and Rasmanathan (1982). With respect to R&D e x p e n d i ture, two interesting questions emerge. The first question is what the behaviour of the growth path of the economy would be in an integrated consumption, production, investment and R&D system, in particular when the system is facing capacity limits in terms of congestion, other d i s economies of scale, or depletion of exhaustible resources. Secondly, the introduction of spatial considerations generates a non-trivial dimension in that new technology in any region may be obtained by R&D internally, or by acquisition from external sources. In the latter case, the boost to productivity may be delayed and less effective since the adopted technology is not likely to be 'custom-made*. The question arises t h e r e fore what the optimal balance should be between adopting technology from external technology-leaders, and generating technology by means of own R&D expenditure.

In this paper we shall explore these questions by means of a multiregional dynamic (discrete-time) model. It will be shown that the system can generate a wide range of dynamic behaviour, including -for certain parameters -the dynamic evolutions occurring in models of population biology (notably the so-called May type of models, see e.g. Ma y (1976)).

. It is well-known that the periodic or chaotic behaviour of a May model is the result of specification of the 1.

Introduction

model in difference equation form (see e.g. [START_REF] Barentsen | Modelling Non-Linear Processes in Time and Space[END_REF], but it will be shown that the model developed here generates bounded non-linear dynamics even in differential equation form. Finally, the steering possibilities of the system (e.g. by means op optimized control) will be touched upon.

A Prototype Model for Economic Dynamics

In this section a simple prototype model for economic development will be formulated and presented stepwise. We commence with the assu m p tion that each of the regional economies under consideration is operating under the following production function regime (in difference equation f o r m ) :

where Y is actual production (or output) during the period (t, t + 1 ) , K ^ L the installed capital stock at the beginning of period t, and f a timedependent (i.e., varying in parameters) production function.

For the sake of simplicity, we will for the moment assume a simple production technology, i.e., where c is a technological coefficient representing average capital productivity during the period (t-l,t). However, this assumption is not as restrictive as it seems, since in a sense we may consider (2.2) an identity in which includes all factors which influence capital productivity. Thus, rather than making the a priori assumption that the elasticity of substitution between capital and other production factors is zero, we shall show below that the time trajectory of c can Incor porate both movements along the production frontier as well as shifts in this frontier.

With respect to capital accumulation, the following equation holds:

( 2 . 1)

(2 .2 )

(2.3)
where I stands for gross investment during period (t,t+l) and 6 is the rate of physical depreciation of the capital stock. We assume the f o l lowing simple investment function for capital expansion (or widening):

, (2.A)
where < 7^ is the fixed average savings rate. Clearly, this relationship takes for granted the existence of equilibrium between savings and c a p i tal increase. Assuming a given, savings behaviour, it is evident that a ^ acts as one of the driving forces or key parameters of our dynamic s y s tem.

It is now easily seen from (2.2) that if any growth rate is exx Y pressed as: g t -^t + l * ^t ^* t ' t*ie 8rowt^ rate of income (i.e., g fc) is (approximately) equal to the sum of the growth rate of capital (i.e., K € 6 t ) and the growth rate of capital productivity (i.e., g fc) :

Y K ^ f g t -g t + g t (2.5)
and that -by means of (2.3) and (2.4) -we find that 6 t ' (ai V 5) + 6 t ( 2 -6)

The latter relationship implies the obvious result that -in case of a negligible change in the production technology in period (t,t+l), i.e. f # Y g t-0 -the growth in income g t would be equal to the savings rate a times the capital coefficient (i.e. Harrod's conventional warranted growth rate) minus the rate of capital depreciation.

Since we have taken for granted period-by-period macroeconomic e q u i librium with respect to investment and savings, it follows that 

st -gt -gc -<Vt -«

(2 . 9 )

Naturally, the case of a variable propensity to save violates (2.9); this will be considered later in Annex A, where the savings rate will be regarded as a control variable in an optimal control model.

Having presented now the basic elements of a simple growth model, we will introduce in the next section in a more detailed way the causes and consequences of changes in capital productivity. Consequently, the production function has to be adjusted, as R&D invest ments will imply a growth in efficiency due to a change in the capital coefficient (see [START_REF] Baumol | Feedback Models: R&D Information, and Productivity Growth, Communication and Information E c o n o m i c s[END_REF][START_REF] Mansfield | Industrial Research and Technological I n novation[END_REF][START_REF] Nelson | Research and Productivity Growth and Productivity D i f f e r ences[END_REF]. Naturally, the limits to growth themselves may be shifting, so that Yŵ ill increase with time and, as bottlenecks are overcome, further R&D expenditure may again have a positive effect on productivity. We may therefore assume the following specification for an adjusted (i.e., time-dependent) R&D impact parameter:

This relationship is depicted in Figure 1. It is clear that an analogous result might be reached by imposing a saturation level for c^.

In our case, it is easily seen that not only would R&D expenditure plausible to assume that becomes less when output increases, which

-max {i/* (1-Yt/Y®>. 0) (3.6)

V t V 0 Y t t
Figure 1. Decreasing marginal benefits of R&D expenditures.

fo become ineffective if output expands beyond , but it may also be e x pected that congestion and other external diseconomies set in which reduce capital productivity. In a broader framework, it may also be plausible to assume that the notion of a limited system capacity also refers to increasing labour scarcity along the growth path, which would tend to lead to substitution of capital for labour in response to higher real wages. Capital accumulation would therefore proceed, resulting in an increase in capital intensity (or a reduction in capital productivity).

The previous remarks suggest that we may replace (3.1) by the following simple relationship:

A € t " »'t R t -"t Y t (^ •1 * )
in which measures the congestion etc. effects on productivity when c output exceeds Y and, thus:

--- Kt+i

-(1-5) K t + aj_ «t K t (3.8) ft+1 " £t + i02>/* max (1 'Y t/ Y t ,0)' (3.9) -/ max (Yt/Y^ -1,0)] £(; K t Y t+ 1 " et+ l K t+ 1 (3-10) Y t4l " f <Y t> (3.11)
From (3.11) it can be seen that the time-trajectory of Y^ is considered exogenous to the system under consideration. However, instead of an autonomous trajectory of Y^ (e.g., based on a fixed technological progress leading to a permanent upward shift of the system's bottlenecks), it might also be possible to relate this upward shift of Q Y t to the average change in the production efficiency parameter in p r e vious periods. The linkages between the variables in the stock-flow system are depicted graphically in Figure 2. [START_REF] Brouwer | Qualitative Structure Analysis of Complex Systems, Measuring the Unmeasurable[END_REF][START_REF] Goh | Feasibility and Stability in Randomly Assembled Lotka-Volterra Models[END_REF][START_REF] Jeffries | Stability Nolistic Ecosystem Models, Theoretical Systems Ecology[END_REF][START_REF] Parker | Environmental Periodicity and Ecosystem Stability[END_REF]Pimm, 1982).

In par-^_ ticular, if n K > 2.57, such a May-type of model may exhibit wild fluctuations [START_REF] May | Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles and Chaos[END_REF]. For further discussions on the May model in the context of chaos theory, the reader is referred to Nijkamp and Reggiani (1988b). would remain non-negative), we would expect the system to converge to

«(t) 1 £ (0 ) = c > Y ★ - -71 Kt
the zero growth state, with (c, K) -(6/<i^t o ^ Y°/6) being a node type of singular point (e.g., Gandolfo, 1980, pp. 428-459). Further e x p o s i tions on the existence of such steady state points in an optimal control framework can be found in Figure Al Figure 3 shows that growth in the system is under these conditions initially accelerating, but the growth rate of capital productivity reaches a maximum at t-25 and subsequently declines until Y^ reaches the capacity level Y^ at t-37. At this point, the growth rate of capital accumulation reaches a maximum. Beyond t-37, Y will remain above Y ^ but will converge to the latter. Consequently, capital productivity becomes constant at a rate of (n+6)/o^-0.15 and capital and output grow at a steady state rate of 1 percent.

%

Figure 3. Growth converging to a steady state.

Legend: 1 : growth in capital productivity 2 : capital growth rate 3 : income growth rate

In figure 4 all parameters are the same as in Figure 1, but /i has been increased to five times its former value. Consequently, the c o n g e s tion and other diseconomies effects are now sufficiently strong to push at times below Y^ s o that growth cycles are generated with a variable periodicity but with decreasing amplitude. The system eventually c o n verges again to a steady-state growth of 1 percent. Thus far we have focussed exclusively on the dynamic properties of an economic growth system in isolation. In the next section we shall consider the consequences of allowing for spatial interaction in the form of diffusion and adoption of new technology generated by R&D in a multiregional system. It will be shown that such a system can generate growth patterns which have no tendency to converge to a steady state, even if the parameters are chosen such that the regions in isolation would do so.

It must be emphasized that the cyclical behaviour in

1 Tin» Figure 5. Simulation with a differential equation structure.

4• A Mu]tiregional Dynamic Model

In a system of regions, technology transfers from any one region would exert an impact on the R&D efficiency of other regions (see also [START_REF] Kamien | Market Structure and Innovations[END_REF][START_REF] Brouwer | Qualitative Structure Analysis of Complex Systems, Measuring the Unmeasurable[END_REF][START_REF] Scherer | Industrial Market Structure and Economic Performance[END_REF]. Such i n terregional spill-over phenomena may be taken into account by introducing a certain spatial R&D transfer function, which incorporates spill-over effects from R&D investments in other regions upon the regional production efficiency. However, as in the single region case, the effect of R&D on productivity would depend on how close the level of production is to the capacity level at which applications of the new technology have been exhausted and bottlenecks and other constraints prevent further increases in productivity. When capital accumulation generates output beyond this capacity level, productivity declines as a result of diminishing returns, congestion and other diseconomies e f fects.

Denoting regions by an index r (r-1,2,.. ,R), the process of spatial diffusion and adoption of technology described by

R . r r i ^ ir /i V r ™ cr n\ 1 V 1 £t+l " £t + " max (1'Y t/Yt >0) a 2 Y t 1=1 -/ max ( Y ^r -1,0) Y* (4.1) r-1,2 .... R i r in which v
represents the marginal efficiency of R&D expenditure in region i when the technology is adopted by region r. It is obvious that the dynamic behaviour of the system depends crucially on the R&D d i f f u sion and adoption matrix:

11 1R v . . . 1/ N - Rl RR v . . . v (4.2)
Naturally, the model discussed in the previous section is a special case in which N is a diagonal matrix and spatial linkages are absent. Using that for r -1,2,...,R, equation (4.1) can be w r i t ten in matrix form as

1 £t+l 1 ft 1 R £t+l R £t + max ( l -e ^/ Y ^. O ) 0- 0 -0 max (1-c^K^/Y^R ,0) 1 *2 1 £t n t • R a 2 R ' t < r a a x i c ^/ Y ^-l . O ) « ^(4.4) R / R VR ^c R - 1 1 M max( t ^ K t/ Y t -1 . 0 ) * Qualitatively,
the spatial interaction between regions in system (4.4) is characterised by a positive feedback l o o p : R&D expenditure in any one region leads to higher growth in other regions, which -in turn -boost R&D expenditure in those regions, giving a further impulse to growth in the original region. Thus, given a 'pooling' model for i n t e r regional technology transfer, a new evolutionary pattern of regional growth may emerge. However, the presence of capacity constraints implies that the system can again exhibit the great many types of dynamic b e haviour of the May m o d e l .

It can be easily verified that (eT , K r ) -(({r+nr )/a.r , a Y CC/6r ) cr is, as in the single region case, a singular point, when Y grows at a rate of nr (r-1,2,...,R).

However, stability of this steady state is extremely unlikely, in p a r ticular when the system consists of a mixture of large and small regions, with varying capacity growth rates n time trajectories would be common.

In that case, explosive

These results can again be illustrated by means of simulation. We shall consider here one case-study of three regions with one 9 l a r g e 9 region (K^-2000) and two 9 small' ones (K^--500). In all other o o o respects (initial technology, savings propensities etc.) the regions are identical. The technology adoption matrix N is given by: N = 0.001 0.0005 0 0.0001 0.001 0.0001 0.0001 0.0001 0.001

Hence region 3 does not adopt technology from region 1, while region c r 2 readily adopts this technology. It is also assumed that Y q -1000 for r -1,2,3 and grows at 1 percent per period. For simulation, (4.4) was replaced by its differential equation equivalent and the Runge-Kutta method was used for integration. Figure 6 shows that under these c o n d i tions regions 1 and 2 converge to a steady-state growth process, in which capital productivity is constant and output (and capital) grows at the 'natural' rate of 1 percent. In contrast, region 3 remains behind in production efficiency until t«25, but subsequently 'overtakes' both other regions. Moreover, while there is a tendency for productivity to come close to its steady-state value, at that stage persisting cycles eme rg e.

Differences in the growth paths between the three regions suggest that even if consumption per capita would be identical initially, this would not remain so due to differences in R&D expenditure and investment between regions. This can be seen from figure 7. It has b e e n assumed that populations are such that initially consumption per capita is equal across regions. Population growth in all regions is assumed to be 1 percent per period. Consumption per capita in regions 1 and 2 settles down at steady-state values (but at a much higher level for the latter).

However, consumption per capita reaches an even higher level in region 3, but this level cannot be sustained. In terms of the trade-off between consumption and investment d i s cussed in section 1, the question arises whether region 2 w o uld be able to reach the same (or even higher) levels of welfare with solely impo r t ing new technology rather than developing such technology itself (i.e. This can be seen from Figure 8.

Comparing Figures 7 and8, several conclusions emerge. First, the absence of any R&D expenditure in region 2 has -as expected -no impact on region 1, which is the 'technology' leader which reaches the capacity constraint the fastest. Secondly, without its own R&D expenditure, region 2 takes longer to maximize consumption per capita, but its steady-state level of consumption per capita is ultimately somewhat higher. formulation may then be desirable (see [START_REF] Kendrick | Control Theory with Applications to Economics, Handbook of Mathematical Economics[END_REF], and Nijkamp and Reggiani, 1988a, 1988b). Such a constrained dynamic optimization might then in principle prevent the variety of chaotic fluctuations inherent in the nonlinear dynamics of an interdependent multiregional growth system. The formal treatment of such an optimal control model is given in Annex A, in which the assumption is made that each region tries to maximize (the net present value of) an overall welfare function b y means of a proper choice of the savings rates for both capital investments and R&D investments.

Concluding Remarks

It follows immediately from (A12) that -U ce /?t(i.e.t the discounted marginal utility at time t). From (A12) and (A13) we see that A^ -Ag/y (i.e. the discounted marginal utility at time t per unit of the r e s p o n siveness of productivity to R&D expenditure).

Following Dorfman (1969), equation (All) shows that the loss to society that would be incurred if the acquisition of a unit of capital were postponed for a short time, is equal to the sum of the c o n t r i b u tions of that unit of capital to, firstly, the present value of welfare;

secondly, the change in productivity, and, thirdly, the change in the capital stock itself. Similarly, the loss to society of postponing productivity, growth for a short time is equal to the sum of the c o n tributions of such an increment in productivity to the present value of welfare, the change in productivity itself and the effect, on capital accumulation.

In the very simple case in which U(c) -C, we find U c - Equations ( A16) and (A17) are two non-linear equations in the two variables o ^ and o^. Since both equations can be divided b y the solution is independent of the choice of a discount rate p. However, the solution would depend on the value of Y°. Hence, the values of and a 2 would tend to vary over time (see also Nijkamp and Reggiani, 1988a). In the general case, the solution to the differential equation system (A10-A15) in the variables t, K, a and *2 w o uld not appear analytically tractable. Then simulation runs would have to be made to examine the possibility of stable trajectories.

  and (3.6) into (3.1) and recalling (2.2) and (2.3), the motion in the system can be described by the following set of n o n linear difference equations:

Figure 2 .

 2 Figure 2. A representation of the simple growth model.

  in Annex A. c Moreover, simulation experiments show that when is no longer constant, but increases at a constant rate n per period, this growth rate becomes the 'natural' growth rate of the system. In this case, average capital productivity settles at a value of (n+6)/a^ and output and capital will grow at rate n, with Y being identical to Y . Starting c with Yo <Yq , the time it takes to reach the capacity constraint decreases when either the investment ratio (a^), or the R&D propensity (cTj)» or the R&D effectiveness (^*) increases, but increases when the growth rate of Yis larger. Naturally, when output exceeds the capacity of the system, productivity will decrease the faster, the stronger the conges-* tion effect /i . These results are illustrated by means of Figures3-5. Figure3is based on the assumption that K^-1000 and the capital-output ratio equals 5, so that c^-0.2 and Y^-200. The saving ratio is 20 percent, 2 percent of the capital stock becomes obsolete each period and 2 percent of i n come is spent on R&D. Hence, a,-0-0.001. Since 5o 2v -/i , the productivity response is five times as c c elastic when ^t> Y t when Y t<Y^, and of opposite sign. Clearly, the Q evolution of Y^ might in principle differ for each region.

  Figure 4. Growth cycles generated by strong external diseconomies.

  Generally, we would expect the off-diagonal elements of N to be n o n negative with larger values for transmission between contiguous rather than non-contiguous regions. This may be reflected by a is a constant and d.^ measures the distance (or cost) of diffusion of technology from i to r.

  Figure 6. Capital productivity growth in a multiregional system with technology transfers Legend: 1: region 1 2: region 2 3: region 3

  answer is, for the parameter values chosen here, affirmative.

Figure 8 .FigureFigure 10 .

 810 Figure 8. Consumption per capita in a multi-regional system with one technology-follower

  1 and Aje p t , while -e pt/v. If, in addition, we restrict ourselves to the steady-state growth path with K and Y growing at rate n, we recall that € -(n+6)/cr^. Equations (A10) and (All) now become:
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In this Annex we will analyze the implications of introducing the savings rates o ^ and o^ as control parameter in an adjusted optimal control version of the model from sections 3 and 4.

Let capital accumulation be given by: where I is gross investment and a is the rate of depreciation. The in* vestment function is again equal to: with Y being output; R&D expenditure is also proportioned to output, i.e.:

where E measures the adoption of externally generated innovations. * However, v is not constant. The closer Y -<K gets to a capacity level capital productivity can even decrease as a result of congestion and other external diseconomies effects. Ve assume here the following simple relationship:

The effect of R on capital productivity e -Y/K is given by: *

Combining ( 1) -( 5), we get the equations of motion for e and K: 

Hence, here the classical Ramsey-type optimal control problem arises in which 0^ and <72 are to be chosen such that the present value of w e l fare of the system is maximized.

Let p be the proper discount rate and U(.) an appropriate welfare function. This function is assumed quasi-concave, as usual, to ensure that the second-order conditions are fulfilled.

The optimal control problem can now be formulated as follows: The Hamiltonian related to (A8) is (see e.g. Miller (1979, p .