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Abstract8

Many microbial ecosystems can be seen as microbial ‘food chains’ where the dif-

ferent reaction steps can be seen as such: the waste products of the organisms

at a given reaction step are consumed by organisms at the next reaction step.

In the present paper we study a model of a two-step biological reaction with

feedback inhibition, which was recently presented as a reduced and simplified

version of the anaerobic digestion model ADM1 of the International Water As-

sociation (IWA). It is known that in the absence of maintenance (or decay) the

microbial ‘food chain’ is stable. In a previous study, using a purely numerical

approach and ADM1 consensus parameter values, it was shown that the model

remains stable when decay terms are added. However, the authors could not

prove in full generality that it remains true for other parameter values. In this

paper we prove that introducing decay in the model preserves stability whatever

its parameters values are and for a wide range of kinetics.

Keywords: Microbial ecosystems, Syntrophic relationship, Maintenance,9

Stability, Food chains10

2010 MSC: 34D20, 92D25, 92C4511

1. Introduction12

Two-step models are commonly used to describe microbial systems, which

take the form of a cascade of two biological reactions where one substrate S0
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is consumed by one microorganism X0 to produce a product S1 that serves as

the main limiting substrate for a second microorganism X1 as schematically

represented by the following reaction scheme:

S0
f0
−→ X0 + S1, S1

f1
−→ X1

where f0 and f1 are the nutrient uptake functions that may depend on several13

substrates. The substrate and biomass concentrations in this two-step model14

evolve according to the four-dimensional dynamical system of ODEs15











































dS0

dt
= D

(

Sin0 − S0

)

− f0 (·)X0

dX0

dt
= −αDX0 + Y0f0 (·)X0 − a0X0

dS1

dt
= D

(

Sin1 − S1

)

+ β(1− Y0)f0 (·)X0 − f1 (·)X1

dX1

dt
= −αDX1 + Y1f1 (·)X1 − a1X1

(1)16

where Y0 ≤ 1 and Y1 ≤ 1 are yield coefficients and β ≤ 1 denotes an appropriate17

constant. More precisely the terms Y0f0 (·)X0 and Y1f1 (·)X1 in the second and18

fourth equations are the flux towards the biomasses X0 and X1 respectively.19

The terms (1 − Y0)f0 (·)X0 and (1 − Y1)f1 (·)X1 represent the flux towards20

other products that may or not be included in the model according to their21

interactions with the dynamical variables. For instance, in the third equation,22

β(1 − Y0)f0 (·)X0 is the part which goes to substrate S1 and the rest goes to23

other products which are left out in our model. Here, it is assumed that the units24

of the state variable are well chosen. Mathematically we can perform a rescaling25

of the variables, that is to say we change the units of the state variables, such26

that the constant parameters Y0, Y1 and Y2 = β(1 − Y0) are fixed to 1, see (8)27

and model (9) below. For a typical example, see model (21) in Section 6.28

Substrate S0 and S1 are introduced with an input concentration Sin0 and29

Sin1 respectively, and at dilution rate D. Depending on the technology used30

to confine the reactions, the coefficient α ≤ 1 is not necessarily equal to 1 and31

1−α represents the proportion of biomass which is retained in the reactor. This32

model includes the maintenance (or decay) terms a0 and a1. Maintenance, in33
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its most general assertion, is the consumption of energy for all processes other34

than growth: it is modelled either by adding a negative term on the substrate35

dynamic without associating it to growth or by considering a decay term on36

the biomass dynamics, as in (1). For more information about the modelling of37

maintenance, the reader is referred to [16]. These models present the advantage38

of being complex enough to capture important process properties while being39

simple enough to be mathematically studied.40

When the growth function f0 depends only on the substrate S0 and the41

growth function f1 depends only on the substrate S1, that is42

f0(·) = f0(S0), f1(·) = f1(S1), (2)43

the system is known as commensalistic: one species grows on the product of44

another one [18, 22]. The system has a cascade structure: solve the first and45

second equations for S0, X0, and then use this result is the remaining equations46

to find S1, X1. Consequently S0 and X0 are the same in pure and mixed culture47

experiments. The number of steady-states and their stability as a function of48

model inputs and parameters may be investigated [4, 5, 21].49

When f0 depends on both substrates S0 and S1 and f1 depends only on S1,50

that is51

f0(·) = f0(S0, S1), f1(·) = f1(S1) (3)52

the system is known as syntrophic. For instance if the first organism is inhibited53

by high concentrations of the product S1, the extent to which the substrate S054

is degraded by the organism X0 depends on the efficiency of the removal of the55

product S1 by the bacteria X1. The mathematical analysis of such model is56

more delicate than commensalistic models, see for instance [8, 14, 15, 30] and57

the more recent papers [10, 11, 19, 26, 31].58

A model of a two-tiered microbial ‘food chain’ with feedback inhibition,59

which encapsulates the essence of the anaerobic digestion process was recently60

proposed [31]. Anaerobic digestion is a biological process that converts organic61

matter into a gaseous mixture composed mainly of methane and carbon diox-62

ide through the action of a complex bacterial and archaeal ecosystem. It is63
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often used for the treatment of concentrated wastewaters or to convert the ex-64

cess sludge produced in wastewater treatment plants into more stable products65

[17, 23]. One of its advantages is that the methane produced can be used prof-66

itably as a source of energy. It is usually considered that a number of metabolic67

groups of microorganisms are involved sequentially in several serial and parallel68

conversion steps to finally produce methane and carbon dioxide. The Anaero-69

bic Digestion Model No. 1 (ADM1) of the IWA Task Group for Mathematical70

Modelling of Anaerobic Digestion Processes [3, 12] is too complex to permit71

mathematical analysis of its nonlinear dynamics and only numerical investiga-72

tions are available [7].73

The model of Xu et al. [31] includes maintenance terms and considers the74

syntrophic associations between propionate degraders and methanogens. The75

authors did not show that the non-trivial steady-state is necessarily stable. In76

addition, simulation results, with the ADM1 consensus values, indicate that the77

positive steady-state is always stable whenever it exists. For the operators of78

anaerobic wastewater treatment systems the results of Xu et al. [31] show that79

the syntrophic associations between propionate degraders and methanogens are80

inherently stable under realistic environmental conditions. However, the possi-81

bility of an unstable positive steady-state was not excluded for other parameter82

values and the title of [31], Maintenance affects the stability of a two-tiered mi-83

crobial ‘food chain’? left unanswered the question of the effects of maintenance84

from a more general viewpoint. In the present paper, we show that for any val-85

ues of the parameters the positive steady-state is stable as long as it exists, that86

is to say, maintenance does not affect the stability of the considered two-tiered87

microbial ‘food chain’, see [20].88

The paper is organized as follows. In Section 2, we review the different two-89

step models that have been proposed in the literature and we recall what useful90

informations were obtained for applications from their qualitative mathematical91

analysis. In Section 3 we present the hypothesis on (1,3). In Section 4 we give92

the description of the steady-state and their stability. In Section 5 we describe93

the operating diagram. In Section 6 we apply our results to the model of Xu et94
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al. [31] and we give an answer to open questions on the stability of the positive95

steady-state of their model. Concluding remarks are given in Section 7. The96

technical proofs of the results are given in the Appendix.97

2. Commensalism, mutualism and syntrophy98

The different analyses of the class of models (1) available in the literature99

essentially differ on the way the growth rate functions are characterized and100

whether a specific input for S1 or a coefficient α in the dilution rate of the101

biomass is considered or not. In most cases, the models used are not generic102

in the sense either model parameters are fixed or the growth functions are pre-103

defined (Monod, Haldane, etc). For details and informations on the various104

models considered in the existing literature the reader can consult Table 2E105

and Table 3 in the review paper [27]. Here we give a short review of the main106

results which are related to our work.107

Following Stephanopoulos [22] we say that ‘Two populations of microorgan-108

isms which grow in a mixed culture and interact in such a way that one popula-109

tion (the commensal population) depends for its growth on the other population110

and thus benefits from the interaction while the other population (the host) is111

not affected by the growth of the commensal population constitutes an example112

of commensalism’. Reilly [18] was the first to propose a mathematical study of a113

pure commensalistic model (1,2), with a0 = a1 = 0 and α = 1. He was interested114

in explaining surprising oscillations observed within the course of an experiment115

realized in making Saccharomyces carlsbergensis growing on fructose produced116

by Acetobacter suboxyduns from mannitol. In particular, he established theo-117

retical conditions involving a feedback from the yeast to the bacteria. In this118

study, explicit growth functions modelling the proposed feedback were used.119

An important contribution on the modelling of anaerobic digestion as a120

commensalistic system is the model by Bernard et al. [5]. The authors considered121

a Monod function for f0 and a Haldane function for f1. Sbarciog et al. [21]122

studied this model for α = 1 while the interesting case where 0 < α < 1 and123
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where growth functions were characterized by qualitative properties was studied124

by Benyahia et al. [4]. Prior to these investigations, and regarding the potential125

of anaerobic systems to produce renewable energy, the study of these models126

were particularly important for optimizing anaerobic digestion, notably through127

the synthesis of state observers and control feedback laws (cf. for instance [1, 2]).128

Another fundamental ecological interactions which can be modelled by two-129

step reaction models with two microorganisms are mutualism and syntrophy.130

Mutualism is defined as a situation where two organisms cooperate typically in131

producing mutually the substrate necessary to the growth of the other [9]. A132

syntrophic relationship between two organisms refers to growth functions of the133

form (3) where the species exhibit mutualism but where, in contrast to what134

happens in a purely symbiotic relationship, one of the species can grow without135

the other. Important results of these studies were conditions under which a136

stable coexistence may occur. Wilkinson et al. [30] studied the interactions in137

a mixed bacterial population growing on methane. They considered the case of138

growth functions of the form139

f0(S0, S1) =
m0S0

K0 + S0

1

1 + S1/L1
, f1(S1) =

m1S1

K1 + S1
(4)140

where S0 and S1 are the dissolved oxygen and methanol concentrations re-141

spectively. The parameters mi and Ki, i = 1, 2, are the classical Monod (or142

Michaelis-Menten) constants and L1 is the methanol inhibition constant [see143

30, Formulas (1) and (2) and Table V].144

Kreikenbohm and Bohl [14] considered the case where f1 is a Monod function145

and the growth function f0 takes the form146

f0(S0, S1) =







m0(S0−S1/L)
K0+S0+K1S1

if S0 − S1/L > 0

0 otherwise
(5)147

In this case,m0 andK0 are the classical Michaelis-Menten constants andK1 acts148

as an inhibition constant related to the negative influence of the substrate S1 on149

its own production. Moreover, the first organism is unable to grow unless the150

quotient S1/S0 is small enough, say, S1 < LS0, where L denotes an appropriate151

constant [see 14, Formulas (6a) and (7)].152
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Burchard [8] extended the results of [14, 30] to a large class of more generic153

growth functions, including the special cases (4) and (5). He highlighted condi-154

tions under which there is persistence or extinction. El Hajji et al. [10], moti-155

vated by the analysis of the main studied steps of the anaerobic digestion where156

H2-producing acetogens are associated to H2-utilizing bacteria, considered the157

general case where the growth functions (3), satisfy the following properties:158

∂f0
∂S0

> 0,
∂f0
∂S1

< 0,
df1
dS1

> 0 (6)159

Another extension was considered by Kreikenbohm and Bohl [15], which

considered the case where S0 appears also in f1(·):

f1(S0, S1) =
m1S1

K1 + S1

1

1 + S0/L0

Here, m1 and K1 are Michaelis-Menten-type constants, and L0 is an inhibition160

constant which represents the negative effect of S0 on the growth of x1. The161

mathematical analysis of this model showed the occurrence of bistability that162

cannot be observed when f1(·) depends only on S0. Sari et al. [19] considered163

the general situation of a growth function f1(·) = f1(S0, S1), which is increasing164

in S1 and decreasing in S0 and showed, in contrast with the case where f1(·) =165

f1(S1) depends only on S1, that a multiplicity of positive equilibria can occur.166

This work was motivated by the study of the influence of the presence of an input167

term into the dynamics of S1 again and by the consideration of more general168

forms for growth rate functions to investigate the association of H2-producing169

acetogens and H2-utilizing bacteria. Other models for which f0(·) = f0(S0, S1)170

and f1(·) = f1(S0, S1), exhibiting the multiplicity of positive equilibria can be171

found in [26].172

All these studies do not include maintenance terms. This short review of the173

existing literature shows that under conditions like (6) and without maintenance174

terms (a0 = a1 = 0), the positive steady-state is unique and stable, if its exists175

[8, 10, 14, 30]. On the other hand as soon as f1(·) = f1(S0, S1) may depend on176

S0 then instability of the positive steady-state can occur [15, 19, 26].177

To the best of our knowledge, Xu et al. [31] were the first to consider the178
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effects of maintenance terms in (1,3), in the particular case of the growth func-179

tions (4), and Sin1 = 0, α = 1. As mentioned in the introduction these authors180

were not able to show that the positive steady-state is stable if it exists. In181

the present paper we will consider the general case (1,3) where growth func-182

tions satisfy (6) and with maintenance terms (a0 > 0, a1 > 0) and Sin1 = 0,183

α = 1. We will prove that the positive steady-state is stable whenever it exists.184

Therefore, in this paper we generalize [31] by allowing a larger class of growth185

functions, we generalize [30] by allowing a larger class of growth functions and186

maintenance terms, and we generalize [10] by allowing maintenance terms. For187

the applications our results show that the syntrophic associations between pro-188

pionate degraders and methanogens are inherently stable for a wide range of189

kinetics and whatever the parameters values are, not only for the kinetics (4)190

and with the ADM1 consensus values of parameters as shown in [31].191

An important and interesting extension should be mentioned here: Weeder-192

mann et al. [28] proposed an 8-dimensional mathematical model, which includes193

syntrophy and inhibition, both mechanisms considered by Bernard et al. [5] and194

by El Hajji et al. [10]. The effects of maintenance terms are considered by195

Weedermann et al. [29].196

3. The model197

In this paper, we study the model (1,3) with α = 1 and Sin1 = 0. We use198

the notation Y2 = β(1− Y0). We obtain the following system199











































dS0

dt
= D

(

Sin0 − S0

)

− f0 (S0, S1)X0

dX0

dt
= −DX0 + Y0f0 (S0, S1)X0 − a0X0

dS1

dt
= −DS1 + Y2f0 (S0, S1)X0 − f1 (S1)X1

dX1

dt
= −DX1 + Y1f1 (S1)X1 − a1X1

(7)200

Notice that we do not assume any specific analytical expression for the growth201

and inhibition functions. Our analysis will use only the following general as-202

sumptions for the growth functions f0 (S0, S1) and f1 (S1) :203
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A1 For all S0 > 0 and S1 ≥ 0, f0 (S0, S1) > 0 and f0 (0, S1) = 0.204

A2 For all S1 > 0, f1 (S1) > 0 and f1(0) = 0.205

A3 For all S0 > 0 and S1 > 0,
∂f0
∂S0

(S0, S1) > 0 and
∂f0
∂S1

(S0, S1) < 0.206

A4 For all S1 > 0,
df1
dS1

(S1) > 0.207

Hypothesis A1 signifies that no growth can take place for species X0 without208

the substrate S0. Hypothesis A1 means that the intermediate product S1 is209

necessary for the growth of species X1. Hypothesis A3 means that the growth210

rate of species X0 increases with the substrate S0 but it is self-inhibited by the211

intermediate product S1. Hypothesis A4 means that the growth of species X1212

increases with intermediate product S1 produced by species X0. Note that this213

defines a syntrophic relationship between the two species.214

To ease the mathematical analysis of the system, we can rescale system (7)215

using the following change of variables adapted from [19]:216

s0 = Y2S0, x0 =
Y2
Y0
X0, s1 = S1, x1 =

1

Y1
X1, (8)217

We obtain the following system218











































ds0
dt

= D(sin0 − s0)− µ0(s0, s1)x0

dx0
dt

= −Dx0 + µ0(s0, s1)x0 − a0x0

ds1
dt

= −Ds1 + µ0(s0, s1)x0 − µ1(s1)x1

dx1
dt

= −Dx1 + µ1(s1)x1 − a1x1

(9)219

where sin0 = Y2S
in
0 and µ0 and µ1 are defined by220

µ0(s0, s1) = Y0f0

(

1

Y2
s0, s1

)

and µ1(s2) = Y1f1(s1) (10)221

The functions µ0 and µ1 are general functions with their own properties. Since222

the functions f0 and f1 satisfy hypotheses A1–A4, it follows from (10) that223

functions µ0 and µ1 satisfy:224

H1 For all s0 > 0 and s1 ≥ 0, µ0 (s0, s1) > 0 and µ0 (0, s1) = 0.225
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H2 For all s1 > 0, µ1 (S1) > 0 and µ1(0) = 0.226

H3 For all s0 > 0 and s1 > 0,
∂µ0

∂s0
(s0, s1) > 0 and

∂µ0

∂s1
(s0, s1) < 0.227

H4 For all s1 > 0,
dµ1

ds1
(s1) > 0.228

It should be noticed that (9) was studied in [10, 19] in the case where main-229

tenance effects are not taken into account, i.e. a0 = a1 = 0. We can easily230

prove that that for every non-negative initial condition, the solution of (9) has231

non-negative components and is positively bounded and thus is defined for every232

positive t.233

4. Steady-state and stability analysis234

A steady-state of (9) is a solution of the following nonlinear algebraic system235

obtained from (9) by setting the right-hand sides equal to zero:236

D(sin0 − s0)− µ0(s0, s1)x0 = 0 (11)

−Dx0 + µ0(s0, s1)x0 − a0x0 = 0 (12)

−Ds1 + µ0(s0, s1)x0 − µ1(s1)x1 = 0 (13)

−Dx1 + µ1(s1)x1 − a1x1 = 0 (14)

A steady-state exists (or is said to be ‘meaningful’ [31]) if and only if all its237

components are non-negative. From equation (12) we deduce that:238

x0 = 0 or µ0(s0, s1) = D + a0 (15)239

and from equation (14) we deduce that:240

x1 = 0 or µ1(s1) = D + a1 (16)241

The case x0 = 0 and x1 > 0 is excluded. Indeed, as a consequence of (16), we242

have µ1(s1) = D+a1 and, as a consequence of (13), we have Ds1+(D+a1)x1 =243

0, which is impossible since s1 ≥ 0 and x1 > 0. Therefore, three cases must be244

distinguished:245
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Steady-state Existence condition Stability condition

SS0 Always exists sin0 < F0(D)

SS1 sin0 > F0(D) sin0 < F1(D)

SS2 sin0 > F1(D) Always Stable

Table 1: Existence and local stability of steady-states.

SS0: x0 = 0, x1 = 0 where both species are washed out.246

SS1: x0 > 0, x1 = 0, where species x1 is washed out while x0 survives.247

SS2: x0 > 0, x1 > 0, where both species survive.248

For the description of the steady-states and their stability, we need the fol-249

lowing notations. Since the function s1 7→ µ1(s1) is increasing, it has an inverse250

function y 7→M1(y), so that, for all s1 ≥ 0 and y ∈ [0, supµ1(·))251

s1 =M1(y) ⇐⇒ y = µ1(s1) (17)252

Let s1 be fixed. Since the function s0 7→ µ0(s0, s1) is increasing, it has an inverse253

function y 7→M0(y, s1), so that, for all s0, s1 ≥ 0, and y ∈ [0, supµ0(·, s1))254

s0 =M0(y, s1) ⇐⇒ y = µ0(s0, s1) (18)255

The inverse functions s1 = M1(y) and s0 = M0(y, s1) can be calculated explic-256

itly in the case of the Monod growth functions (23) considered in Section 6, see257

formulas (25,(26)). We define the functions:258

F0 (D) = M0(D + a0, 0)

F1(D) = M1(D + a1) +M0 (D + a0,M1(D + a1))
(19)259

Notice that F1(D) > F0(D) for all D ≥ 0, as long as they are both defined with260

the exception F1(0) = F0(0), which holds if and only if a0 = a1 = 0. Now, we261

can describe the steady-states of (9).262

Proposition 1. Assume that assumptions H1–H4 hold. Then (9) has at most263

three steady-states:264

• SS0=
(

s0 = sin0 , x0 = 0, s1 = 0, x1 = 0
)

265

It always exists. It is stable if and only if sin0 < F0(D).266
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• SS1=
(

s0, x0 = D
D+a0

(

sin0 − s0
)

, s1 = sin0 − s0, x1 = 0
)

267

where s0 is the solution of equation µ0(s0, s
in
0 − s0) = D + a. It exists if268

and only if sin0 > F0(D). It is stable if and only if sin0 < F1(D).269

• SS2=
(

s0, x0 = D
D+a0

(

sin0 − s0
)

, s1, x1 = D
D+a1

(

sin0 − s0 − s1
)

)

270

where s1 = M1(D + a1) and s0 = M0 (D + a0,M1(D + a1)). It exists if271

and only if sin0 > F1(D). It is stable if it exists.272

The proof is given in the Appendix.273

Notice that SS1 exists as soon as SS0 becomes unstable and SS2 exists274

as soon as SS1 becomes unstable. One concludes that for any value of the275

operating parameters, there is always one, and only one, steady-state which is276

stable. The results are summarized in Table 1. When decay effects are not taken277

into account, i.e. a0 = a1 = 0, the system can be reduced to a planar system278

and global stability results can be obtained [10, 19]: for any pair of operating279

parameters, there is always one, and only one, steady-state which is globally280

asymptotically stable.281

(a) (b)sin0 sin0

D D

J1

J0

J2

Γ0

Γ1

u0 u1

J2

J1

J0

Γ0

Γ1

Figure 1: Operating diagram without (a) and with (b) maintenance effects. The values u0

and u1 are defined by (20)

5. Operating diagram282

The operating diagram shows how the system behaves when we vary the two283

control parameters Sin0 and D. Let F0(D) and F1(D) be the functions defined284
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Condition Region SS0 SS1 SS2

sin0 < F0(D) (sin0 , D) ∈ J0 S

F0(D) < sin0 < F1(D) (sin0 , D) ∈ J1 U S

F1(D) < sin0 (sin0 , D) ∈ J2 U U S

Table 2: Existence and local stability of steady-states. The letter S (resp. U) means stable

(resp. unstable). No letter means that the steady-state does not exist.

by (19). The curve Γ0 of equation sin0 = F0(D) is the border which makes SS0285

unstable and at the same time SS1 exists (the dashed curve in Fig. 1). The286

curve Γ1 of equation sin0 = F1(D) is the border which makes SS1 unstable and287

at the same time SS2 exists (the solid curve in Fig. 1).288

The curves Γ0 and Γ1 separate the operating plane (sin0 , D) in three regions,289

as shown in Fig. 1, labelled J0, J1 and J2. The results of Prop. 1 are sum-290

marized in Table 2 which shows the existence and stability of the steady-states291

SS0, SS1 and SS2 in the regions J0, J1 and J2 of the operating diagram.292

The values u0 and u1 plotted on the figure are obtained as follows:293

u0 = F0(0) =M0(a0, 0), u1 = F1(0) =M1(a1) +M0 (a0,M1(a1)) , (20)294

If a0 ≥ sups0>0 µ0(s0, 0), F0(0) is not defined and we let u0 = +∞. In this case

the regions J1 and J2 are empty. If a1 < sups1>0 µ1(s1) or a0 ≥ sups0>0 µ0(s0−

M1(a1),M1(a1)), F1(0) is not defined and we let u1 = +∞. In this case the

region J2 is empty. When maintenance effects are not taken into consideration,

then u0 = u1 = 0 and we have

F0(D) =M0(D, 0), F1(D) =M1(D) +M0 (D,M1(D))

6. A two-tiered microbial ‘food chain’295

The model considered in [31] involves a two-tiered microbial ‘food chain’ with296

feedback inhibition, consisting of a propionate degrader and a hydrogenotrophic297
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methanogen. The propionate degrader produces hydrogen which inhibits its own298

growth. Using the notations of ADM1 the model can be written as299











































dSpro
dt

= D (Spro,in − Spro)− f0 (Spro, SH2
)Xpro

dXpro

dt
= −DXpro + Yprof0 (Spro, SH2

)Xpro − kdec,proXpro

dSH2

dt
= −DSH2

+ β (1− Ypro) f0 (Spro, SH2
)Xpro − f1 (SH2

)XH2

dXH2

dt
= −DXH2

+ YH2
f1 (SH2

)XH2
− kdec,H2

XH2

(21)300

where Spro and Xpro are propionate substrate and biomass concentrations; SH2
301

and XH2
are those for hydrogen; Ypro and YH2

are yield coefficients and β = 0.43302

represents the part which goes to hydrogen substrate. The rest (1− β = 0.57)303

goes to acetate which is left out in the model. Both growth functions take304

Monod form with an hydrogen inhibition for the first one305

f0 (Spro, SH2
) =

km,proSpro
Ks,pro + Spro

1

1 +
SH2

KI,H2

, f1 (SH2
) =

km,H2
SH2

Ks,H2
+ SH2

(22)306

Here, apart from the two operating (or control) parameters, which are the in-307

flowing propionate concentration Spro,in and the dilution rate D, that can vary,308

all others have biological meaning and are fixed depending on the organisms and309

substrate considered [see 31, Table 1]. The aim of Xu et al. [31] was to study310

the stability of the steady-states of the model (21,22) while varying the two op-311

erating (or control) parameters D and Spro,in. The system (21,22) can have at312

most three steady-states: a trivial solution where both populations are washed313

out (SS0), a solution where XH2
is washed out while Xpro survives (SS1) and314

a positive solution where both populations survive (SS2). The local stability of315

each steady-state was tested by linearisation around the steady-state values of316

the variables.317

The basic results of the analysis of [31] are: for any pair of values of operating318

parameters, at most one steady-state is stable. When one of the decay terms is319

not taken into account, i.e. kdec,pro = 0 or kdec,H2
= 0 in (21), there is always320

one and only one steady-state which is stable and SS2 is stable as long as it321

exists. When both decay effects are present, i.e. kdec,pro > 0 and kdec,H2
> 0322
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in (21), the authors were not able to check all the Routh-Hurwitz criteria for323

SS2. They claimed that SS2 is not necessarily stable in theory when it exists324

and they established numerically that with the ADM1 parameters values, SS2325

is stable as long as it exists. However they did not give any values for the326

biological parameters for which, under some operating parameters, SS2 becomes327

unstable. As a consequence of Proposition 1, we can say that, for all values of328

the parameters, SS2 is stable whenever it exits, which actually gives an answer329

to the questions asked by [31] in their paper.330

More precisely, using the following simplified notations in (21)

S0 = Spro, Sin0 = Spro,in, S1 = SH2
, X0 = Xpro, X1 = XH2

Y0 = Ypro, Y1 = YH2
, Y2 = 0.43 (1− Ypro) , a0 = kdec,pro, a1 = kdec,H2

and using the rescaling (10) and the biological parameters in (22) we obtain the331

model (9) with the following growth function:332

µ0 (s0, s1) =
m0s0
K0 + s0

1

1 + s1/Ki
, µ1 (s1) =

m1s1
K1 + s1

(23)333

where334

m0 = Y0km,pro, K0 = Y2Ks,pro, Ki = KI,H2

m1 = Y1km,H2
, K1 = Ks,H2

(24)335

Let us describe our results in the particular case (9,23). Notice that the growth336

functions (23) satisfy Assumptions H1–H4, so that Proposition 1 holds. In this337

case the inverse functions M1(y) and y 7→M0(y, s1) of the functions µ1(s1) and338

s0 7→ µ0(s0, s1) can be calculated explicitly: we have339

y ∈ [0,m1) 7→M1(y) =
K1y

m1 − y
, (25)340

y ∈

[

0,
m1

1 + s1/Ki

)

7→M0(y, s1) =
K0y
m0

1+s1/Ki
− y

(26)341

Therefore, the functions F1(D) and F2(D) defined by (19) are given explicitly342
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by343

F0(D) =
K0(D + a0)

m1 −D − a0

F1(D) =
K1(D + a1)

m1 −D − a1
+

K0(D + a0)
m0

1 + K1(D+a1)
(m1−D−a1)Ki

−D − a0

(27)344

Notice that F0 is defined on [0,m1−a0) and F1 is defined on [0, D+) with D+ <345

m1−a0. On the other hand, the solution s0 of equation µ0(s0, s
in
0 −s0) = D+a0,346

which is used in SS1, is simply the positive solution of the quadratic equation:347

m0s0 = (D + a0)(K0 + s0)

(

1 +
sin0 − s0
Ki

)

(28)348

As a corollary of Proposition 1 we have the following result.349

Proposition 2. Assume that µ0 and µ1 are given by (23). Let F0(D) and350

F1(D) be defined by (27). Then (9) has at most three steady-states351

• SS0=
(

s0 = sin0 , x0 = 0, s1 = 0, x1 = 0
)

352

It always exists. It is stable if and only if sin0 < F0(D).353

• SS1=
(

s0, x0 = D
D+a0

(

sin0 − s0
)

, s1 = sin0 − s0, x1 = 0
)

354

where s0 is the positive solution of the quadratic equation (28). It exists355

if and only if sin0 > F0(D). If it exists then it is stable if and only if356

sin0 < F1(D).357

• SS2=
(

s0, x0 = D
D+a0

(

sin0 − s0
)

, s1, x1 = D
D+a1

(

sin0 − s0 − s1
)

)

where

s1 =
K1(D + a1)

m1 −D − a1
, s0 =

K0(D + a0)
m0

1 + s1
Ki

−D − a0

It exists if and only if sin0 > F1(D). It is stable if it exists.358

As a consequence of this result we obtain the results of [31], where the stabil-359

ity of SS2 was proved only for a particular set of parameter values. To make the360

comparison possible the reader is advised on the main difference between our361

approach and [31]: we use the rescaling (10) and hence work with the growth362
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functions (23), while Xu et al. [31] use a dimensionless rescaling. Despite this363

difference, both approaches are equivalent and hence must give the same re-364

sults. Our quadratic equation (28) used in the description of SS1 is the same365

as their quadratic equation (A.1), or the quadratic equation without numbering366

preceding equation (B.1) [see 31, Appendix A and B].367

Parameters Units Nominal Value

m0 d−1 0.52

K0 kgCOD/m3 0.124

m1 d−1 2.10

K1 kgCOD/m3 2.5 10−5

Ki kgCOD/m3 3.5 10−6

a0 d−1 0.02

a1 d−1 0.02

Table 3: Nominal parameters values.

(a) (b)sin0 sin0

D D

J1

J0

J2

Γ0

Γ1

J2

J1

J0
Γ0

Γ1

u0 u1

Figure 2: Operating diagram of the model (9)-(23). (a) The model was parametrised with

the ADM1 consensus values listed in Table 3. (b) A magnification showing the values u0 =

4.96 10−3, u1 = 5.31 10−3 defined by (20).

For the numerical simulations we will use the nominal values of Table 3368

obtained from Table 1 of [31] by using the formulas (24) and a0 = kdec,pro,369

a1 = kdec,H2
. For these values of the parameters, the values u0 and u1 are very370

small, see Fig. 2. Notice that the scaling on the two coordinates in Fig. 2 are371
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different from those of Fig. 2 of [31], since these authors used another rescaling.372

7. Discussion373

Following [31], we considered a two-tiered ‘food chain’ with feedback inhi-374

bition, which is a generalized model describing the syntrophic interaction of375

a propionate degrader and a hydrogenotropic methanogen. In the absence of376

maintenance these authors proved that this two-tiered ‘food chain’ is always sta-377

ble. When maintenance is included in the model they were not able to check the378

Routh-Hurwitz criteria, and since the possibility of having at least one pair of379

complex eigenvalues with positive real parts is not theoretically excluded, they380

concluded that Hopf bifurcation can originate from SS2 [see 31, Appendix B].381

However, using the consensus parameters of ADM1 and numerical simulations,382

they have shown that the model of the methanogenic two-tiered propionate-383

hydrogen food chain is always stable [see 31, Section 6.2]. In this work we have384

generalized the model of the two-tiered ‘food chain’ of [31] by considering generic385

growth functions and we established the stability of the generalized model with386

maintenance terms.387

In [31], the authors point out that introducing decay or maintenance in388

the classical predator-prey models results in instability and chaos [13]. For389

more details on food-chains in the chemostat the reader may consult [6, 24, 25].390

Therefore, they observed that, in spite of the fundamental differences between391

their ‘food chain’ and the classical predator-prey models, the same intrinsic392

effect of maintenance on the stability of the food chain is observed [see 31,393

Section 7]: When maintenance is included in its description, the two-tiered394

generalized ‘food chain’ is not necessarily stable in theory. The results obtained395

in the present paper indicate that the two-tiered generalized ‘food chain’ is396

always stable, so that it is fundamentally different from the classical predator-397

prey model.398

It should be noticed that the rescaling used by [31] gives a dimensionless399

model. However, our present rescaling (10) does not give a dimensionless model.400
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The new variables s0, x0, s1 and x1 have the same dimensions as the original401

variables S0, X0, S1 and X1. The original growth functions (22) are trans-402

formed by our rescaling (10) in the growth functions (23) with the same scale403

imbalance in the half-saturation rates, see Table 3. We cannot benefit from the404

dimensionless rescaling used by Xu et al. [31], because this rescaling uses some405

kinetics parameters of the specific growth functions (22) while we work with406

general unspecified growth functions. The benefit of our rescaling (10) is that407

it permits to fix the constant yields parameters Y0, Y1 and Y2 in (7) to 1, as408

shown by the rescaled model (9).409

We were successful in checking the Routh-Hurwitz criteria because we work410

with general growth functions (defined by their qualitative properties given in411

assumptions A1–A4) and our computations are not encumbered by the specific412

form of the growth functions considered by Xu et al. [31]. These authors noticed413

[see 31, Section 7] that direct application of symbolic analysis programs, such414

as Maple or Mathematica, did not provide adequate solutions for the stability415

of the system. Actually we used the symbolic analysis program Maple to verify416

that the coefficients βi in the expression of the term f1f2f3 − f21 f4 − f23 given417

in Appendix D are correct. It should be noticed that [31] have claimed [see 31,418

Remark 1] that their method is still effective for other growth functions. Our419

main contribution was to believe them and to try to solve the problem with420

general growth functions.421

In the model (7) considered in this work, the first species X0 uses the sub-422

strate S0 for its growth and produces a substrate S1 consumed by the second423

species X1 for its growth. The substrate S1 produced by the first species in-424

hibits its own growth, that is, the growth function f0(S0, S1) is decreasing with425

respect to S1. In practice, and in many complex models as the ADM1, it hap-426

pens that the second species is also inhibited by the first substrate. Thus, it427

is interesting to consider the case where the second species is inhibited by the428

substrate S0, namely that f1(S0, S1) also depends on S0 and is decreasing with429

respect to S0. It has been shown by Sari et al. [19] that the introduction of this430

last inhibiting relationship in the model completely changes the model proper-431
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ties while maintenance was not considered. In particular, the modified model432

exhibits multiplicity of positive steady-states. However, it should be stressed433

that these results were very general: whether this instability occurs for realistic434

environmental conditions or not is under investigation.435

Another interesting question, which is the object of a future work, is to436

consider an input term Sin1 in (7), as well as a coefficient α < 1 in the dilution437

rate of the biomass, as it was the case in the general setting of (1). For instance438

if Sin1 > 0 then there exists an additional steady-state where X0 = 0 is washed439

out and X1 > 0 does not go to extinction.440

Appendix A. Stability analysis441

We give the proof of Prop. 1. A steady-state (s0, x0, s1, x1) of (9) is a solution442

of the set of algebraic equations (11-14). The local stability of each steady-state443

depends on the sign of the real parts of the eigenvalues of the corresponding444

Jacobian matrix for the system (9). This is the matrix of the partial derivatives445

of the right hand side with respect to the state variables evaluated at the given446

steady-state (s0, x0, s1, x1), that is:447

J =

















−D − Ex0 −µ0 Fx0 0

Ex0 µ0 −D − a0 −Fx0 0

Ex0 µ0 −D − Fx0 −Gx1 −µ1

0 0 Gx1 µ1 −D − a1

















(A.1)448

where

E =
∂µ0

∂s0
(s0, s1) > 0, F = −

∂µ0

∂s1
(s0, s1) > 0, G =

dµ1

ds1
(s1) > 0

The eigenvalues of J are the roots of its characteristic polynomial det(J − λI).449

Notice that we have used the opposite sign for the partial derivative F =450

−∂µ0

∂s1
(s0, s1), so that all constants involved in the computations become posi-451

tive, which will simplify the analysis of the characteristic polynomial of J .452
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Appendix B. SS0453

At SS0, x0 = 0, x1 = 0. As a result of (11) and (13), s0 = sin0 and s1 = 0.

SS0 always exists. Evaluated at SS0, the Jacobian matrix (A.1) becomes

J =

















−D −µ0(s
in
0 , 0) 0 0

0 µ0(s
in
0 , 0)−D − a0 0 0

0 µ0(s
in
0 , 0) −D 0

0 0 0 −D − a1

















Its eigenvalues are λ1 = µ0(s
in
0 , 0)−D− a0, λ2 = −D− a1 and λ3 = λ4 = −D.454

For being stable we need λ1 < 0. Therefore SS0 is unstable if and only if455

µ0(s
in
0 , 0) > D + a0 (B.1)456

Since the function s0 7→ µ0(s0, 0) is increasing, and using (18) we have the

following equivalence

µ0(s
in
0 , 0) > D + a0 ⇐⇒ sin0 > M0(D + a0, 0)

Therefore, according to (19), (B.1) is equivalent to sin0 > F0(D).457

Appendix C. SS1458

At SS1, x0 6= 0, x1 = 0. As a consequence of (15) µ0(s0, s1) = D + a0. As a

result of (11) and (13)

D(sin0 − s0) = µ0(s0, s1)x0 and Ds1 = µ0(s0, s1)x0

Hence x0 = D
D+a0

(

sin0 − s0
)

and D(sin0 − s0) = Ds1, so that s0 + s1 = sin0 .459

Therefore s0 is a solution of equation460

µ0(s0, s
in
0 − s0) = D + a0 (C.1)461

SS1 exists if and only if this equation has a solution in the interval (0, sin0 ).

The function s0 7→ ψ(s0) = µ0(s0, s
in
0 − s0) is increasing since its derivative

dψ
ds0

= ∂µ0

∂s0
− ∂µ0

∂s1
> is positive. Using ψ(0) = 0 and ψ(sin0 ) = µ(sin0 , 0) we
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conclude that equation (C.1) has a solution in the interval (0, sin0 ) if and only if

ψ(sin0 ) = µ(sin0 , 0) > D+a0, that is to say condition (B.1) holds. The condition

of existence of SS1 is then equivalent to the condition of instability of SS0.

Evaluated at SS1, the Jacobian matrix (A.1) becomes:

J =

















−D − Ex0 −D − a0 Fx0 0

Ex0 0 −Fx0 0

Ex0 D + a0 −D − Fx0 −µ1

0 0 0 µ1 −D − a1

















Its characteristic polynomial is:

det(J−λI) = (λ−µ1+D+a1)(λ+D)
(

λ2 + [D + (E + F )x0]λ+ (D + a0)(E + F )x0
)

Its eigenvalues are λ1 = µ1 −D − a1, λ2 = −D and λ3 and λ4 are the roots of

the following quadratic equation:

λ2 + [D + (E + F )x0]λ+ (D + a0)(E + F )x0 = 0

Since λ3λ4 = (D + a0)(E + F )x0 > 0 and λ3 + λ4 = − [D + (E + F )x0] < 0,462

the real parts of λ3 and λ4 are negative. So for being stable it must be λ1 < 0.463

Therefore SS1 is stable if and only if464

µ1(s
in
0 − s0) < D + a1, where s0 is the solution of (C.1) (C.2)465

Since the function s1 7→ µ1(s1) is increasing, we have the following equivalence

µ1(s
in
0 − s0) < D + a1 ⇐⇒ s0 < sin0 −M1(D + a1)

Since the function s0 7→ ψ(s0) = µ0

(

s0, s
in
0 − s0

)

is decreasing, we deduce that

ψ (s0) > ψ
(

sin0 −M1(D + a1)
)

. Since s0 be the solution of (C.1),

ψ (s0) = µ0

(

s0, s
in
0 − s0

)

= D + a0

Therefore, the condition (C.2) of stability of SS1 is equivalent to:466

D + a0 < µ0

(

sin0 −M1(D + a1),M1(D + a1)
)

(C.3)467
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Since the function s0 7→ µ0 (s0,M1(D + a1)) is increasing, and using (18), the

condition (C.3) is equivalent to

sin0 −M1(D + a1) < M0 (D + a0,M1(D + a1))

which is, according to (19), equivalent to

sin0 < M1(D + a1) +M0 (D + a0,M1(D + a1)) =: F1(D)

Appendix D. SS2468

At SS2, x0 6= 0, x1 6= 0. As a consequence of (15) and (16) s0 and s1 are

solutions of the set of equations

µ0(s0, s1) = D + a0, µ1(s1) = D + a1

Using (17) we obtain s1 =M1(D + a1) and s0 is a solution of equation469

µ0 (s0,M1(D + a1)) = D + a0 (D.1)470

Using (18) we obtain s0 = M0 (D + a0,M1(D + a1)). As a result of (11) and

(13)

x0 =
D

D + a0

(

sin0 − s0
)

, x1 =
D

D + a1

(

sin0 − s0 − s1
)

SS2 exists if and only if sin0 > s0 + s1, that is

sin0 > M1(D + a1) +M0 (D + a0,M1(D + a1)) =: F1(D)

Evaluated at SS2, the Jacobian matrix (A.1) becomes:

J =

















−D − Ex0 −D − a0 Fx0 0

Ex0 0 −Fx0 0

Ex0 D + a0 −D − Fx0 −Gx1 −D − a1

0 0 Gx1 0

















Its characteristic polynomial is:

det(J − λI) = λ4 + f1λ
3 + f2λ

2 + f3λ+ f4
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where

f1 = Gx1 + (E + F )x0 + 2D

f2 = EGx0x1 + (2D + a0)(E + F )x0 + (2D + a1)Gx1 +D2

f3 = (2D + a0 + a1)EGx0x1 +D(D + a0)(E + F )x0 +D(D + a1)Gx1

f4 = (D + a0)(D + a1)EGx0x1

Hence471

fi > 0 for i = 1 · · · 4 (D.2)472

Since the quantity E+F occurs so often in the computations, we use the notation

H = E + F . Straightforward calculations show that:

f1f2 − f3 = 2D3 + α2D
2 + α1D + α0

where

α2 = 4(Hx0 +Gx1)

α1 = 2(Hx0 +Gx1)
2 + a0Hx0 + a1Gx1

α0 = EG(Hx0 +Gx1)x0x1 + a0H
2x20 + (a0 + a1)FGx0x1 + a1G

2x21

Thus473

f1f2 − f3 > 0 (D.3)474

On the other hand we have

f1f2f3 − f21 f4 − f23 = β5D
5 + β4D

4 + β3D
3 + β2D

2 + β1D + β0

where

β5 = 2(Hx0 +Gx1)

β4 = 4(Hx0 +Gx1)
2 + 2a0Hx0 + 2a1Gx1

475

β3 = 2(Hx0 +Gx1)
3 + 4EG(Hx0 +Gx1)x0x1

+5a0H
2x20 + (a0 + a1)(3E + 5F )Gx0x1 + 5a1G

2x21
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476

β2 = 4EG(Hx0 +Gx1)
2x0x1

+3a0H
3x30 + (a0E + 2a1E + 6a0H + 3a1F )GHx

2
0x1

+(2a0E + a1E + 3a0F + 6a1H)G2x0x
2
1 + 3a1G

3x31

+a20F (F + 2E)x20 + (a0Ex0 − a1Gx1)
2 + 2a0a1GFx0x1

477

β1 = 2E2G2(Hx0 +Gx1)x
2
0x

2
1 + (4a0 + a1)EGH

2x30x1

+(a0 + a1)(3E + 5F )EG2x20x
2
1 + (a0 + 4a1)EG

3x0x
3
1

+a20(3E
2 + 3EF + F 2)Fx30 + a0(2a0E + a0F + 2a1F )GFx

2
0x1

+(Ex0 +Gx1)(a0Ex0 − a1Gx1)
2 + (2a0a1 + a21)G

2Fx0x
2
1

478

β0 = (a0 + a1)E
2G2(Hx0 +Gx1)x

2
0x

2
1 + a20(2E + F )EFGx30x1

+(a20 + a21)EFG
2x20x

2
1 + (a0Ex0 − a1Gx1)

2EGx0x1

Thus479

f1f2f3 − f21 f4 − f23 > 0 (D.4)480

According to (D.2), (D.3) and (D.4) the Routh-Hurwitz criteria are satisfied.481

Therefore, SS2 is stable as long as it exists.482
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