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Abstract We propose a new algorithm based on the Ant Colony Optimization
(ACO) meta-heuristic for the Multidimensional Knapsack Problem, the
goal of which is to find a subset of objects that maximizes a given objec-
tive function while satisfying some resource constraints. We show that
our new algorithm obtains better results than two other ACO algorithms
on most instances.
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1. Introduction
The Multidimensional Knapsack Problem (MKP) is a NP-hard prob-

lem which has many practical applications, such as processor allocation
in distributed systems, cargo loading, or capital budgeting. The goal of
the MKP is to find a subset of objects that maximizes the total profit
while satisfying some resource constraints. More formally, a MKP is
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stated as follows:

maximize
∑n

j=1 pj .xj

subject to
∑n

j=1 rij .xj ≤ bi,∀i ∈ 1..m
xj ∈ {0, 1},∀j ∈ 1..n

where rij is the consumption of resource i for object j, bi is the available
quantity of resource i, pj is the profit associated with object j, and xj

is the decision variable associated with object j and is set to 1 (resp. 0)
if j is selected (resp. not selected).

In this paper, we describe a new algorithm for solving MKPs. This
algorithm is based on Ant Colony Optimization (ACO) [4], a stochastic
metaheuristic that has been applied to solve many combinatorial opti-
mization problems such as traveling salesman problems [3], quadratic
assignment problems [6], or vehicule routing problems [1]. The basic
idea of ACO is to model the problem to solve as the search for a mini-
mum cost path in a graph, and to use artificial ants to search for good
paths. The behavior of artificial ants is inspired from real ants: they lay
pheromone trails on components of the graph and they choose their path
with respect to probabilities that depend on pheromone trails that have
been previously laid; these pheromone trails progressively decrease by
evaporation. Intuitively, this indirect stigmergetic communication mean
aims at giving information about the quality of path components in or-
der to attract ants, in the following iterations, towards the corresponding
areas of the search space.

To solve MKPs with ACO, the key point is to decide which com-
ponents of the constructed solutions should be rewarded, and how to
exploit these rewards when constructing new solutions. A solution of a
MKP is a set of selected objects S = {o1, . . . , ok} (we shall say that an
object oi is selected if the corresponding decision variable xoi has been
set to 1). Given such a solution S = {o1, . . . , ok}, one can consider three
different ways of laying pheromone trails:

A first possibility is to lay pheromone trails on each object selected
in S. In this case, the idea is to increase the desirability of each
object of S so that, when constructing a new solution, these objects
will be more likely to be selected;

A second possibility is to lay pheromone trails on each couple
(oi, oi+1) of successively selected objects of S. In this case, the
idea is to increase the desirability of choosing object oi+1 when
the last selected object is oi.

A third possibility is to lay pheromone on all pairs (oi, oj) of differ-
ent objects of S. In this case, the idea is to increase the desirability
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Algorithm Ant-knapsack:
Initialize pheromone trails to τmax

repeat the following cycle:

for each ant k in 1..nbAnts, construct a solution Sk as follows:

Randomly choose a first object o1 ∈ 1..n

Sk ← {o1}
Candidates ← {oi ∈ 1..n/oi can be selected without violating resource constraints}
while Candidates 6= ∅ do

Choose an object oi∈Candidates with probability pSk (oi)

Sk ← Sk ∪ {oi}
remove from Candidates every object that violates some resource constraints

end while

end for

Update pheromone trails w.r.t. {S1, . . . ,SnbAnts}
if a pheromone trail is lower than τmin then set it to τmin

if a pheromone trail is greater than τmax then set it to τmax

until maximum number of cycles reached or optimal solution found

Figure 1. ACO algorithm for solving MKPs

of choosing together two objects of S so that, when constructing a
new solution S′, the objects of S will be more likely to be selected
if S′ already contains some objects of S. More precisely, the more
S′ will contain objects of S, the more the other objects of S will
be attractive.

To solve MKP with ACO, Leguizamon and Michalewizc [7] have pro-
posed an algorithm based on the first possibility, whereas Fidanova [5]
has proposed another algorithm based on the second possibility. In this
paper, we propose a new ACO algorithm for solving MKPs that is based
on the third possibility. Our intuition is that this strategy should attract
ants in a more precise way as the desirability of an object depends on the
objects that already belong to the partial solution under construction.

2. Ant-knapsack description
We define the construction graph, on which ants lay pheromone trails,

as a complete graph that associates a node to each object of the MKP.
The quantity of pheromone laying on an edge (oi, oj) is denoted by
τ(oi, oj). Intuitively, this quantity represents the learnt desirability of
selecting together objects oi and oj .
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The proposed ACO algorithm for solving MKPs is described in figure
1 and more particularly follows the MAX −MIN Ant System [8]: we
explicitly impose lower and upper bounds τmin and τmax on pheromone
trails (with 0 < τmin < τmax), and pheromone trails are set to τmax at
the beginning of the search.

At each cycle of this algorithm, every ant constructs a solution. It
first randomly chooses an initial object, and then iteratively adds ob-
jects that are chosen within a set Candidates that contains all the objects
that can be selected without violating resource constraints. Once each
ant has constructed a solution, pheromone trails are updated. The al-
gorithm stops either when an ant has found an optimal solution (when
the optimal bound is known), or when a maximum number of cycles has
been performed.

2.1 Definition of transition probabilities

At each step of the construction of a solution, an ant k randomly
selects the next object oi within the set Candidates with respect to
a probability pSk

(oi). This probability is defined proportionally to a
pheromone factor and a heuristic factor, i.e.,

pSk
(oi) =

[τSk
(oi)]α.[ηSk

(oi)]β∑
oj∈Candidates [τSk

(oj)]α.[ηSk
(oj)]β

where τSk
(oi) is the pheromone factor of oi, ηSk

(oi) is its heuristic factor,
and α and β are two parameters that determine the relative importance
of these two factors.

The pheromone factor τSk
(oi) depends on the quantity of pheromone

laid on edges connecting the objects that already are in the partial so-
lution Sk and the candidate node oi, i.e.,

τSk
(oi) =

∑
oj∈Sk

τ(oi, oj)

Note that this pheromone factor can be computed in an incremental way:
once the first object oi has been randomly chosen, for each candidate
object oj , the pheromone factor τSk

(oj) is initialized to τ(oi, oj); then,
each time a new object ol is added to the solution Sk, for each candidate
object oj , the pheromone factor τSk

(oj) is incremented by τ(ol, oj).
The heuristic factor ηSk

(oi) also depends on the whole set Sk of se-
lected objects. Let cSk

(i) =
∑

g∈Sk
rig be the consumed quantity of the

resource i when the ant k has selected the set of objects Sk. And let
dSk

(i) = bi − cSk
(i) be the remaining capacity of the resource i. We
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define the following ratio:

hSk
(j) =

m∑
i=1

rij

dSk
(i)

which represents the tightness of the object j on the constraints i rela-
tively to the constructed solution Sk. Thus, the lower this ratio is, the
more the object is profitable.

We integrate the profit of the object in this ratio to obtain a pseudo-
utility factor. We can now define the heuristic factor formula as follows:

ηSk
(j) =

pj

hSk
(j)

2.2 Pheromone updating

Once each ant has constructed a solution, pheromone trails laying
on the construction graph edges are updated according to the ACO
meta-heuristic. First, all amounts are decreased in order to simulate
evaporation. This is done by multiplying the quantity of pheromone
laying on each edge of the construction graph by a pheromone persistence
rate (1− ρ) such that 0 ≤ ρ ≤ 1.

Then, the best ant of the cycle deposits pheromone. More precisely,
let Sk ∈ {S1, . . . ,SnbAnts} be the best solution (with maximal profit)
constructed during the cycle, and Sbest be the best solution built since
the beginning of the run. The quantity of pheromone laid by ant k is
inversely proportional to the gap of profit between Sk and Sbest, i.e., it
is equal to 1/(1+profit(Sbest)−profit(Sk)). This quantity of pheromone
is added on each edge connecting two different vertices of Sk.

3. Parameters setting
When solving a combinatorial optimization problem with a heuristic

approach such as evolutionary computation or ACO, one usually has to
find a compromise between two dual goals. On one hand, one has to
intensify the search around the most “promising” areas, that are usually
close to the best solutions found so far. On the other hand, one has
to diversify the search and favor exploration in order to discover new,
and hopefully more successful, areas of the search space. The behavior
of ants with respect to this intensification/diversification duality can be
influenced by modifying parameter values. In particular, diversification
can be emphasized either by decreasing the value of the pheromone factor
weight α —so that ants become less sensitive to pheromone trails— or
by decreasing the value of the pheromone evaporation rate ρ —so that
pheromone evaporates more slowly. When increasing the exploratory



6

Figure 2. Influence of α and ρ on solution quality: each curve plots the evolution of
the profit of the best solution when the number of cycles increases, for a given setting
of α and ρ. The other parameters have been set to β = 5, nbAnts = 30, τmin = 0.01,
and τmax = 6.

ability of ants in this way, one usually finds better solutions, but as a
counterpart it takes longer time to find them.

This is illustrated in figure 2 on a MKP instance with 100 objects
and 5 resource constraints. When emphasizing pheromone guidance, by
choosing values such as α = 2 and ρ = 0.02, Ant-knapsack quickly finds
good solutions but it may fail in finding the optimal (or the best) solu-
tion. On the contrary, when choosing values for α and ρ that emphasize
exploration, such as α = 1 and ρ = 0.01, ants find better solutions,
but they need more cycles to converge towards these solutions. A good
compromise between solution quality and computation time is reached
when α is set to 1 and ρ to 0.01.

For all experiments reported below, we have set α to 1, β to 5, ρ to
0.01, the number of ants nbAnts to 30, and the pheromone bounds τmin

and τmax to 0.01 and 6. Finally, we limited the number of cycles to 2000.
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4. Experiments and results
The Ant-knapsack has been tested on benchmarks of MKP from OR-

Library 1. We compare the results of Ant-knapsack with the two ACO
algorithms of Leguizamon and Michalewicz [7] and Fidanova [5], and the
genetic algorithm of Chu and Beasly [2].

Table 1. Results on 5.100 instances. For each instance, the table reports the best
solutions found by Chu and Beasley as reported in [2](C. & B.), the best and average
solutions found by Leguizamon and Michalewicz as reported in [7](L. & M.), and the
best solutions found by Fidanova as reported in [5]. It then reports results obtained by
Ant-knapsack: best and average solutions over 50 runs, followed by standard deviation
in brackets, and the average number of cycles needed to find the best solution (C*).

N◦ C. & B L. & M. Fidanova Ant-knapsack
Best Best Avg Best Best Avg (sdv) C*

00 24381 24381 24331 23984 24381 24342 (29.3) 522

01 24274 24274 24245 24145 24274 24247 (38.5) 469

02 23551 23551 23527 23523 23551 23529 (8.0) 483

03 23534 23527 23463 22874 23534 23462 (32.6) 500

04 23991 23991 23949 23751 23991 23946 (31.8) 589

05 24613 24613 24563 24601 24613 24587 (31.3) 535

06 25591 25591 25504 25293 25591 25512 (43.8) 480

07 23410 23410 23361 23204 23410 23371 (30.3) 509

08 24216 24204 24173 23762 24216 24172 (32.9) 571

09 24411 24411 24326 24255 24411 24356 (44.3) 588

10 42757 42705 42757 42704 (14.3) 537

11 42545 42445 42510 42456 (15.8) 577

12 41968 41581 41967 41934 (22.3) 635

13 45090 44911 45071 45056 (24.0) 627

14 42218 42025 42218 42194 (33.2) 512

15 42927 42671 42927 42911 (33.3) 484

16 42009 41776 42009 41977 (45.2) 458

17 45020 44671 45010 44971 (32.5) 490

18 43441 43122 43441 43356 (38.5) 514

19 44554 44471 44554 44506 (25.2) 517

20 59822 59798 59822 59821 (3.2) 261

21 62081 61821 62081 62010 (47.1) 387

22 59802 59694 59802 59759 (21.7) 450

23 60479 60479 60479 60428 (21.8) 368

24 61091 60954 61091 61072 (20.0) 298

25 58959 58695 58959 58945 (14.5) 356

26 61538 61406 61538 61514 (24.0) 407

27 61520 61520 61520 61492 (25.6) 396

28 59453 59121 59453 59436 (40.5) 395

29 59965 59864 59965 59958 (8.4) 393
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Table 2. Results on 10.100 instances. For each instance, the table reports the best
solutions found by Chu and Beasley as reported in [2](C. & B), and by Leguizamon
and Michalewicz as reported in [7](L. & M). It then reports results obtained by Ant-
knapsack: best and average solutions over 50 runs, followed by standard deviation in
brackets, and the average number of cycles needed to find the best solution (C*).

N◦ C. & B L. & M. Ant-knapsack
Best Best Avg Best Avg (sdv) C*

00 23064 23057 22996 23064 23016 (42.2) 538

01 22801 22801 22672 22801 22714 (67.2) 575

02 22131 22131 21980 22131 22034 (66.9) 598

03 22772 22772 22631 22717 22634 (60.6) 700

04 22751 22654 22578 22654 22547 (66.3) 640

05 22777 22652 22565 22716 22602 (63.3) 645

06 21875 21875 21758 21875 21777 (44.9) 552

07 22635 22551 22519 22551 22453 (89.2) 586

08 22511 22418 22292 22511 22351 (69.4) 534

09 22702 22702 22588 22702 22591 (88.5) 588

10 41395 41395 41329 (48.5) 501

11 42344 42344 42214 (49.5) 559

12 42401 42401 42300 (58.1) 584

13 45624 45624 45461 (73.6) 562

14 41884 41884 41739 (57.3) 536

15 42995 42995 42909 (76.3) 525

16 43559 43553 43464 (71.7) 597

17 42970 42970 42903 (47.7) 439

18 42212 42212 42146 (48.0) 598

19 41207 41207 41067 (89.7) 548

20 57375 57375 57318 (59.5) 330

21 58978 58978 58889 (40.2) 504

22 58391 58391 58333 (29.5) 513

23 61966 61966 61885 (42.4) 427

24 60803 60803 60798 (5.0) 316

25 61437 61437 61293 (52.7) 502

26 56377 56377 56324 (35.7) 453

27 59391 59391 59339 (53.3) 445

28 60205 60205 60146 (62.6) 360

29 60633 60633 60605 (36.1) 360



Ant algorithm for themultidimensional knapsack problem 9

Table 3. Results on 5.500 instances. For each instance, the table reports the best
solutions found by Vasquez and Hao as reported in [9](V. & H). It then reports
results obtained by Ant-knapsack: best and average solutions over 50 runs, followed
by standard deviation in brackets, and the average number of cycles needed to find
the best solution (C*).

N◦ V. & H. Ant-knapsack
Best Best Avg (sdv) C*

00 120134 119893 119658 (135.8) 885

01 117864 117604 117423 (130.4) 857

02 121112 120846 120622 (121.4) 860

03 120804 120534 120279 (152.3) 814

04 122319 122126 121829 (135.2) 826

Table 1 displays the results for 30 instances with 100 objects and 5
constraints (n=100 and m=5). On these instances, Ant-knapsack clearly
outperforms Fidanova’s algorithm. It also obtains better results than the
algorithm of Leguizamon and Michalewicz: the best solutions found are
always larger or equal, and the average solutions found are larger for
7 instances, and smaller for 3 instances. Ant-knapsack finds the best
known results of Chu and Beasley for 26 instances over the 30 tested
instances.

Table 2 displays the results for 30 instances with 100 objects and 10
constraints (n=100 and m=10). On these instances, Ant-knapsack also
obtains better results than the algorithm of Leguizamon and Michalewicz:
the best solutions found are larger or equal for 9 instances over 10, and
the average solutions found are larger for 8 instances, and smaller for 2
instances. Ant-knapsack finds for this set also the best known results of
Chu and Beasley for 25 instances over 30.

We also tested Ant-knapsack on larger MKP instances with 500 ob-
jects and 5 constraints (table 3). The best known results for this set are
obtained by Vasquez and Hao [9]. They proposed an hybrid algorithm
that combines tabu search and linear programming. On these difficult
instances, we find worse results than those of Vasquez and Hao.

5. Conclusion
In this paper, we propose an ACO algorithm for the multidimensional

knapsack problem. This algorithm differs from many ACO algorithms
in the fact that pheromone trails are laid not only on the edges of the
visited paths, but on all edges connecting any pair of nodes belonging
to the solution. In addition, when adding a node to the solution under
construction, the probability of choosing a node not only depends on the



10

pheromone trail between the last visited node and the candidate node
but on the trails laying on all edges connecting the candidate node and
all visited nodes in the solution. The proposed algorithm finds most of
the best known results for the tested MKP benchmarks. This algorithm
improves also many results found by other ACO algorithms.

Notes
1. available at http://mscmga.ms.ic.ac.uk/.
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