Inès Alaya
email: ines.alaya@isg.rnu.tn

Christine Solnon
email: christine.solnon@liris.cnrs.fr

Khaled Ghédira
email: khaled.ghedira@isg.rnu.tn

ANT ALGORITHM FOR THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Keywords:

We propose a new algorithm based on the Ant Colony Optimization (ACO) meta-heuristic for the Multidimensional Knapsack Problem, the goal of which is to find a subset of objects that maximizes a given objective function while satisfying some resource constraints. We show that our new algorithm obtains better results than two other ACO algorithms on most instances.

Introduction

The Multidimensional Knapsack Problem (MKP) is a NP-hard problem which has many practical applications, such as processor allocation in distributed systems, cargo loading, or capital budgeting. The goal of the MKP is to find a subset of objects that maximizes the total profit while satisfying some resource constraints. More formally, a MKP is 1 stated as follows: maximize n j=1 p j .x j subject to n j=1 r ij .x j ≤ b i , ∀i ∈ 1..m x j ∈ {0, 1}, ∀j ∈ 1..n where r ij is the consumption of resource i for object j, b i is the available quantity of resource i, p j is the profit associated with object j, and x j is the decision variable associated with object j and is set to 1 (resp. 0) if j is selected (resp. not selected).

In this paper, we describe a new algorithm for solving MKPs. This algorithm is based on Ant Colony Optimization (ACO) [START_REF] Dorigo | The Ant Colony Optimization Meta-Heuristic[END_REF], a stochastic metaheuristic that has been applied to solve many combinatorial optimization problems such as traveling salesman problems [START_REF] Dorigo | The Ant System : Optimization By a Colony of Cooperating Agents[END_REF], quadratic assignment problems [START_REF] Gambardella | Ant colonies for the quadratic assignment problem[END_REF], or vehicule routing problems [START_REF] Bullnheimer | Applying the Ant System to the vehicle routing problem[END_REF]. The basic idea of ACO is to model the problem to solve as the search for a minimum cost path in a graph, and to use artificial ants to search for good paths. The behavior of artificial ants is inspired from real ants: they lay pheromone trails on components of the graph and they choose their path with respect to probabilities that depend on pheromone trails that have been previously laid; these pheromone trails progressively decrease by evaporation. Intuitively, this indirect stigmergetic communication mean aims at giving information about the quality of path components in order to attract ants, in the following iterations, towards the corresponding areas of the search space.

To solve MKPs with ACO, the key point is to decide which components of the constructed solutions should be rewarded, and how to exploit these rewards when constructing new solutions. A solution of a MKP is a set of selected objects S = {o 1 , . . . , o k } (we shall say that an object o i is selected if the corresponding decision variable x o i has been set to 1). Given such a solution S = {o 1 , . . . , o k }, one can consider three different ways of laying pheromone trails: A first possibility is to lay pheromone trails on each object selected in S. In this case, the idea is to increase the desirability of each object of S so that, when constructing a new solution, these objects will be more likely to be selected;

A second possibility is to lay pheromone trails on each couple (o i , o i+1) of successively selected objects of S. In this case, the idea is to increase the desirability of choosing object o i+1 when the last selected object is o i .

A third possibility is to lay pheromone on all pairs (o i , o j) of different objects of S. In this case, the idea is to increase the desirability Algorithm Ant-knapsack: of choosing together two objects of S so that, when constructing a new solution S , the objects of S will be more likely to be selected if S already contains some objects of S. More precisely, the more S will contain objects of S, the more the other objects of S will be attractive.

To solve MKP with ACO, Leguizamon and Michalewizc [START_REF] Leguizamon | A new version of Ant System for Subset Problem[END_REF] have proposed an algorithm based on the first possibility, whereas Fidanova [START_REF] Fidanova | Evolutionary Algorithm for Multidimensional Knapsack Problem[END_REF] has proposed another algorithm based on the second possibility. In this paper, we propose a new ACO algorithm for solving MKPs that is based on the third possibility. Our intuition is that this strategy should attract ants in a more precise way as the desirability of an object depends on the objects that already belong to the partial solution under construction.

Ant-knapsack description

We define the construction graph, on which ants lay pheromone trails, as a complete graph that associates a node to each object of the MKP. The quantity of pheromone laying on an edge (o i , o j) is denoted by τ (o i , o j). Intuitively, this quantity represents the learnt desirability of selecting together objects o i and o j .

The proposed ACO algorithm for solving MKPs is described in figure 1 and more particularly follows the MAX -MIN Ant System [START_REF] Stützle | MAX-MIN Ant System[END_REF]: we explicitly impose lower and upper bounds τ min and τ max on pheromone trails (with 0 < τ min < τ max), and pheromone trails are set to τ max at the beginning of the search.

At each cycle of this algorithm, every ant constructs a solution. It first randomly chooses an initial object, and then iteratively adds objects that are chosen within a set Candidates that contains all the objects that can be selected without violating resource constraints. Once each ant has constructed a solution, pheromone trails are updated. The algorithm stops either when an ant has found an optimal solution (when the optimal bound is known), or when a maximum number of cycles has been performed.

Definition of transition probabilities

At each step of the construction of a solution, an ant k randomly selects the next object o i within the set Candidates with respect to a probability p S k (o i). This probability is defined proportionally to a pheromone factor and a heuristic factor, i.e.,

p S k (o i) = [τ S k (o i)] α .[η S k (o i)] β o j ∈Candidates [τ S k (o j)] α .[η S k (o j)] β
where τ S k (o i) is the pheromone factor of o i , η S k (o i) is its heuristic factor, and α and β are two parameters that determine the relative importance of these two factors. The pheromone factor τ S k (o i) depends on the quantity of pheromone laid on edges connecting the objects that already are in the partial solution S k and the candidate node o i , i.e.,

τ S k (o i) = o j ∈S k τ (o i , o j)
Note that this pheromone factor can be computed in an incremental way: once the first object o i has been randomly chosen, for each candidate object o j , the pheromone factor τ S k (o j) is initialized to τ (o i , o j); then, each time a new object o l is added to the solution S k , for each candidate object o j , the pheromone factor τ S k (o j) is incremented by τ (o l , o j).

The heuristic factor η S k (o i) also depends on the whole set S k of selected objects. Let c S k (i) = g∈S k r ig be the consumed quantity of the resource i when the ant k has selected the set of objects S k . And let d S k (i) = b i -c S k (i) be the remaining capacity of the resource i. We define the following ratio:

h S k (j) = m i=1 r ij d S k (i)
which represents the tightness of the object j on the constraints i relatively to the constructed solution S k . Thus, the lower this ratio is, the more the object is profitable.

We integrate the profit of the object in this ratio to obtain a pseudoutility factor. We can now define the heuristic factor formula as follows:

η S k (j) = p j h S k (j)

Pheromone updating

Once each ant has constructed a solution, pheromone trails laying on the construction graph edges are updated according to the ACO meta-heuristic. First, all amounts are decreased in order to simulate evaporation. This is done by multiplying the quantity of pheromone laying on each edge of the construction graph by a pheromone persistence rate (1 -ρ) such that 0 ≤ ρ ≤ 1.

Then, the best ant of the cycle deposits pheromone. More precisely, let S k ∈ {S 1 , . . . , S nbAnts } be the best solution (with maximal profit) constructed during the cycle, and S best be the best solution built since the beginning of the run. The quantity of pheromone laid by ant k is inversely proportional to the gap of profit between S k and S best , i.e., it is equal to 1/(1 + profit(S best) -profit(S k)). This quantity of pheromone is added on each edge connecting two different vertices of S k .

Parameters setting

When solving a combinatorial optimization problem with a heuristic approach such as evolutionary computation or ACO, one usually has to find a compromise between two dual goals. On one hand, one has to intensify the search around the most "promising" areas, that are usually close to the best solutions found so far. On the other hand, one has to diversify the search and favor exploration in order to discover new, and hopefully more successful, areas of the search space. The behavior of ants with respect to this intensification/diversification duality can be influenced by modifying parameter values. In particular, diversification can be emphasized either by decreasing the value of the pheromone factor weight α -so that ants become less sensitive to pheromone trails-or by decreasing the value of the pheromone evaporation rate ρ -so that pheromone evaporates more slowly. When increasing the exploratory ability of ants in this way, one usually finds better solutions, but as a counterpart it takes longer time to find them. This is illustrated in figure 2 on a MKP instance with 100 objects and 5 resource constraints. When emphasizing pheromone guidance, by choosing values such as α = 2 and ρ = 0.02, Ant-knapsack quickly finds good solutions but it may fail in finding the optimal (or the best) solution. On the contrary, when choosing values for α and ρ that emphasize exploration, such as α = 1 and ρ = 0.01, ants find better solutions, but they need more cycles to converge towards these solutions. A good compromise between solution quality and computation time is reached when α is set to 1 and ρ to 0.01.

For all experiments reported below, we have set α to 1, β to 5, ρ to 0.01, the number of ants nbAnts to 30, and the pheromone bounds τ min and τ max to 0.01 and 6. Finally, we limited the number of cycles to 2000.

4.

Experiments and results

The Ant-knapsack has been tested on benchmarks of MKP from OR-Library 1 . We compare the results of Ant-knapsack with the two ACO algorithms of Leguizamon and Michalewicz [START_REF] Leguizamon | A new version of Ant System for Subset Problem[END_REF] and Fidanova [START_REF] Fidanova | Evolutionary Algorithm for Multidimensional Knapsack Problem[END_REF], and the genetic algorithm of Chu and Beasly [START_REF] Chu | A genetic algorithm for the multidimentional knapsack problem[END_REF]. Table 1 displays the results for 30 instances with 100 objects and 5 constraints (n=100 and m=5). On these instances, Ant-knapsack clearly outperforms Fidanova's algorithm. It also obtains better results than algorithm of Leguizamon and Michalewicz: the best solutions found are always larger or equal, and the average solutions found are larger for 7 instances, and smaller for 3 instances. Ant-knapsack finds the best known results of Chu and Beasley for 26 instances over the 30 tested instances.

Table 2 displays the results for 30 instances with 100 objects and 10 constraints (n=100 and m=10). On these instances, Ant-knapsack also obtains better results than the algorithm of Leguizamon and Michalewicz: the best solutions found are larger or equal for 9 instances over 10, and the average solutions found are larger for 8 instances, and smaller for 2 instances. Ant-knapsack finds for this set also the best known results of Chu and Beasley for 25 instances over 30.

We also tested Ant-knapsack on larger MKP instances with 500 objects and 5 constraints (table 3). The best known results for this set are obtained by Vasquez and Hao [START_REF] Vasquez | A Hybrid Approach for the 0-1 Multidimensional Knapsack Problem[END_REF]. They proposed an hybrid algorithm that combines tabu search and linear programming. On these difficult instances, we find worse results than those of Vasquez and Hao.

Conclusion

In this paper, we propose an ACO algorithm for the multidimensional knapsack problem. This algorithm differs from many ACO algorithms in the fact that pheromone trails are laid not only on the edges of the visited paths, but on all edges connecting any pair of nodes belonging to the solution. In addition, when adding a node to the solution under construction, the probability of choosing a node not only depends on the pheromone trail between the last visited node and the candidate node but on the trails laying on all edges connecting the candidate node and all visited nodes in the solution. The proposed algorithm finds most of the best known results for the tested MKP benchmarks. This algorithm improves also many results found by other ACO algorithms.

Notes

1. available at http://mscmga.ms.ic.ac.uk/.

Figure 1 .

 1 Figure 1. ACO algorithm for solving MKPs

Figure 2 .

 2 Figure 2. Influence of α and ρ on solution quality: each curve plots the evolution of the profit of the best solution when the number of cycles increases, for a given setting of α and ρ. The other parameters have been set to β = 5, nbAnts = 30, τmin = 0.01, and τmax = 6.

 {S1, . . . , S nbAnts } if a pheromone trail is lower than τmin then set it to τmin if a pheromone trail is greater than τmax then set it to τmax until maximum number of cycles reached or optimal solution found

	Initialize pheromone trails to τmax
	repeat the following cycle:
	for each ant k in 1..nbAnts, construct a solution S k as follows:
	Randomly choose a first object o1 ∈ 1..n
	S k ← {o1}
	Candidates ← {oi ∈ 1..n/oi can be selected without violating resource constraints}
	while Candidates = ∅ do
	Choose an object oi ∈ Candidates with probability pS k (oi)
	S k ← S k ∪ {oi}
	remove from Candidates every object that violates some resource constraints
	end while
	end for
	Update pheromone trails w.r.t.

Table 1 .

 1 Results on 5.100 instances. For each instance, the table reports the best solutions found by Chu and Beasley as reported in[START_REF] Chu | A genetic algorithm for the multidimentional knapsack problem[END_REF](C. & B.), the best and average solutions found by Leguizamon and Michalewicz as reported in[START_REF] Leguizamon | A new version of Ant System for Subset Problem[END_REF](L. & M.), and the best solutions found by Fidanova as reported in[START_REF] Fidanova | Evolutionary Algorithm for Multidimensional Knapsack Problem[END_REF]. It then reports results obtained by Ant-knapsack: best and average solutions over 50 runs, followed by standard deviation in brackets, and the average number of cycles needed to find the best solution (C*).

	N • C. & B	L. & M.	Fidanova	Ant-knapsack
		Best	Best	Avg	Best	Best Avg (sdv)	C*
	00	24381 24381 24331	23984 24381 24342 (29.3) 522
	01	24274 24274 24245	24145 24274 24247 (38.5) 469
	02	23551 23551 23527	23523 23551 23529 (8.0)	483
	03	23534 23527 23463	22874 23534 23462 (32.6) 500
	04	23991 23991 23949	23751 23991 23946 (31.8) 589
	05	24613 24613 24563	24601 24613 24587 (31.3) 535
	06	25591 25591 25504	25293 25591 25512 (43.8) 480
	07	23410 23410 23361	23204 23410 23371 (30.3) 509
	08	24216 24204 24173	23762 24216 24172 (32.9) 571
	09	24411 24411 24326	24255 24411 24356 (44.3) 588
	10	42757			42705 42757 42704 (14.3) 537
	11	42545			42445 42510 42456 (15.8) 577
	12	41968			41581 41967 41934 (22.3) 635
	13	45090			44911 45071 45056 (24.0) 627
	14	42218			42025 42218 42194 (33.2) 512
	15	42927			42671 42927 42911 (33.3) 484
	16	42009			41776 42009 41977 (45.2) 458
	17	45020			44671 45010 44971 (32.5) 490
	18	43441			43122 43441 43356 (38.5) 514
	19	44554			44471 44554 44506 (25.2) 517
	20	59822			59798 59822 59821 (3.2)	261
	21	62081			61821 62081 62010 (47.1) 387
	22	59802			59694 59802 59759 (21.7) 450
	23	60479			60479 60479 60428 (21.8) 368
	24	61091			60954 61091 61072 (20.0) 298
	25	58959			58695 58959 58945 (14.5) 356
	26	61538			61406 61538 61514 (24.0) 407
	27	61520			61520 61520 61492 (25.6) 396
	28	59453			59121 59453 59436 (40.5) 395
	29	59965			59864 59965 59958 (8.4)	393

Table 2 .

 2 Results on 10.100 instances. For each instance, the table reports the best solutions found by Chu and Beasley as reported in[START_REF] Chu | A genetic algorithm for the multidimentional knapsack problem[END_REF](C. & B), and by Leguizamon and Michalewicz as reported in[START_REF] Leguizamon | A new version of Ant System for Subset Problem[END_REF](L. & M). It then reports results obtained by Antknapsack: best and average solutions over 50 runs, followed by standard deviation in brackets, and the average number of cycles needed to find the best solution (C*).

	N • C. & B	L. & M.	Ant-knapsack
		Best	Best	Avg	Best Avg (sdv)	C*
	00	23064 23057 22996 23064 23016 (42.2) 538
	01	22801 22801 22672 22801 22714 (67.2) 575
	02	22131 22131 21980 22131 22034 (66.9) 598
	03	22772 22772 22631 22717 22634 (60.6) 700
	04	22751 22654 22578 22654 22547 (66.3) 640
	05	22777 22652 22565 22716 22602 (63.3) 645
	06	21875 21875 21758 21875 21777 (44.9) 552
	07	22635 22551 22519 22551 22453 (89.2) 586
	08	22511 22418 22292 22511 22351 (69.4) 534
	09	22702 22702 22588 22702 22591 (88.5) 588
	10	41395			41395 41329 (48.5) 501
	11	42344			42344 42214 (49.5) 559
	12	42401			42401 42300 (58.1) 584
	13	45624			45624 45461 (73.6) 562
	14	41884			41884 41739 (57.3) 536
	15	42995			42995 42909 (76.3) 525
	16	43559			43553 43464 (71.7) 597
	17	42970			42970 42903 (47.7) 439
	18	42212			42212 42146 (48.0) 598
	19	41207			41207 41067 (89.7) 548
	20	57375			57375 57318 (59.5) 330
	21	58978			58978 58889 (40.2) 504
	22	58391			58391 58333 (29.5) 513
	23	61966			61966 61885 (42.4) 427
	24	60803			60803 60798 (5.0)	316
	25	61437			61437 61293 (52.7) 502
	26	56377			56377 56324 (35.7) 453
	27	59391			59391 59339 (53.3) 445
	28	60205			60205 60146 (62.6) 360
	29	60633			60633 60605 (36.1) 360

Table 3 .

 3 Results on 5.500 instances. For each instance, the table reports the best solutions found by Vasquez and Hao as reported in[START_REF] Vasquez | A Hybrid Approach for the 0-1 Multidimensional Knapsack Problem[END_REF](V. & H). It then reports results obtained by Ant-knapsack: best and average solutions over 50 runs, followed by standard deviation in brackets, and the average number of cycles needed to find the best solution (C*).

	N • V. & H.	Ant-knapsack
		Best	Best Avg (sdv)	C*
	00	120134 119893 119658 (135.8) 885
	01	117864 117604 117423 (130.4) 857
	02	121112 120846 120622 (121.4) 860
	03	120804 120534 120279 (152.3) 814
	04	122319 122126 121829 (135.2) 826