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Abstract. This paper proposes a similarity measure to compare cases
represented by labeled graphs. We first define an expressive model of
directed labeled graph, allowing multiple labels on vertices and edges.
Then we define the similarity problem as the search of a best mapping,
where a mapping is a correspondence between vertices of the graphs.
A key point of our approach is that this mapping does not have to be
univalent, so that a vertex in a graph may be associated with several
vertices of the other graph. Another key point is that the quality of
the mapping is determined by generic functions, which can be tuned
in order to implement domain-dependant knowledge. We discuss some
computational issues related to this problem, and we describe a greedy
algorithm for it. Finally, we show that our approach provides not only a
quantitative measure of the similarity, but also qualitative information
which can prove valuable in the adaptation phase of CBR.

1 Introduction

Case based reasoning (CBR) relies on the hypothesis that similar problems have
similar solutions. Hence, a CBR system solves a new problem by retrieving a
similar one, for which a solution is known, then reusing that solution in the
current context [1]. The retrieving phase requires an accurate similarity measure,
so that cases are actually reusable whenever they are considered similar to the
problem at hand.

In many situations, cases can be represented as a set of attribute-value pairs
(usually called “vector cases”). Similarity between such cases can be defined in
a rather straightforward way, as a weighted combination of each attribute-value
pair similarity, and it can be efficiently computed [5]. However, more structured
representations can be necessary for solving more complex problems, e.g., feature
terms [14], hierarchical decompositions [15], directed or non-directed labeled
graphs [7, 13].

In this paper, we focus on directed labeled graphs, i.e., directed graphs whose
vertices and edges are associated with one or more labels, and consider the
problem of characterizing and computing their similarity. Such labeled graphs
provide a rich mean for modeling structured objects. In particular in the Ardeco

project [4], from which this work is originated, we use them to represent design
objects in a computer aided design (CAD) application. Figure 1 displays two



design objects, borrowed from this application, and allows us to introduce some
key points that should be addressed when measuring their similarity. Roughly
speaking, one would say these two design objects are similar since the four beams
a, b, c, d respectively correspond to the beams 1, 2, 3, 4, and the walls e and f

correspond to 5. However, they are not absolutely similar: first, the beams have
different shapes (I on the left and U on the right); besides, the number of walls
is different from one case to the other (the wall 5 plays alone the role of the two
walls e and f).

1 2 3 4a b c d

e f 5

Object 1 Object 2

Fig. 1. Two similar design objects

This example first shows that, in order to measure the similarity between
two objects, we must find a mapping which pairs their different components.
Furthermore, this mapping should be the “best” one, i.e., the one that maps
“similar” components as much as possible, where their similarity depends on the
features they share, as well as the relations they have with other components.
This example also shows that this mapping is not necessarily one-to-one: the
role of wall 5 in object 2 is held by both walls e and f in object 1. To provide
accurate comparison of complex structured objects, it is essential to allow such
multiple mappings and to take them into account when defining a similarity
measure. Finally, a similarity measure should not only be quantitative, indicating
how much two objects are similar, but also qualitative, giving information about
commonalities and differences between the two objects.

In the next section (2), we formally define labeled graphs, and illustrate their
expressive power on the design example of figure 1. In section 3, we propose
our general similarity measure based on the notion of mapping between graph
vertices, and we show how application-dependant similarity knowledge can be
implemented in our framework. Section 4 discusses some computational issues
related to our similarity problem: we first study the tractability of a complete
approach, and then describe an efficient greedy algorithm. In section 5, we discuss
the benefits of our similarity measure in the reuse phase of CBR. Finally, we
conclude by showing the genericity of this work with respect to other proposals
for graph comparison, and we give further research directions.



2 Labeled graphs

2.1 Definitions and notations

A labeled graph is a directed graph such that vertices and edges are associated
with labels. Without loss of generality, we shall assume that every vertex and
edge is associated with at least one label: if some vertices (resp. edges) have no
label, one can add an extra anonymous label that is associated with every vertex
(resp. edge). More formally, given a finite set of vertex labels LV , and a finite
set of edge labels LE, a labeled graph will be defined by a triple G = 〈V, rV , rE〉
such that:

– V is a finite set of vertices,
– rV ⊆ V × LV is the relation that associates vertices with labels, i.e., rV is

the set of couples (vi, l) such that vertex vi has label l,
– rE ⊆ V × V × LE is the relation that associates edges with labels, i.e.,

rE is the set of triples (vi, vj , l) such that edge (vi, vj) has label l. Note
that from this edge relation rE , one can define the set E of edges as E =
{(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

We respectively call the tuples from rV and rE , the vertex features and edge

features of G. We then define the descriptor of a graph G = 〈V, rV , rE〉 as the set
of all its features: descr(G) = rV ∪ rE . This descriptor completely describes the
graph and will be used to measure the similarity between two graphs. Finally,
a similarity problem is defined by two graphs G1 = 〈V1, rV1

, rE1
〉 and G2 =

〈V2, rV2
, rE2

〉 that have disjoint sets of vertices, i.e., V1 ∩ V2 = ∅.

2.2 Example

Let us consider again the two design objects displayed in figure 1. To represent
these two objects with labeled graphs, we first define the sets of vertex and edge
labels that respectively characterize their components and relationships between
components:

LV = { beam, I, U, wall }
LE = { on, next to }

Given these sets of labels, the two design objects of figure 1 may be represented
by the two labeled graphs of figure 2 (the left part of the figure displays their
graphical representations; the right part gives their associated formal definitions
by means of vertex and edge features).

Note that vertices a, b, c and d have the two labels beam and I , whereas
vertices 1, 2, 3 and 4 have the two labels beam and U . This allows us to express
that the corresponding objects share the feature “being a beam”, even though
their shapes are different.

More generally, the fact that edges and vertices may have more than one label
is used to express inheritance (specialization) relationships by inclusion of sets
of labels. With such an inclusive expression of inheritance, the similarity of two
vertices, or edges, can be defined by means of their common labels, corresponding
to their common ancestors in the inheritance hierarchy.



a: beam,I

b: beam,I

c: beam,I

d: beam,I

e: wall f: wall

next-to

next-to

next-to

on
on

on

on

G1 = 〈 V1 = { a, b, c, d, e, f }
rV1

= { (a, beam), (b, beam), (c, beam), (d, beam),
(a, I), (b, I), (c, I), (d, I),
(e, wall), (f, wall) }

rE1
= { (a, b, next to), (b, c, next to), (c, d, next to),

(a, e, on), (b, e, on), (c, f, on), (d, f, on) } 〉

4: beam,U

3: beam,U

2: beam,U

1: beam,U

5: wall

next-to

next-to

next-to

on
on

on

on

G2 = 〈 V2 = { 1, 2, 3, 4, 5 }
rV2

= { (1, beam), (2, beam), (3, beam), (4, beam),
(1, U), (2, U), (3, U), (4, U),
(5, wall) }

rE2
= { (1, 2, next to), (2, 3, next to), (3, 4, next to),

(1, 5, on), (2, 5, on), (3, 5, on), (4, 5, on) } 〉

Fig. 2. Labeled graphs G1 and G2 describing objects 1 and 2 of figure 1

3 A measure of similarity for labeled graphs

3.1 Mapping of labeled graphs

To measure the similarity of two labeled graphs, one first has to find a mapping
that matches their vertices in order to identify their common features. More
precisely, a mapping between two labeled graphs G1 = 〈V1, rV1

, rE1
〉 and G2 =

〈V2, rV2
, rE2

〉, such that V1 ∩ V2 = ∅, is a relation m ⊆ V1 × V2. Note that such
a mapping can associate to each vertex of one graph, zero, one, or more vertices
of the other graph. By extension, we shall use the functional notation m(v) to
denote the set of vertices that are associated with a vertex v by the relation m,
i.e.,

∀v1 ∈ V1, m(v1) =̇ {v2 ∈ V2| (v1, v2) ∈ m}
∀v2 ∈ V2, m(v2) =̇ {v1 ∈ V1| (v1, v2) ∈ m}

Even though we may use a functional notation, one should keep in mind that a
mapping is a relation, i.e., a set of couples of vertices, so that we can apply set
operators on mappings.

Example: For the labeled graphs of figure 2, one can define, e.g., the two following
mappings

mA = {(a, 1), (b, 2), (c, 3), (d, 4), (e, 5), (f, 5)}
mB = {(a, 1), (b, 2), (a, 3), (b, 4)), (e, 5)}

The first mapping mA respectively matches a, b, c and d to 1, 2, 3 and 4, and
both e and f to 5; in this mapping, the set of vertices associated with, e.g., 5
will be noted mA(5) = {e, f}. The second mapping mB matches both 1 and 3 to
a, both 2 and 4 to b, and e to 5; in this mapping, the set of vertices associated
with f will be noted mB(f) = ∅.



3.2 Similarity with respect to a mapping

In order to measure the similarity between two objects, it is intuitive and usual
to compare the amount of features which are common to both objects, to the
total amount of their features [9]. In the field of psychology, Tversky [17] has
demonstrated the cognitive plausibility of this intuition, giving the following
mathematical model of a similarity measure between two objects a and b de-
scribed respectively by two sets of features A and B:

simTversky(a, b) =
f(A ∩ B)

f(A ∪ B) − αf(A − B) − βf(B − A)

where f is a non-decreasing positive function, monotonic with respect to inclu-
sion, and α and β are positive values, allowing to define asymmetrical similarity
measures. We shall set them to zero from now on, since in our case, their role
can be held by function f ; this will be discussed in section 3.5.

A labeled graph G, as we defined it in section 2, is described by the set
descr(G) of all its vertex and edge features. Hence, the similarity of two different
graphs G1 = 〈V1, rV1

, rE1
〉 and G2 = 〈V2, rV2

, rE2
〉 depends on both the common

features of descr(G1) and descr(G2), and the set of all their features. However,
since V1 ∩ V2 = ∅, the intersection of the two graphs descriptors will always
be empty. We must instead compute this intersection with respect to a given
mapping m, which pairs vertices from G1 with vertices from G2:

descr(G1) um descr(G2) =̇ {(v, l) ∈ rV1
| ∃v′ ∈ m(v), (v′, l) ∈ rV2

}

∪ {(v, l) ∈ rV2
| ∃v′ ∈ m(v), (v′, l) ∈ rV1

}

∪ {(vi, vj , l) ∈ rE1
|

∃v′i ∈ m(vi), ∃v′j ∈ m(vj) (v′i, v
′
j , l) ∈ rE2

}

∪ {(vi, vj , l) ∈ rE2
|

∃v′i ∈ m(vi), ∃v′j ∈ m(vj) (v′i, v
′
j , l) ∈ rE1

}

This set contains all the features from both G1 and G2 whose vertices or edges
are matched, according to m, to at least one vertex or edge with the same feature.

Given this definition of commonalities between G1 and G2, we can apply
Tversky’s formula to define the similarity between G1 and G2 with respect to a
mapping m:

sim1m(G1, G2) =
f(descr(G1) um descr(G2))

f(descr(G1) ∪ descr(G2))
(1)

Example: Let us consider the two labeled graphs, and their associated descrip-
tors, of figure 2. The intersections of these descriptors, with respect to the map-



pings mA and mB proposed in section 3.1, are:

descr(G1) umA
descr(G2) = descr(G1) ∪ descr(G2)

−{ (a, I), (b, I), (c, I), (d, I),
(1, U), (2, U), (3, U), (4, U) }

descr(G1) umB
descr(G2) = { (a, beam), (b, beam), (e, wall),

(1, beam), (2, beam), (3, beam), (4, beam), (5, wall),
(a, b, next to),
(1, 2, next to), (3, 4, next to),
(a, e, on), (b, e, on),
(1, 5, on), (2, 5, on), (3, 5, on), (4, 5, on) }

3.3 Evaluation of splits

The definition of sim1m in equation 1 is not entirely satisfying. For example, let
us consider the two labeled graphs of figure 2 and suppose the beams of both
objects have the same shape. In this case, the mapping mA = {(a, 1), (b, 2), (c, 3),
(d, 4), (e, 5), (f, 5)} would match every feature of each graph to a perfectly similar
one from the other graph, so that descr(G1) umA

descr(G2) = descr(G1) ∪
descr(G2) and sim1mA

(G1, G2) = 1. This would mean that the two graphs are
perfectly similar, whatever the chosen function f . Nevertheless, one might be
annoyed that vertex 5 is paired with two vertices (e and f), and prefer another
mapping such as, e.g., m3 = {(a, 1), (b, 2), (c, 3), (d, 4), (e, 5)}, even though some
features were not matched. We do not intend to mean that one mapping is
strictly better than the other one, nor that only isomorphic graphs or subgraphs
should be matched. Indeed, this obviously depends on the application domain.
On the contrary, we want the model to be tunable in order to allow for either
interpretation.

Therefore, to enhance the model, we introduce the function splits which
returns the set of split vertices (i.e., vertices paired with more than one vertex)
together with the set sv of vertices they are paired with. We also define an
extended inclusion operator v on those sets, by considering inclusion on sets of
paired vertices sv .

splits(m) =̇ {(v, sv)| v ∈ V1 ∪ V2, sv = m(v), |m(v)| ≥ 2}

splits(m1) v splits(m2) ⇔̇ ∀(v, sv) ∈ splits(m1), ∃(v, s′v) ∈ splits(m2), sv ⊆ s′v

For example, the mappings proposed in section 3.1 have the following splits:
splits(mA) = { (5, {e, f}) } and splits(mB) = { (a, {1, 3}), (b, {2, 4}) }.

We can now modify equation 1 so as to take the value of splits into account:

simm(G1, G2) =
f(descr(G1) um descr(G2)) − g(splits(m))

f(descr(G1) ∪ descr(G2))
(2)

where function g is defined with the same properties as f : it is positive, mono-
tonic and non-decreasing with respect to extended inclusion v. Hence the simi-
larity will be decreasing as the number of splits is increasing.



3.4 Maximum similarity of labeled graphs

We have defined the similarity of two graphs with respect to a given mapping
between the graphs vertices. Now, we can define the maximum similarity of two
graphs G1 and G2 as the similarity induced by the best mapping:

sim(G1, G2) = max
m⊆V1×V2

f(descr(G1) um descr(G2)) − g(splits(m))

f(descr(G1) ∪ descr(G2))
(3)

Note that, if the similarity value induced by a given mapping m (simm) is
always between 0 and 1 when m does not contain any split (i.e., when every
vertex is associated with at most one vertex), it may become negative when
some vertices are associated with more than one vertex: this occurs if the weight
of splits, defined by g, is higher than the weight of common features, defined by
f . However, in any cases, the maximum similarity sim will always be between 0
and 1 since the similarity induced by the empty mapping m = ∅ is null.

Note also that determining which of the mappings between G1 and G2 is
the “best”, actually completely depends on functions f and g that respectively
quantify vertex and edge features and splits. As a consequence, those functions
must be carefully chosen depending on the application domain. This will be
discussed in section 3.5.

3.5 Similarity knowledge

The notions presented so far about similarity measures are quite generic. How-
ever, in order to be accurate, an actual similarity measure has to take into ac-
count similarity knowledge which is of course application dependant. The func-
tions f and g used in the above definitions are the place where such application
dependant knowledge can be implemented. An easy way of defining them while
ensuring their being monotonic, is to define them as a sum of positive (or null)
weights assigned to each element of the measured sets (namely, features and
splits), i.e., given a set of vertex and edge features F and a set of splits S,

f(F ) =
∑

(v,l)∈F

weightfV (v, l) +
∑

(v1,v2,l)∈F

weightfE(v1, v2, l)

g(S) =
∑

(v,sv)∈S

weightg(v, sv)

Without much domain knowledge, one could assign the same weight to every
feature (that is, f is the cardinality function). Every split (v, sv) could receive
the same weight or a weight proportional to the cardinality of sv.

If generic knowledge is available, the weight of a feature could be defined on
the basis of its label only: one could thus represent the facts that being a beam
is more significant than being U-shaped, or that a composition relation is more
significant than a “next-to” relation, for example.

Finally, if specific or contextual knowledge is available, one could assign a
specific weight to each feature or split. For example, one could express the facts



that it is more significant for a to be I-shaped than it is for b, that it is more
significant for a and b to be in relation than it is for b and c, or that it is less
annoying for a to be split into 1 and 2 than it is for c.

One may be concerned that we constrained parameters α and β in Tversky’s
formula to be zero. Those parameters make it possible to define asymmetri-
cal similarity measures, which is often considered a desirable property in CBR.
However, the definition of sim enables such asymmetrical similarity measures:
features and splits can be weighted differently depending on which graph they
belong to. For example, assigning a null weight to any feature of G2 allows to
measure how much G1 “matches” (or “fits into”) G2.

4 Computing the maximum similarity of labeled graphs

Given two labeled graphs G1 and G2, we now consider the problem of computing
their maximum similarity, i.e., finding a mapping m that maximizes formula 2.
One should note that the denominator f(descr(G1)∪descr(G2)) of this formula
does not depend on the mapping. Indeed, this denominator is introduced to
normalize the similarity value between zero and one. Hence, to compute the
maximum similarity between two graphs G1 and G2, one has to find the mapping
m that maximizes the score function

score(m) = f(descr(G1) um descr(G2)) − g(splits(m))

This problem is highly combinatorial. Indeed, it is more general than, e.g.,
the subgraph isomorphism problem1 which is known to be NP-complete [12].
In this section, we first study the tractability of a complete search, and then
propose a greedy incomplete algorithm for it.

4.1 Tractability of a complete search

The search space of the maximum similarity problem is composed of all different
mappings —all subsets of V1 ×V2— and it contains 2|V1|∗|V2| states. This search
space can be structured in a lattice by the set inclusion relation, and it can
be explored in an exhaustive way with a “branch and bound” approach. Such
a complete approach is actually tractable if there exists a “good” bounding
function that can detect as soon as possible when a node can be pruned, i.e.,
when the score of all the nodes that can be constructed from the current node is
worse than the best score found so far. In our case, the potential successors of the
node associated with a partial mapping m ⊂ V1 × V2 are all the mappings that
are supersets of m. However, the score function is not monotonic with respect to
set inclusion, i.e., the score of a mapping may either increase or decrease when
one adds a new couple to it. Indeed, this score is defined as a difference between

1 We do not present the proof here, since it involves some technical tricks which would
require more space than available.



a function of the common features and a function of the splits, and both sides of
this difference may increase when adding a couple to a mapping. More precisely,
one can show that for all mappings m and m′ such that m ⊆ m′,

descr(G1) um descr(G2) ⊆ descr(G1) um′ descr(G2)

and splits(m) v splits(m′)

and therefore, since the f and g functions are monotonic,

f(descr(G1) um descr(G2)) ≤ f(descr(G1) um′ descr(G2))

and g(splits(m)) ≤ g(splits(m′))

However, we can use the fact that the intersection of graph features is bounded
by the set of all graph features to define a bounding function. Indeed, for every
mapping m, one can trivially show that

descr(G1) um descr(G2) ⊆ descr(G1) ∪ descr(G2)

and, as f and g are monotonic, for every mapping m′ such that m′ ⊇ m,

scorem′(G1, G2) = f(descr(G1) um′ descr(G2)) − g(splits(m′))
≤ f(descr(G1) ∪ descr(G2)) − g(splits(m))

As a consequence, one can prune the node associated with a matching m if
f(descr(G1) ∪ descr(G2)) − g(splits(m)) is smaller or equal to the score of the
best mapping found so far. In this case, all the nodes corresponding to mappings
that are supersets of m will not be explored as their score cannot be higher than
the best score found so far.

A first remark about this bounding function is that its effectiveness in reduc-
ing the search tree highly depends on the relative “weights” of functions f and
g: the higher the weight of splits, the more nodes can be pruned. Actually, this
bounding function is generic, and it can be applied to any kind of labeled graphs,
with any f and g functions (provided that they are monotonic). More accurate
bounding functions could be defined when considering more specific cases.

Also, one may introduce ad-hoc rules to reduce the search space. In particular,
one can remove from the search space every mapping that contains a couple
(vi, vj) such that vi and vj do not have any common features (vertex features, but
also features of edges starting from or ending to vi and vj). Further more, during
the exploration, one can remove from the partial search tree the root of which is
a mapping m, every mapping m′ ⊇ m containing a couple (vi, vj) such that all
the common features of vi and vj already belong to descr(G1) um descr(G2).

Finally, the tractability of any complete branch and bound approach strongly
depends on ordering heuristics, which determine an order for developing the
nodes of the search tree: a good ordering heuristic allows the search to quickly
find a good mapping, the score of which is high, so that more nodes can be cut.
We describe in the next subsection a greedy algorithm that uses such ordering
heuristics to quickly build a “good” mapping.



4.2 Greedy algorithm

Figure 3 describes a greedy algorithm that introduces ordering heuristics to build
a mapping m: the algorithm starts from the empty mapping, and iteratively adds
to this mapping a couple of vertices that most increases the score function. At
each step, this set of candidate couples that most increase the score function —
called cand— often contains more than one couple. To break ties between them,
we look ahead the potentiality of each candidate (u1, u2) ∈ cand by taking into
account the features that are shared by edges starting from (resp. ending to)
both u1 and u2 and that are not already in descr(G1) um∪{(u1,u2)} descr(G2).
Hence, we select the next couple to enter the mapping within the set cand′ of
couples whose looked-ahead common edge features maximize f .

function Greedy(G1=〈V1, rV1
, rE1
〉, G2=〈V2, rV2

, rE2
〉) returns a mapping m ⊆ V1×V2

m← ∅
bestm ← ∅
loop

cand← {(u1, u2) ∈ V1×V2 −m | score(m ∪ {(u1, u2)}) is maximal}
cand′ ← {(u1, u2) ∈ cand | f(look ahead (u1, u2)) is maximal}

where look ahead (u1, u2)={(u1, v1, l) ∈ rE1
| ∃v2 ∈ V2, (u2, v2, l) ∈ rE2

∪{(u2, v2, l) ∈ rE2
| ∃v1 ∈ V1, (u1, v1, l) ∈ rE1

∪{(v1, u1, l) ∈ rE1
| ∃v2 ∈ V2, (v2, u2, l) ∈ rE2

∪{(v2, u2, l) ∈ rE2
| ∃v1 ∈ V1, (v1, u1, l) ∈ rE1

−descr(G1) um∪{(u1,u2)} descr(G2)
exit loop when ∀(u1, u2) ∈ cand′, score(m ∪ {(u1, u2)}) ≤ score(m) and

look ahead (u1, u2) = ∅
choose randomly one couple (u1, u2) in cand′

m← m ∪ {(u1, u2)}
if score(m) > score(bestm) then bestm ← m

end loop

return bestm

Fig. 3. Greedy search of a mapping

Let us consider for example the two graphs of figure 2, and let us suppose
that the f and g functions are both defined as the set cardinality function. At
the first iteration, when the current mapping m is empty, the set of couples
that most increase the score function contains every couple that matches two
vertices sharing one vertex label, i.e., cand = {a, b, c, d}×{1, 2, 3, 4}∪{e, f}×{5}.
Within this set of candidates, (b, 2) (resp. (c, 3)) has 3+3 potential common edge
features, so that f(look ahead(b, 2)) = f(look ahead(c, 3)) = 6; also (e, 5) and
(f, 5) have 6 potential common edge features (the 4 edges ending to 5 plus the 2
edges ending to e or f); other candidates all have a smaller number of potential
common edge features. Hence, the greedy algorithm will randomly select one
couple within the set cand′ = {(b, 2), (c, 3), (e, 5), (f, 5)}. Let us suppose now
that the selected couple is, e.g., (e, 5). Then, at the second iteration, cand will



contain (a, 1) and (b, 2), which both increase the score function of 2+2, whereas
cand′ will only contain (b, 2) as it has more potential common edge features
than (a, 1). Hence, the next couple to enter the mapping will be (b, 2). At the
third iteration, cand will only contain (a, 1), which increases the score function
of 3 + 3, so that (a, 1) will enter the mapping... and so on.

This greedy algorithm stops iterating when every couple neither directly
increases the score function nor has looked-ahead common edge features. Note
that the score of the mapping m under construction may decrease from one
step to another: this occurs when the couple that enters the mapping introduces
more new splits than new common features, but it has looked-ahead common
edge features, so that the score function is expected to increase at the next
iteration. Hence, the algorithm returns the best computed mapping —bestm—
since the beginning of the run.

This greedy algorithm has a polynomial time complexity of O((|V1|× |V2|)2),
provided that the computation of the f and g functions have linear time com-
plexities with respect to the size of the mapping (note that the “look ahead” sets
can be computed in an incremental way). As a counterpart of this rather low
complexity, this algorithm never backtracks and is not complete. Hence, it may
not find the best mapping, the score of which is maximal; moreover, even if it
actually finds the best mapping, it cannot be used to prove its optimality. Note
however that, since this algorithm is not deterministic, we may run it several
times for each case, and keep the best found mapping.

4.3 Discussion

Both algorithms have been implemented in C++. Generally speaking, first ex-
periments have shown us that the complete branch and bound approach can be
applied on small graphs only (up to 10 vertices in the general case), even though
it performs better when increasing the relative weight of splits with respect to
the weights of the common features. Experiments have also confirmed that the
greedy algorithm is actually efficient, computing mappings for graphs with 50
nodes and 150 edges in a few seconds of CPU time.

Actually, tractability is all the more critical in CBR that the target case
must be compared to numerous cases from the case base. Usually, a first pass
filters out a majority of cases, then the most promising candidates are precisely
compared. The filtering pass can use a less accurate but efficient algorithm [15],
like the greedy algorithm presented here. It can also limit the comparison to
representative sub-graphs [10], or even to a vector of characteristics [6]. In the
Ardeco implementation, we plan to use a one-pass of our greedy algorithm to
select from the case base the most promising candidates. Then, for these most
promising candidates, we plan to run several more times the greedy algorithm,
trying to find better mappings. As discussed in section 6, we shall further enhance
our greedy algorithm by integrating some local search mechanisms.



5 Similarity and adaptation

5.1 Reusing qualitative similarity information

One of the goals pursued in this work was to provide not only a quantitative
similarity measure, but also the qualitative information used to compute this
measure. Indeed, from the best mapping m —the one that maximizes the two
graphs similarity— one can define the set of differences between these two graphs
as the set of both split vertices and features which are not shared by the graphs:

diff (G1, G2) = splits(m)∪ (descr(G1)∪descr(G2))− (descr(G1)um descr(G2))

We believe that this set of differences can be valuable when reusing a case.
For example, the Ardeco assistant aims at helping designers (using a CAD ap-
plication) to reuse their experience, represented as design episodes [4]. Episodes
are composed of an initial state and a final state, both represented by labeled
graphs. Reusability of an episode is estimated according to the similarity be-
tween its initial state and the current state of the designer’s work. Adaptation
is performed by transforming the current state into a new state which has the
same differences with the final state than the current state has with the initial
state (cf. figure 4).

new
state

differences

initial
state

final
state

current
state

reusable episode
(source case)

situation
(target case)

Fig. 4. Adapting a design episode in Ardeco

This approach can be compared to similarity paths proposed by [8]: the sim-
ilarity between two cases is estimated by finding a path between them in the
problem space, and this path is translated in the solution space in order to fol-
low it “backward” during adaptation. This is another example of eliciting and
reusing qualitative similarity information.

In our approach, the computed set of differences diff (G1, G2) can be seen
as a set of elementary operations (feature addition/deletion and vertex split-
ting/merging) which are reversible. Our model relies however on the assumption
that such elementary operations are independent and unordered, while steps in
similarity paths are strictly ordered and global (each of them can affect the whole
graph).



5.2 Adaptation guided similarity

In the introduction, we underlined the fact that remembering and reusing are
tightly related. Therefore from the point of view of CBR, a similarity measure
is accurate if the cases considered similar are actually reusable. This has been
pointed out by several authors [15, 8], the latter even prove that their retrieval
mechanism (the similarity paths mentioned above) is correct and complete with
respect to adaptation (meaning that all and only adaptable cases are retrieved).

It seems therefore important to emphasize again on the design of functions
f and g. It has been discussed in section 3.5 how similarity knowledge can be
implemented in these functions, but such knowledge must be consistent with
adaptation knowledge: a feature must be all the more weighted that its addition
(resp. deletion) is expensive or difficult in the adaptation process. Hence general
purpose similarities as proposed by [9] are not necessarily adequate to CBR.

6 Conclusion

We have proposed a representation model for cases as labeled directed graphs,
where vertices and edges may have more than one label. We have defined a simi-
larity measure on such graphs, and discussed two approaches for computing that
measure: the complete branch and bound algorithm appears to be intractable in
the very general case, but an efficient greedy algorithm is proposed. This model
is suited to CBR for it enables flexible modelling of similarity knowledge, and
provides qualitative similarity information which can prove useful for adaptation.

6.1 A generic model

Graphs are versatile representation tools, that have been used and studied in a
wide range of application domains. Comparing two graphs is an important prob-
lem which has been tackled under various modalities: are two graphs identical
(problem of graph isomorphism), is one of them more general than the other
(problem of subsumption), to what extent (quantitatively or qualitatively) are
they different ?

Most of these graph comparison problems can be addressed by our similarity
measure in a very straightforward way. For instance, isomorphism is trivially
the search for a perfect mapping (with a similarity of 1) where f and g assign
any non-null value to every feature and split. Subgraph isomorphism has already
been discussed in section 4, and can easily be modelled, as well as partial graph
or subgraph isomorphism. It has also been discussed in section 2 how multiple
labels can be used to represent hierarchically structured types of vertex or edge.
Determining if a graph G1 subsumes a graph G2, as does the projection algo-
rithm [16], can be achieved by ignoring (i.e., assigning a null weight to) every
feature and every split from G2, and looking for a similarity of 1. On the other
hand, using a symmetrical similarity measure and considering similarity values
lower than 1 corresponds to looking for the most specific subsumer of G1 and
G2, as does the anti-unification algorithm [14].



In the field of knowledge representation, exact subsumption is sometimes too
constraining —for ill-designed knowledge basis, or during incremental design.
Approximative subsumption measures have been proposed [2, 18] to address this
kind of problem. In the field of image recognition, [11] proposed an algorithm
of fuzzy-projection, by extending the conceptual graphs formalism. Other theo-
retical work cope with error-tolerant isomorphism [3], computing similarity on
the basis of how many elementary transformations are necessary to make the
graphs isomorphic. However, all the above propositions miss some interesting
features of our model, e.g., approximate edge matching (most focus on vertices),
handling splits, flexible tuning.

It is also worth mentioning the recent work of Petrovic et al. [13] about
graph retrieval in the field of CBR. Their approach is quite similar to ours —it
expresses similarity of a mapping between vertices, and looks for the maximiz-
ing mapping— but it is lacking some flexibility with regard to our requirements:
splits are not allowed (mappings are univalent functions), graph elements have
exactly one label each, and furthermore, function f is pre-defined and corre-
sponds to the cardinality function. However, they went further in addressing
tractability issues, by implementing an efficient Tabu search.

6.2 Further work

The genericity of our model explains to a large extent its complexity and the
induced tractability issue. We plan to focus in three research directions to address
that issue.

First, we shall further explore heuristic approaches. More work can be done on
the look ahead function in the greedy algorithm, in order to find a good trade-off
between accurate predictions and efficiency. Other incomplete approaches, such
as Tabu search, can also be used in order to refine results of the greedy algorithm
by locally exploring the search space around the constructed mapping.

Second, in situations where graphs have remarkable properties, tractability
issues are usually addressed by using ad hoc heuristics. We plan to study such
heuristics from less generic approaches, in order to be able to integrate them,
either by tuning f and g functions or by other means when necessary.

Finally, we are particularly interested in systems that aim at assisting the user
(rather than standalone systems). In such situations, the retrieving and reusing
phase of CBR should be performed interactively. This is possible thanks to the
qualitative information elicited by our approach (mapping, commonalities and
differences). Not only can interaction allow users to guide the system, thus re-
ducing combinatorial complexity; but user guidance can also provide contextual
knowledge about specific cases, which will make the system more knowledgeable
and accurate for future uses.

Acknowledgment: We would like to thank Sébastien Sorlin for enriching discus-
sions on this work, and the implementation of the two presented algorithms.
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