, c, d} and {f, e} are the maximal answer sets with respect to the set of atoms A = {b, d, f }. The formal definition of a maximal answer set with respect to a set of atoms is based on the definition of maximal set with respect to a set.

Definition 5 (Maximal set w.r.t. a set A).

[START_REF] Carlos | Argumentation for decision making in CARREL using Answer Set Programming[END_REF]

Let {S i : i ∈ I} be a collection of subsets of U such that i∈I S i = U and A ⊆ U . We say that S i is a maximal set w.r.t. A among the collection {S i

 travelER. c 3 ← arriveER. c 4 ← arriveRef. c 5 ← arriveOR.} 2. We obtain the associated ordered list of atoms w.r.t. ψ representing the ordered list of criteria of preference: C ψ = {c 1 , c 2 , c 3 , c 4 , c 5 }. 3. Then by Definition 4 the extended ordered rule defined from C ψ is:r C ψ = ¬¬c 1 × ¬¬c 2 × ¬¬c 3 × ¬¬c 4 ¬¬c 5 × no pref ,where no pref is an atom that does not occur in P . Also by Definition 4 the translation of P w.r.t. C ψ is: ord rule (P ∪ S ψ , C ψ) = P ∪ S ψ ∪ r C ψ . 4. Finally, we apply Corollary 1 to obtain α M a most preferred trajectory w.r.t. ψ from M an inclusion-preferred answer set of ord rule (P ∪ S ψ , C ψ). At this point, it is worth describing how we can easily translate the extended ordered program ord rule (P ∪ S ψ , C ψ) to a standard ordered program and then use Psmodels to obtain the preferred answer sets. Then, using Definition 8 to obtain the set A of associated rules for each ¬¬c i with 1 ≤ i ≤ 5 we have,

http://www.dbai.tuwien.ac.at/proj/dlv/

http://www.tcs.hut.fi/Software/smodels/

Moreover, while the extension introduced in[START_REF] Osorio | Generalized Ordered Disjunctions and its Applicatons[END_REF] is in the context of Answer Sets, the extension introduced in[START_REF] Brewka | Qualitative choice logic[END_REF] for the operator × is in a different context.

Brewka's LPODs use the strong negation connective. Here we will consider only one type of negation but this does not affect the results given in[START_REF] Brewka | Logic Programming with Ordered Disjunction[END_REF].

Note that since we are not considering strong negation, there is no possibility of having inconsistent answer sets.