
HAL Id: hal-01541534
https://hal.science/hal-01541534v1

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactive tabu search for measuring graph similarity
Sébastien Sorlin, Christine Solnon

To cite this version:
Sébastien Sorlin, Christine Solnon. Reactive tabu search for measuring graph similarity. 5th IAPR-
TC-15 workshop on Graph-based Representations in Pattern Recognition, Apr 2005, Poitiers, France.
pp.172-182, �10.1007/978-3-540-31988-7_16�. �hal-01541534�

https://hal.science/hal-01541534v1
https://hal.archives-ouvertes.fr

Reactive Tabu Search for Measuring Graph
Similarity

Sébastien Sorlin and Christine Solnon

LIRIS, CNRS FRE2672, bât. Nautibus, University of Lyon I
43 Bd du 11 novembre, 69622 Villeurbanne cedex, France
{sebastien.sorlin,christine.solnon}@liris.cnrs.fr

Abstract. Graph matching is often used for image recognition. Differ-
ent kinds of graph matchings have been proposed such as (sub)graph
isomorphism or error-tolerant graph matching, giving rise to different
graph similarity measures. A first goal of this paper is to show that these
different measures can be viewed as special cases of a generic similarity
measure introduced in [8]. This generic similarity measure is based on a
non-bijective graph matching (like [4] and [2]) so that it is well suited
to image recognition. In particular, over/under-segmentation problems
can be handled by linking one vertex to a set of vertices. In a second
part, we address the problem of computing this measure and we describe
two algorithms: a greedy algorithm, that quickly computes sub-optimal
solutions, and a reactive Tabu search algorithm, that may improve these
solutions. Some experimental results are given.

1 Introduction

Graphs are often used to model structured objects. In particular, graphs may
be used for scene representation [2]: vertices represent scene regions, while edges
represent binary relations between regions. In this context, image recognition and
classification involves comparing graphs, i.e., matching graphs to identify their
common features [9]. This may be done by looking for an exact graph or subgraph
isomorphism in order to show graph equivalence or inclusion. However, images
are often corrupted by noise and distorsions and the assumption of the existence
of an isomorphism is usually too strong. As a consequence, error-tolerant graph
matchings such as maximum common subgraph and graph edit distance have
been proposed [5, 9]. Such matchings drop the condition that the mapping must
preserve all vertices and edges: the goal is to find a ”best” mapping, i.e., one
which preserves a maximum number of vertices and edges.

Most recently, three different papers proposed to go one step further by
introducing multivalent matchings, where a vertex in one graph may be matched
with a set of vertices of the other graph:

– In [8], graphs are used to model design objects in a computer-aided design
application. In this context, vertices are used to represent object components
and one single component of an object may play the same role than a set
of components of another object, depending of the granularity of object

description. Therefore, the authors introduce a similarity measure based on
multivalent mappings so that one vertex in a graph may be associated with
a set of vertices of the other graph.

– In [4], graph matching is used for model-based pattern recognition of brain
images. In this application, the assumption of a bijection between regions of
the model and the image is too strong: model has a schematic aspect easy to
segment while image is noised and usually over-segmented. Therefore, scene
recognition is better expressed as a multivalent matching problem where a
set of vertices of the scene may be linked to a same vertex of the model.

– In [2], a new graph edit distance is proposed, that introduces two new edit
operations —vertex splitting and merging— in order to handle the fact that
images may be over- or under- segmented.

Motivation and outline. A first goal of this paper is to ”point out” the similarities
between these three recent kinds of graph matchings. Another goal is to propose
practical algorithms for multivalent graph matchings. Section 2 briefly introduces
the graph similarity measure of [8]. Section 3 compares this measure with other
graph matchings. Section 4 addresses the problem of computing this measure:
we first propose a greedy algorithm that quickly computes an approximation of
the similarity and then a reactive Tabu search approach, that may improve the
computed approximation. Section 5 presents some experimental results.

2 A generic similarity measure for multi-labeled graphs

A directed graph is defined by a couple G = (V,E), where V is a finite set of
vertices and E ⊆ V × V is a set of directed edges. Vertices and edges may be
associated with labels that describe their properties. Given a set LV of vertex
labels and a set LE of edge labels, a multi-labeled graph is defined by a triple
G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V ×LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,
– rE ⊆ V × V ×LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
E of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

We shall call the tuples of rV and rE the vertex and edge features of G. The
set descr(G) = rV ∪ rE of all vertex and edge features of a graph G completely
describes the graph G.

We now briefly describe the graph similarity measure introduced in [8]; we
refer the reader to [8] for more details. This similarity measure is defined for two
multi-labeled graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, defined over the
same sets of vertex and edge labels LV and LE , and such that V ∩ V ′ = ∅.

The first step for measuring graph similarity is to map vertices. The mapping
considered here is multivalent, i.e., each vertex of one graph is mapped with a

possibly empty set of vertices of the other graph. More formally, a multivalent
mapping of the two graphs G and G′ is a set m ⊆ V ×V ′ which contains every
couple (v, v′) ∈ V × V ′ such that vertex v is mapped with vertex v′.

Once a multivalent mapping is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this mapping. This
set contains all the features from both G and G′ whose vertices (resp. edges)
are matched by m to at least one vertex (resp. edge) that has the same feature.
More formally, the set of common features descr(G)um descr(G′), with respect
to a mapping m, is defined as follows:

descr(G) um descr(G′) =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m, (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (v′i, v

′
j , l) ∈ rE′}

∪ {(v′i, v′j , l) ∈ rE′ | ∃(vi, v
′
i) ∈ m,∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent mapping m, we also have to identify the set of split
vertices, i.e., the set of vertices that are mapped to more than one vertex, each
split vertex v being associated with the set sv of its mapped vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of G and G′ with respect to a mapping m is then defined by:

simm(G, G′) =
f(descr(G) um descr(G′))− g(splits(m))

f(descr(G) ∪ descr(G′))
(1)

where f and g are two functions that are introduced to weight features and splits,
depending on the considered application. For example, if f is the cardinality
function and g is the null function, then the similarity is proportional to the
number of common features with respect to the total number of features. If g
is the cardinality function, instead of the null function, then the similarity is
decreased proportionally to the number of split vertices.

Finally, the maximal similarity sim(G, G′) of two graphs G and G′ is the
greatest similarity with respect to all possible mappings:

sim(G, G′) = max
m⊆V×V ′

f(descr(G) um descr(G′))− g(splits(m))

f(descr(G) ∪ descr(G′))
(2)

3 Generic graph similarity and image recognition

The measure of similarity described in section 2 has been first proposed for com-
paring objects in a computer-aided design application. However, this measure
is generic and it may be customized by properly defining functions f and g. In
this section, we show how this measure relates to other graph matchings used
in image recognition. These matchings are often defined for non labelled graphs.
Hence we shall suppose that a non labelled graph is a particular labelled graph
such that all vertices have a same label lv and all edges have a same label le.

Graph isomorphism. The graph isomorphism problem between two graphs G=
(V,E) and G′=(V ′, E′) such that |V |=|V ′| consists in finding a bijective function
φ : V → V ′ such that (v1, v2) ∈ E if and only if (φ(v1), φ(v2)) ∈ E′.

If functions f and g of formula (2) are defined as cardinality functions, then
sim(G, G′)=1 if and only if there exists a mapping m such that descr(G) um

descr(G′)=descr(G)∪descr(G′) and splits(m)=∅, i.e., sim(G, G′)=1 if and only
if G and G′ are isomorphic.

Partial subgraph isomorphism. The partial subgraph isomorphism problem be-
tween two graphs G=(V,E) and G′=(V ′, E′) such that |V | ≤ |V ′| consists in find-
ing an injective function φ :V → V ′ such that (v1, v2)∈E ⇒ (φ(v1), φ(v2))∈E′.

Let us define function g of formula (2) as the cardinality function and function
f as a weighted sum where the weight of the features of G (resp. G′) is 1 (resp.
0). In this case, sim(G, G′)=1 if and only if there exists a mapping m such that
descr(G) ⊆ descr(G)um descr(G′) (as f(descr(G)∪descr(G′))=|descr(G)|) and
splits(m)=∅, i.e., sim(G, G′)=1 if and only if there exists a partial subgraph
isomorphism.

Subgraph isomorphism. The subgraph isomorphism problem is a special case
of partial subgraph isomorphism: it adds the constraint that for each couple
(v1, v2) ∈ V 2, if (v1, v2) is not an edge of G, then (φ(v1), φ(v2)) must neither be
an edge of G′.

To check for subgraph isomorphism, we have to add “not-an-edge” labels to
all couples of vertices that are not edges, and then to check that all “not-an-edge”
labels of G are preserved by the mapping. More formally, given a graph G=(V,E),
we define the labelled graph Glabel=(V, rV , rE) such that rV ={(v, lv)|v ∈ V }
and rE={(u, v, le)|(u, v) ∈ E} ∪ {(u, v, lnotE)|(u, v) ∈ V × V − E}. Let us then
define functions f and g of formula (2) as done for the partial subgraph. In this
case, sim(Glabel, G

′
label)=1 if and only if there exists a subgraph isomorphism.

Maximum common partial subgraph (mcps). The mcps of two graphs G and G′

is the largest graph (with respect to the number of vertices and edges) which is
a partial subgraph of both G and G′.

Let us define function f of formula (2) as the cardinality function, and func-
tion g so that split vertices are forbidden (i.e., g(S)=+∞ if S 6= ∅ and g(∅)=0).
In this case, the mapping m that maximizes formula (1) is the mapping which
maximizes the number of common features in descr(G)um descr(G′), while for-
bidding split vertices, and therefore it corresponds to a mcps.

These definitions can be extended to the problem of finding the maximum
common subgraph (mcs) of two graphs, i.e., the problem of finding the largest
non partial subgraph. This is done by considering labelled graphs that associate
“not-an-edge” labels to all couples of vertices which are not edges, like for the
subgraph isomorphism problem. The mcs of two graphs is used in [7, 6, 5] to
define the similarity of two graphs as simmcs(G, G′)= |mcs(G,G′)|

max (|G|,|G′|) . One can ap-
propriately define functions f and g in such a way that the mapping which max-
imizes formula (1) corresponds to the mapping which maximizes simmcs(G, G′).

Graph edit distance (ged). The ged of two graphs G and G′ is the minimum cost
set of weighted operations needed to transform G into G′. Considered opera-
tions are insertions, substitutions, and deletions of vertices and edges. [5] shows
that, when considering appropriate weight definitions, ged is closely related to
the maximum common subgraph, and therefore it is also closely related to the
similarity measure of formula (2).

If we consider non labelled graphs (so that one only perform insertion and
deletion operations) then, given a mapping m, each vertex or edge feature con-
tained in descr(G)−(descr(G)um descr(G′)) (resp. in descr(G′)−(descr(G)um

descr(G′))) corresponds to a vertex or an edge deletion (resp. insertion). Let us
then define function f as a weighted sum where weights are defined by operation
costs. In this case, the mapping m which maximizes formula (1) gives the set of
insertion and deletion operations which minimizes the ged.

If we consider labelled graphs (where each vertex and edge is associated with
a single label), then substitution operations may be performed to change vertex
or edge labels. If two vertices (or edges) are mapped by m but have a different
label in G and G′, then these labels will not belong to the set of common features
descr(G) um descr(G′). Hence, one can also define a function f such that the
mapping m which maximizes formula (1) gives the set of operations, including
substitution operations, which minimizes the ged.

Extended ged. In order to compare over- and under-segmented images, [2] pro-
poses to extend ged with two new operations: vertex splitting —to split one
vertex of G into several vertices of G′— and vertex merging —to merge several
vertices of G into one single vertex of G′.

Given a mapping m, the set of couples (v, s′v)∈splits(m) such that v∈G
corresponds to the set of splitting operations whereas the set of couples (v′, sv)∈
splits(m) such that v′ ∈ G′ corresponds to the set of merging operations. Hence,
if function g of formula (2) is defined as a weighted sum, where weights corre-
spond to splitting and merging costs, and if f is defined as done for non extended
ged, then the mapping which maximizes formula (1) corresponds to the extended
ged.

Non bijective graph matching problem. This problem is introduced in [4] to find
the best matching between models and over-segmented images of brains. Given a
model graph G=(V,E) and an image graph G′=(V ′, E′), a matching is defined as
a function φ : V → ℘(V ′) which associates to each vertex of the model graph G a
non empty set of vertices of G′, and such that (i) each vertex of the image graph
G′ is associated to exactly one vertex of the model graph G, (ii) some couples
(v, v′) ∈ V × V ′ are forbidden so that v′ must not belong to φ(v), and (iii) the
subgraph induced by every set φ(v) must be connected. A weight sv(vi, v

′
i) (resp.

se(ei, e
′
i)) is associated with each couple of vertices (vi, v

′
i) ∈ V × V ′ (resp. of

edges (ei, e
′
i) ∈ E × E′). The goal is to find the matching which maximizes a

function depending on these weights of matched vertices and edges.
One can define functions f and g so that the mapping which maximizes

formula (1) corresponds to the best matching as defined in [4]. To handle the

fact that couples of vertices and edges are associated with weights, and also that
condition (ii) is verified, we have to associate labels to vertices and edges in such
a way that the label (v, v′) (resp. (e, e′)) belongs to descr(G)um descr(G′) if and
only if v is mapped to v′ (resp. e to e′). We can then define f as a weighted sum
where a label (v, v′) (resp. (e, e′)) can be weighted with respect to sv(v, v′) (resp.
se(e, e′)) or with negative infinite weight if mapping v to v′ is forbidden. Function
g is defined in such a way that mappings that do not verify conditions (i) or (iii)
are forbidden, i.e., g returns an infinite value when when image vertices are split
or merged vertices are not connected.

Discussion

The graph similarity measures proposed in [2] and [4] are based on multivalent
mappings (i.e., one vertex may be mapped to several vertices). Both measures are
used for image recognition. Indeed, images are often over- or under-segmented
so that one has to associate one (under-)segmented region of an image to several
(over-)segmented regions of another image.

However, the two similarity measures of [2] and [4] are specific to the ad-
dressed problem. In particular, [4] is used for matching brain images to models,
and in this context they added specific constraints (e.g., all model vertices must
be mapped and each image vertex must be mapped to exactly one model vertex).

The similarity measure proposed in [8] is also based on multivalent mappings,
but it is more generic, in the sense that specific constraints or preferences can be
expressed thanks to functions f and g. The advantage of such a generic measure,
where application-dependent constraints are specified via the two parameters f
and g, is that algorithms for computing this measure can be used for different
applications. As a counterpart, these algorithms may be less efficient than tailor-
made programs, that have been designed for a particular application so that they
can exploit specific knowledge to speed-up the solution process.

Moreover, the similarity measure proposed in [8] is defined for multi-labelled
graphs, such that each vertex and edge can be associated with a set of labels that
describe its properties. Such a multi-labelling could be very useful to describe im-
ages more accurately. For example, vertices could be labelled by colours, shapes,
or sizes of corresponding regions, while edges could be labelled by distances,
relative positions, or relative sizes of corresponding couples of regions.

4 Algorithms for measuring graph similarity

All matching problems described in section 3 are NP-complete or NP-hard prob-
lems, except for graph isomorphism, the complexity of which is not exactly
stated, and for particular graphs (such as trees or planar graphs) for which some
problems are polynomial ([1, 13, 15]).

Complete algorithms have been proposed for computing the mapping which
maximizes formula (1) in [8] and for computing the cheapest set of edit opera-
tions in [2]. This kind of algorithms, based on an exhaustive exploration of the

search space combined with pruning techniques, guarantees solution optimality.
However, these algorithms are limited to very small graphs.

Therefore, incomplete algorithms, that do not guarantee optimality but have
a polynomial time complexity, appear to be good alternatives. In particular,
[4] proposes a randomized construction algorithm —that quickly computes a
set of possible non-bijective graph matchings— and a local search algorithm
that improves these matchings until a locally optimal point is reached. These
algorithms are dedicated to the particular application of matching models with
real images.

In this section, we describe three incomplete algorithms —a greedy one, a
tabu search one and a reactive tabu search one— for measuring the similarity of
two labelled graphs as defined by formula (2). These algorithms are generic in
the sense that they are parameterized by the two functions f and g that contain
domain-dependant knowledge.

Greedy algorithm. This algorithm has been first proposed in [8]. We briefly
describe it because it is used as a starting point of tabu search algorithms. More
information can be found in [8].

The algorithm starts from the empty mapping m = ∅, and iteratively adds
to m couples of vertices chosen within the set of candidate couples cand =
V ×V ′−m. At each step, the couple to be added is chosen in a greedy way: we first
select from cand the subset of couples that most increase the similarity as defined
by formula (2). This subset often contains more than one candidate. To break ties
between them, we look ahead the potentiality of each candidate (v, v′) by taking
into account the features that are shared by edges starting from (resp. ending to)
both v and v′ and that are not already in descr(G)um∪{(v,v′)}descr(G′). If there
are still more than one couple which maximizes these looked-ahead common edge
features, then one couple is randomly chosen. This greedy addition of couples to
m is iterated until m is locally optimal, i.e., until no more couple addition can
increase the similarity.

This greedy algorithm has a polynomial time complexity of O((|V |× |V ′|)2),
provided that the computation of the f and g functions have linear time com-
plexities with respect to the size of the mapping. As a counterpart of this rather
low complexity, this algorithm never backtracks and is not complete. Hence, it
may not find the best mapping; moreover, even if it actually finds the best map-
ping, it cannot be used to prove its optimality. Note however that, since this
algorithm is not deterministic, we may run it several times and keep the best
found mapping.

Local search. The greedy algorithm returns a ”locally optimal” mapping in the
sense that adding or removing one couple of vertices to this mapping cannot
improve it. However, it may be possible to improve it by adding and/or removing
more than one couple to this mapping. A local search [12, 14] tries to improve a
solution by locally exploring its neighborhood: the neighbours of a mapping m
are the mappings which can be obtained by adding or removing one couple of
vertices to m:

∀m ∈ ℘(V × V ′), neighbourhood(m) = {m ∪ {(v, v′)}|(v, v′) ∈ (V × V ′)−m}
∪ {m− {(v, v′)}|(v, v′) ∈ m}

From a good initial mapping, computed by the greedy algorithm, the search
space is explored from neighbour to neighbour until the optimal solution is found
(when the optimal value is known) or until a maximum number of moves have
been performed. A heuristic selects the next neighbour to move on at each step.

Tabu meta-heuristic. Tabu search [12, 10, 16] is one of the best known heuristic
to choose the next neighbour to move on. At each step, one chooses the best
neighbour with respect to the same criteria than for the greedy algorithm. Note
that this best neighbour may be worse than the current mapping if it is locally
optimal. Hence, to avoid to stay around locally optimal mappings by always
performing the same moves, a Tabu list is used. This list has a length k and
memorizes the last k moves (i.e., the last k added/removed couples) in order to
forbid backward moves (i.e., to remove/add a couple recently added/removed).
An exception named ”aspiration” is added: if a forbidden move reaches a bet-
ter mapping than the best known mapping, the move is always done. Figure 1
describes the Tabu algorithm for computing formula (2).

fonction Tabu(G = 〈V, rV , rE〉, G′ = 〈V ′, rV ′ , rE′〉, k, optBound, maxMoves)
return a mapping m ⊆ V × V ′

m← Greedy(G, G′) ; bestm ← m ; nbMoves← 0
while simm(G, G′) < optBound and nbMoves < maxMoves do

cand← {m′ ∈ neighbourhood(m)/simm′(G, G′) > simbestm(G, G′)}
if cand = ∅ then/* no aspiration */

cand← {m′ ∈ neighbourhood(m)/isNotTabu(m, m′, k)
end if
cand← {m′ ∈ cand/m′ is maximal wrt formula (2) and look-ahead}
choose randomly m′ ∈ cand
makeTabu(m, m′, k) ; m← m′ ; nbMoves← nbMoves + 1
if simm(G, G′) > simbestm(G, G′) then bestm ← m end if

end while
return bestm

Fig. 1. Tabu algorithm

Reactive Tabu search. The length k of the tabu list is a critical parameter that is
hard to set: if the list is too long, search diversification is too strong so that the
algorithm converges too slowly; if the list is too short, intensification is too strong
so that the algorithm may be stuck around local maxima and fail in improving
the current solution. To solve this parameter tuning problem, [3] introduces
reactive Tabu search where the length of the Tabu list is dynamically adapted
during the search. To make the Tabu algorithm reactive, one must evaluate the
need of diversification of the search. When the same mapping is explored twice,

the search must be diversified. In order to detect such redundancies, a hashing
key is memorized for each explored mapping. When a collision occurs in the
hash table, the list length is increased. On the contrary, when there is no collision
during a fixed number of moves, thus indicating that search is diversified enough,
one can reduce the list length. Hashing codes are incrementally computed so,
this method has a negligible added cost.

5 Experimental results

5.1 Experimental settings

We now experimentally compare the three previously introduced algorithms:
iterated greedy (which repeatedly computes 500 mappings with the greedy al-
gorithm, and return the best one), Tabu search and reactive Tabu search. Non
reactive version of Tabu search obtains its best average results when the length
k of the Tabu list is between 10 and 20. Note that small variations on this length
may have an important influence on the results and that the best setting for k
is different from one instance to another. Best reactive Tabu search parameters
are 10 (resp. 50) for the minimal (resp. maximal) length of the list, 15 for the
size of extension and shortening of the list and 1000 moves for the frequency of
reducing of the list. By opposition to (non reactive) Tabu search, these parame-
ter settings are more ”robust” in the sense that small variations on them do not
significantly change performances.

5.2 Graph and subgraph isomorphism problems

We first have done a set of experiments on graph and subgraph isomorphism
problems coming from [11]. The iterated greedy algorithm solves 80% of hard
graph isomorphism problem instances (regular graphs having 100 vertices, see
[11]) in less than 10 seconds (on a Pentium IV 2Ghz, 512Mo of RAM) ; within the
same time limit, reactive local search solves 100% of these problems. Moreover,
reactive local search can solve 100% of any kind of graph isomorphism problems
on graphs having up to 200 vertices in less than 20 seconds.

Subgraph isomorphim problems are much harder: within a limit of 200s, reac-
tive Tabu search solves 66% of subgraph isomorphism problems on graphs with
100 vertices and iterated greedy algorithms only 4,4%. These rather poor results
can be explained by the fact that our algorithms do not use any kind of filtering
techniques and potentialy explore all kinds of mappings, even multivalent ones.

5.3 Multivalent mapping problems

In order to compare our three algorithms on multivalent mapping problems, we
have used a random graph generator to generate ”similar” pairs of graphs: it
randomly generates a first graph and applies some vertex splitting/merging and
some edge and vertex insertion/suppression to build a second graph which is
similar to the first one. From the set of transformations, a minimal bound of the

similarity is computed. It is used to evaluate our algorithms, by counting the
number of times they succeeded in reaching this bound (or an higher one).

When graph components have many different labels, the best mapping is
trivially found as nearly all vertices/edges have different labels. Therefore, to
obtain harder instances, we have generated 100 graphs such that all vertices and
edges have the same label. These graphs have between 80 and 100 vertices and
between 200 and 360 edges. The second graph is obtained by doing 5 vertex
merging/splitting and 10 edge or vertex insertion/suppression. Functions f and
g of formula (2) are defined as cardinality functions.

Comparative results. Each algorithm has been run 200 times on each of the
100 generated problems. 51 problems appeared to be “easy” ones as they were
always solved by the iterated greedy algorithm. Over the 49 remaining “harder”
problems, that could not be solved by the iterated greedy algorithm, 35 were
easily —and always— solved, both by reactive and non reactive Tabu search (in
less than 500 moves, corresponding to less than 4 seconds). The 14 last instances
appeared to be really hard ones, that needed more than 25, 000 moves to be
solved. For these 14 instances, (non reactive) Tabu search succeeded in finding a
solution for 64% of the runs whereas reactive Tabu search succeeded for 79% of
the runs. Furthermore, reactive Tabu search appeared to be more robust than
its non reactive version in the sense that parameter settings influence less the
results. So, the reactive Tabu search is more efficient and easier to tune than the
non reactive version.

Conclusion

We have shown that the graph similarity measure of [8] is more generic than
other graph similarity measures used in image recognition [6, 9]. It is based on
multivalent graph matching so that over- and under- segmentation problems [2,
4] can be overrided by linking one vertex of a graph to a set of vertices of the other
graph. We have given three algorithms with a polynomial complexity: a greedy
algorithm, a local search based on Tabu meta-heuristic and an improved version
of this search named ”reactive Tabu search”. These algorithms can compute
a similarity measure based on multivalent mapping of two graphs having 100
vertices in a reasonable amount of time.

Further works. We have shown that the similarity measure proposed in [8] is
generic in the sense that it can be used to formulate many graph similarity
measure. Next step will be to test our algorithms on extended graph edit dis-
tance problems [2] and on non-bijective graph matching problems [4], in order
to evaluate the efficiency of this formulation in a pratical point of view, and the
usefulness of our algorithm in image recognition.

Our generic similarity measure associated with the expressive power of multi-
labelled graphs could be used to define new powerful image similarity measures
and, therefore, we plan to evaluate them in the field of image recognition and
for content-based image querying system.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer
algorithms. Addison Wesley, 1974.

2. R. Ambauen, S. Fischer, and H. Bunke. Graph Edit Distance with Node Splitting
and Merging, and Its Application to Diatom Identification. In IAPR-TC15 Wksp
on Graph-based Representation in Pattern Recognition, pages 95–106, 2003.

3. R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
In Springer-Verlag, editor, Algorithmica, volume 29, pages 610–637, 2001.

4. M. Boeres, C. Ribeiro, and I. Bloch. A randomized heuristic for scene recognition
by graph matching. In WEA 2004, pages 100–113, 2004.

5. H. Bunke. On a relation between graph edit distance and maximum common
subgraph. PRL: Pattern Recognition Letters, 18, 1997.

6. H. Bunke. Graph matching : Theoretical foundations, algorithms, and applications.
In Proc. Vision Interface 2000, Montreal, pages 82–88, 2000.

7. H. Bunke and X. Jiang. Graph Matching and Similarity, volume Teodorescu, H.-
N., Mlynek, D., Kandel, A., Zimmermann, H.-J. (eds.): Intelligent Systems and
Interfaces, chapter 1. Kluwer Academic Publishers, 2000.

8. P.-A. Champin and C. Solnon. Measuring the similarity of labeled graphs. In
5th International Conference on Case-Based Reasoning (ICCBR 2003), volume
Lecture Notes in Artificial Intelligence 2689-Springer-Verlag, pages 80–95, 2003.

9. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265–298, 2004.

10. R. Dorne and J. Hao. Tabu Search for graph coloring, T-coloring and Set T-
colorings, chapter 3. I.H. Osman et al. (Eds.), Kluver Academic Publishers, 1998.

11. P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism and
sub-graph isomorphism benchmarking. 3rd IAPR-TC15 Workshop on Graph-based
Representations in Pattern Recognition, pages 176 –187, 2001.

12. F. Glover. Tabu search - part I. Journal on Computing, pages 190–260, 1989.
13. J.E. Hopcroft and J-K Wong. Linear time algorithm for isomorphism of planar

graphs. 6th Annu. ACM Symp. theory of Comput., pages 172–184, 1974.
14. S. Kirkpatrick, S. Gelatt, and M. Vecchi. Optimisation by simulated annealing. In

Science, volume 220, pages 671–680, 1983.
15. E.M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer System Science, pages 42–65, 1982.
16. S. Petrovic, G. Kendall, and Y. Yang. A Tabu Search Approach for Graph-

Structured Case Retrieval. In STAIRS 2002, pages 55–64, 2002.

