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Abstract. The aim of this work is to present a theoretical analysis of the separation of an N -component
mixture. In this study, two analytical models explaining the thermo-gravitational separation of compo-
nents in N -component mixtures for vertical cavity filled by a porous medium are presented and assessed.
The basic state and the separation are expressed in terms of the separation ratio, and the Lewis, cross-
diffusion and Rayleigh numbers. Our computational analysis confirms that, for the given values of the mass
fractions, thermodiffusion can be measured with a thermo-gravitational column, strongly supporting the
experimentally determined transport coefficients.

1 Introduction

Transport properties of fluid mixtures have attracted
much interest because of their numerous applications.
For instance, the double-diffusion process plays an
important role in the transport of contaminants in soil,
in crystal growth and in the separation of components
in a mixture [1–3]. More details about the fundamental
and industrial applications are presented by Legros et

al. [4], Vafai [5], Nield and Bejan [6], Baytaş and Pop [7].
Many works have been devoted to improving the thermo-
gravitational separation in a mixture. In 1939, Furry,
Jones and Onsager [8] developed a theory that allowed
the separation of binary gases in a thermo-gravitational
column to be predicted. A thermo-gravitational column is
a rectangular vertical cavity that is differentially heated
and filled with a mixture. The difference in temperature
produces a unicellular flow which separates the compo-
nents between the bottom and the top of the column. The
theory developed in [8] is called the FJO theory. In their
model the influence of the mass fraction in the buoyancy
term is neglected (the “forgotten effect”). In order to
improve the separation in thermo-gravitational columns,
Lorenz and Emery [9] introduced a porous medium in
the cavity and Bennacer et al. [10] suggested splitting the
thermo-gravitational column into three sub-domains filled
with a porous medium. Nowadays, thermo-gravitational
columns are used to determine the transport properties
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of binary and ternary mixtures. Several approaches have
been developed for the experimental determination of
the diffusion, thermal diffusion, and Soret coefficients for
binary and ternary mixtures. Blanco et al. [11] measured
the thermodiffusion coefficients of binary and ternary
mixtures using a thermo-gravitational column, while
Kolodner et al. [12] and Gebhardt and Kölher [13] used
optical techniques to determine the transport coefficients
of ternary mixtures. If the heaviest component of the
mixture has a negative Soret coefficient, it will be
transported to the warmer part of the column by the
thermodiffusion effect and to the bottom of the cavity
by the gravitational field. These phenomena prevent a
negative thermodiffusion coefficient from being measured
in ground conditions and for this reason Bou-Ali et al. [14]
have made measurement of the thermodiffusion coeffi-
cients in the International space station. The mixture of
1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene
(IBB) and n-dodecane (nC12) at mass fraction 0.8-0.1-0.1
were chosen as a benchmark to validate space measure-
ments since, at this composition it allows for ground
measurements [14]. Nowadays, binary mixtures are widely
studied and their transport coefficients measured accu-
rately. This is however not the case for ternary mixtures,
as the cross-diffusion effect is still poorly understood
and the measured cross-diffusion coefficients are highly
dispersed [14, 15]. In order to improve our understanding
of multi-component mixtures numerical and theoretical
studies have been performed. Larre et al. [16] have studied
the onset of convection in infinite horizontal layers filled
with a ternary mixture without taking the cross-diffusion
effect into account. Haugen and Firoozabadi [17, 18] have
developed a model for measuring the thermodiffusion and



diffusive coefficients in N -components mixture. Theirs
model is based on the transient duration to the steady
state. The authors obtained good agreement when com-
paring the transports coefficients determined with their
theoretical model with the literature for seven binary
mixtures [19]. Ryzhkov et al. [20] obtained an analytical
expression of the basic flow for an N -component mixture
in a thermo-gravitational column. Their dimensionless
formulation introduced the matrix of Schmidt numbers
Sc with (N − 1)2 elements. Their theoretical models are
based on the parallel flow approximation and the FJO
theory. The stability of the unicellular flow in an infinite
or finite thermo-gravitational column is studied in [21,22].
Larabi et al. [23] proposed a method to indirectly validate
the measured transport coefficients of ternary mixtures
in space conditions. Shevtsova et al. [24] and Lyubimova
and Zubova [25] performed three- and two-dimensional
numerical simulations of the Soret-driven convection of
a cell filled by binary or ternary mixtures. Ghorayeb and
Firoozabadi [26] numerically predicted the mass fraction
of ternary hydrocarbon mixtures in a two-dimensional
reservoir. The aim of the present study is to extend
Larabi et al.’s work [23] and the FJO theory [8] to
an N -component mixture. A two-dimensional vertical
cavity filled with a porous medium saturated by an
N -component mixture is considered. The governing
equations are obtained and solved using the parallel flow
approximation and the “forgotten effect” for a multi-
component mixture. The mass fraction, temperature,
velocity and separation are analytically expressed as
functions of the filtration Rayleigh number, Lewis num-
ber, separation ratio and cross-diffusion numbers. All the
theoretical results are assessed by numerical simulations
and the difference between the two theoretical studies
and the numerical results is quantified.

2 Problem statement

2.1 Mathematical formulation

This study focuses on the thermo-gravitational separation
process in a vertical cavity filled with a porous medium
saturated by an N -component mixture. L is the height of
the cavity along the y-axis and h the thickness along the
x-axis. The porous medium is considered homogeneous
and isotropic. Figure 1 illustrates the system under con-
sideration along with the thermal boundary conditions.
The vertical walls are maintained at uniform tempera-
ture while the horizontal walls are thermally insulated. All
boundaries are assumed stiff and impermeable. The prob-
lem is described by Darcy’s law, the mass conservation of
each component in the mixture and the energy conserva-
tion equation. The Oberbeck-Boussinesq approximation is
considered and all the thermophysical coefficients of the
fluid are assumed to be constant except for the density in
the buoyancy term

ρd = ρd
0

[

1 − βT (T d − T d
0
) −

n−1
∑

i=1

βci(C
d
i − Cd

i0)

]

, (1)

T1 T2

L

J T · n = 0

J T · n = 0

g

x

y

h

Fig. 1. Vertical thermo-gravitational column and thermal
boundary conditions. g is the gravity vector.

where the superscript d stands for the dimensional formu-
lation, N is the number of components in the mixture,
ρd is the density of the mixture and ρd

0
is the density at

the reference temperature and mass fraction. βT and βCi

are the thermal expansion coefficient and the mass frac-
tion expansion coefficient, respectively, of component i at
the reference temperature and mass fraction. T , Ci and
Ci0 are the temperature, the mass fraction of component
i and the initial or reference mass fraction of component
i, respectively. The fluid is assumed to be incompressible.
The convective flow and the heat and mass transfer are
governed by the following dimensionless equations [23]:

∇ · V = 0, (2)

V = −∇P + Ra
(

T + ψT · C
)

ey, (3)

ε∂tC + (V · ∇) C = Le−1 · ∇2 (Cr · C − 1 · T ) , (4)

∂tT + V · ∇T = ∇2T, (5)

where the reference scales are h for the geometric pa-
rameter and h2κ/a for the time (κ = (ρcp)p/(ρcp)f ),
with (ρcp)p the volumetric heat capacity of the saturated
porous medium and (ρcp)f the mixture heat capacity. Fur-
thermore T = (T d−T2)/∆T , where T d is the dimensional
temperature, ∆T = T1 − T2. The mass fraction is scaled
by Ci = (Cd

i −C0)/∆Ci. ∆Ci = −∆TD′

Ti/Dii, where Dii

is the mass diffusion coefficient of the component i. C is
a vector of length (N −1) and D is the diffusion matrix of
size (N − 1) × (N − 1). D′

Ti is the thermal diffusion coef-
ficient of the component i. 1 is a vector of length (N − 1)
equal to 1 = [1 . . . 1]. P is the pressure and V the filtration
velocity vector. All vectors are column and the superscript
T is the transposed vector. The filtration velocity repre-
sents the mean fluid velocity taken over a representative
elementary volume and is equal to V = εVf , where ε is
the normalized porosity ε = ε∗(ρc)f/(ρcp)

∗ and ε∗ is the



cell porosity. The thermal filtration Rayleigh number

Ra =
KhgβT ∆T

νa
, (6)

where a = λ/(ρcp)f is the equivalent thermal diffusivity,
λ is the thermal conductivity of the mixture, K is the per-
meability of the porous medium and (ρcp)f is the specific
heat capacity of the mixture. The separation ratio vector
(length: N − 1) is given by

ψi = −
βci · D

′

Ti

βT · Dii

. (7)

Note that the definition of the separation ratio is differ-
ente than in Ryzhkov et al. [21, 22]. The matrix of Lewis
numbers Leii = a/Dii and the cross-diffusion numbers
Crij = (Dij/Dii)(∆Cj/∆Ci) are of size (N −1)×(N −1).
Note that the matrix Le is diagonal and the matrix Cr
has the main diagonal elements equal to unity, hence,
they both comprise only (N − 1) × (N − 1) independent
coefficients. In conclusion, the problem under considera-
tion, accounting for separation ratios, Rayleigh number
and porosity, depends on (N − 1)2 + N + 1 dimension-
less parameters. The dimensionless boundary conditions
for x = 0 and x = 1 are

V · n = 0, Ji · n = 0, (8)

T (x = 0, y) = 1, T (x = 1, y) = 0, (9)

where n is the unit vector and Ji is the dimensionless
mass flow of the component i,

Ji = −Le−1 · ∇(Cr · Ci − 1 · T ). (10)

The dimensionless boundary conditions for y = 0, A are

V · n = 0, Ji · n = 0, (11)

∂yT (x, y = 0) = 0, ∂yT (x, y = A) = 0, (12)

where A = L/h is the aspect ratio of the column. Ryzhkov
et al. [21, 22] or Lyubimova and Zubova [25] reduced the
number of dimensionless parameters of this problem by
working in the standard basis of the matrix of Schmidt
numbers. This method, based on the matrix diagonaliza-
tion technique, uncouples the equation of conservation of
each mass fraction. This transformation would be useful
when studying the stability of flows in multi-component
mixtures. We intend to implement it in our forthcoming
work on such stability.

2.2 Ternary mixture THN(0.8)-IBB(0.1)-nC12(0.1)

We used the data of the benchmark DCMIX1 [14] to
provide the values of the diffusion coefficients so that
our results would apply to a real-world ternary mix-
ture. This benchmark was composed of 1,2,3,4-tetrahy-
dronaphthalene (THN), isobutylbenzene (IBB) and n-
dodecane (nC12) with mass fractions 0.8-0.1-0.1. All the
transport coefficients were taken from [14]. Note that in

Table 1. Dimensionless numbers for the ternary mixture
THN-IBB-nC12 with mass fractions 0.8-0.1-0.1 in a porous
medium of permeability K = 10−10 m2, normalized porosity
ε = 0.25 and thermal diffusivity a = 2.0 · 10−7 m2/s.

Dimensionless number THN nC12

Lewis number (Le) 613 538

Separation factor (ψ) 0.17 0.10

Cross-diffusion number (Cr) Cr12 = −0.016 Cr21 = −0.24

this work we are adopting a component order different
from the one in ref. [14], component 1 being THN and
2 nC12. Consequently the numerical values of diffusion
and thermodiffusion coefficients need to be changed: the
thermodiffusion coefficients were equal to D′

T1
= 0.65 ·

10−12 m2/(sK) and D′

T2
= −0.49 · 10−12 m2/(s K). The

mean values were used for the pure diffusive coefficients
D11 = 5.96 · 10−10 m2/s, D22 = 6.79 · 10−10 m2/s. The
measured values for the cross-diffusion coefficients were
dispersed, while the Soret coefficients ST1 and ST2 were
in good agreement. The value of the cross-diffusion coef-
ficients were determined by using the equations from [13]

D′

T1
= D11 ST1 + D12 ST2, (13)

D′

T2
= D22 ST2 + D21 ST1. (14)

The results obtained were D12 = 0.15 · 10−10 m2/s and
D21 = 1.1 ·10−10 m2/s. In porous media, tortuosity affects
all the transport coefficients, a tortuosity equal to τ = 1.35
has been determined by Costesèque et al. [27]. The ther-
modynamic coefficients βT = 8.48 ·10−4/K, βc1 = −0.136,
βc2 = 0.120, µ = 1.719 · 10−3 kg/(m · s) and the density
ρ = 925.3 kg/m3 were taken from [28]. For the thermal
conductivity of the mixture inside the pores, an average
value was considered based on the thermal diffusivity of
each pure component found in [29], λ = 0.128W/(m · K).
The dimensionless numbers obtained using these thermo-
dynamic coefficients are listed in table 1.

3 Parallel Flow Approximation

3.1 Basic flow

For binary mixtures, a previous study [30] showed that the
Parallel Flow Approximation (PFA) was valid in shallow
cavities. With the PFA, the streamlines are assumed to
be parallel to the vertical walls of the thermo-gravitational
column, thus the horizontal velocity is taken equal to zero.
The PFA is valid far from the horizontal walls. The basic
state is approximated by

V = v(x)ey, (15)

C(x, y) = m y + f(x), (16)

T (x, y) = mT y + g(x). (17)

Equations (15)–(17) describe a unicellular flow for
which there is only one convective roll in the thermo-
gravitational column. By inserting eqs. (15)–(17) into the



system of eqs. (2)–(5), the following system for v(x), T (x)
and f(x) is obtained:

∂2

xv(x) − ω2 v(x) = 0, ∂2

xT (x) = 0, (18)

Le−1 · Cr · ∂2

xC(x, y) = m v(x), (19)

where
ω2 = RaψT · Le · Cr−1 · m.

The PFA is not valid close to the horizontal walls, thus,
the boundary condition on the latter must be modified. In
order to provide for the lack of boundary condition, the
following hypotheses are considered:

– the mass flow rate is assumed to be equal to zero
through any horizontal cross-section

∫

1

0

v(x) dx = 0, (20)

– the conservation of each component in the cavity is
assumed

∫

1

0

∫ A

0

C(x, y) dxdy = 0, (21)

– the thermal flow rate through any horizontal cross-
section is equal to zero

∫

1

0

(V · T + JT ) · ndx = 0. (22)

JT is the thermal flow equal to JT = −∇T . A last bound-
ary condition is required to solve the system of eqs. (18)-
(19). In order to obtain another boundary condition, the
curl operator was applied to eq. (3) and evaluated for
x = 0, 1:

∂xv = Ra ∂x(T + ψT · C). (23)

The temperature was

T = 1 − x. (24)

The solution for the velocity and the mass fraction depend
on the sign of ω, if ω2 > 0 then

v(x) = −ψ0

[

1 − cosh(ω)

sinh(ω)
cosh(ω x) + sinh(ω x)

]

, (25)

C(x, y) =
Le · Cr−1 · m

ω2

[

v(x) + Ra x −
Ra

2

]

+m

(

y −
A

2

)

. (26)

If ω2 = 0, then

v(x) = Ra
[

ψT · (Cr · 1) + 1
]

(

1

2
− x

)

, (27)

C(x, y) = RaLe · Cr−1 · m

(

x2

4
−

x3

6
−

1

24

)

+Cr · 1

(

1

2
− x

)

+ m

(

y −
A

2

)

. (28)

On the other hand, if ω2 < 0 then

v(x) = −ψ0

[

cos(ω) − 1

sin(ω)
cos(ω x) + sin(ω x)

]

, (29)

C(x, y) = −
Le · Cr−1 · m

ω2

[

v(x) + Ra x −
Ra

2

]

−2xCr−1 · 1 + m

(

y −
A

2

)

, (30)

where ψ0 = Ra
ω

(1 + ψT · Cr−1 · 1).

3.2 Vertical Mass fraction Gradient and separation

For vertical cavities, a unicellular flow separates each com-
ponent i between the top and bottom of the cavity. Thus
the separation of the component i is equal to S = A · m,
m is a vector of length N − 1 and is called the Verti-
cal Mass fraction Gradient (VMG). In order to determine
the VMG of each component, the mass flow rate of each
component through a horizontal cross-section is assumed
equal to zero:

∫

1

0

(V Ci + Ji) · ndx = 0. (31)

Solving this coupled system of equations gives the sepa-
ration of each component of an N -component mixture. If
ω = 0, an analytical expression can be obtained:

m=10Ra
(

ψT · (Cr · 1)+1
) [

(RaLe)2+120Cr2
]−1

Le · 1.
(32)

For a mixture, the two experimental control parameters
of a thermo-gravitational column are the column thickness
and the difference in temperature. Figure 2 shows the in-
fluence of the control parameters of a thermo-gravitational
column on the separation component for a ternary mix-
ture. The separation is strongly influenced by the thick-
ness of the cavity.

4 Furry, Jones and Onsager model

4.1 Basic flow

In 1939 [8] the thermo-gravitational separation process
was analytically studied for vertical cavities filled with a
binary mixture of gases. In [8], the mass fraction influence
on the density was neglected as opposed to the tempera-
ture influence on the term of the gravitational force. This
model is called the FJO model. Applying the curl operator
and the FJO model to eq. (2), the system of eqs. (2)–(5)
leads to

∇ · V = 0, (33)

∂xv(x) = Ra∂xT (x), (34)

ε∂tC + (V · ∇) C = Le−1 · ∇2 (Cr · C − 1 · T ) , (35)

∂tT + V · ∇T = ∇2T. (36)
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Fig. 2. Influence of the control parameters (the temperature
difference (a) and the cavity thickness (b)) on the vertical mass
fraction gradient of components 1 and 2 for a ternary mixture
(Le1 = 613, Le2 = 538, ψ1 = 0.17, ψ2 = 0.10, Cr12 = −0.016,
Cr21 = −0.24).

The basic state under the parallel flow approximation
and the FJO model is obtained from the system of
eqs. (33)–(36) using the boundary conditions (8), (9) and
the three hypotheses:

– the conservation of each component in the cavity,
– the thermal flow rate through any horizontal cross-

sections is equal to zero,
– the mass flow rate of each component through a hori-

zontal cross-section is equal to zero,

v(x) =
1

2
Ra (1 − 2x), (37)

C(x, y) =
Ra

2
Le · Cr−1 · m

(

x2

2
−

x3

3
−

1

12

)

(38)

+Cr−1 · 1

(

1

2
− x

)

+ m

(

y −
A

2

)

,

T (x) = 1 − x. (39)

4.2 Vertical Mass fraction Gradient and separation

In order to determine an analytical expression for the
VMG, the mass flow rate of each component through a
horizontal cross-section is assumed to be equal to zero.
This assumption allows an analytical expression for the
separation to be obtained:

m=10Ra
[

Cr−1 ·LeRa2+120Le−1 ·Cr
]−1

·Cr−1 ·1 (40)

=10Ra
[

(RaLe)2 + 120Cr2
]−1

· Le · 1. (41)

The VMGs for the N − 1 components are expressed in
terms of the Lewis number, the cross-diffusion numbers
and the thermal Rayleigh number in eq. (40). For the com-
ponent N , the VMG can be obtained using the relation

N
∑

i=1

Ci = 0. (42)

The same results were obtained for a binary mixture
(N = 2) by Furry, Jones and Onsager [8] and for a ternary
mixture (N = 3) by Larabi et al. [23]. For the FJO model,
the separation ratio (ψ) was neglected. Figure 3 shows
the VMG of component 1 (obtained by the PFA model)
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Fig. 3. Influence of the separation ratio on the VMG obtained
from the PFA for a ternary mixture (Le1 = 613, Le2 = 538,
Cr12 = −0.016, Cr21 = −0.24) for a temperature difference
equal to ∆T = 5 K and a thickness h = 3 · 10−2 m.



according to the separation ratio. For the same dimen-
sionless parameters the VMG obtained by the FJO model
is md

1fjo = −8.80 · 10−3/m. However, the PFA predicts

a VMG between −8.80 · 10−3/m and −9.15 · 10−3/m for
(ψ1, ψ2) ∈ [0, 0.5]2 (fig. 3). If the influence of the cross-
diffusion can be neglected, then the analytical expression
for the VMG leads to

mi =
10Lei Ra

(Lei Ra)2 + 120
. (43)

Larabi et al. [23] studied the influence of the cross-
diffusion on the VMG for the case of ternary mixture.
Equation (40) in the dimensional form leads to a relation
between D′

Ti, Dij :

10Kg∆T 2
D′

TiβT

D2

ii ν

N−1
∑

j=1

[

(

K hgβT ∆T

ν Dii

)2

+ 120

N−1
∑

k=1

DikDkjD
′

Tj

DkkDjjD′

Ti

]−1

+ md
i = 0. (44)

If the cross-diffusion effect can be neglected then
eq. (44) leads to

D′

Ti = −
md

i

10Kg∆T 2

ν D2

ii

βT

[

(

Khg∆T
βT

Diiν

)2

+ 120

]

.

(45)

5 Direct simulation

5.1 Flow in the cavity

In order to assess the hypothesis considered for the theo-
retical models (PFA and FJO), a direct numerical simu-
lation was performed using the Comsol Multiphysics soft-
ware. The system of eqs. (2)–(5) and the boundary con-
ditions (8) were solved numerically for a ternary mixture
using a finite elements method. The aspect ratio of the
thermo-gravitational column was A = 20. A rectangular
mesh was used and the spatial resolution was 50 × 200:

yi =
A

2

[

cos

(

π i

Ny − 1

)

+ 1

]

for i = 0, . . . , Ny − 1.

(46)
The grid was uniform in the x-direction and distributed
as yi in eq. (46) (with Ny = 200) for the y-direction. The
order of convergence with this distribution was equal to
2.5. The streamlines and the temperature are presented
for the stationary state in fig. 4. As expected, there was
a unicellular flow in the cavity, the streamlines were par-
allel to the vertical walls and the temperature depended
linearly on the thickness of the column.
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Fig. 4. (a) Streamlines and (b) temperature in a thermo-
gravitational column filled with a ternary mixture (Le1 =
613, Le2 = 538, ψ1 = 0.17, ψ2 = 0.10, Cr12 = −0.016,
Cr21 = −0.24) at the stationary state for a temperature dif-
ference equal to ∆T = 6 K and a thickness h = 3 · 10−2 m
(Ra = 0.4013).

5.2 Assessment of the theoretical models

In order to quantify the error, two norms were used:

E2 = 100 ·
‖xthe − xnum‖2

‖xnum‖2

, (47)

E∞ = 100 ·
‖xthe − xnum‖∞

‖xnum‖∞
, (48)

where xthe and xnum are the theoretical and numerical
values, respectively, ‖ . . . ‖2 is the 2-norm and ‖ . . . ‖∞ is
the infinity norm. E2 and E∞ are the mean error and the
worst case error. These norms were calculated for all the
numerical values on figs. 5, 6, 7 and 8 and are reported
in table 2. The horizontal velocity was neglected for the
two theoretical models, while for the PFA, the vertical ve-
locity was as given by eq. (25) if ω2 > 0 and by eq. (29)
if ω2 < 0. For the FJO model the vertical velocity was a
linear function depending only on the Rayleigh number.
The velocity profiles obtained in the two cases (ω2 > 0
and ω2 < 0) are illustrated in fig. 5. The results using the
two theoretical models are compared to the direct simula-
tion for a difference in temperature of ∆T = 10K. For the
PFA, the two errors are lower than 1%, so the PFA is in
very good agreement with the numerical results. The FJO
model based on physical considerations leads to an error
of 5% for the velocity. In fig. 6 the VMG of components
1 and 2 are presented according to the temperature using
the three methods. As table 2 shows, the two theoretical
models are in good agreement with the numerical results.
Figures 7 and 8 present the mass fraction of THN and
nC12 in the cavity at the stationary state for a difference
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Fig. 5. Numerical (DNS) and theoretical (PFA and FJO)
horizontal profiles of the vertical velocity in the thermo-
gravitational column at the stationary state for ternary mix-
tures (a) ψ1 = 0.17, ψ2 = 0.10, (b) ψ1 = −0.17, ψ2 = −0.10
and Le1 = 613, Le2 = 538, Cr12 = −0.016, Cr21 = −0.24 for
∆T = 10 K and h = 3 · 10−2 m (Ra = 0.6688).
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Fig. 6. Theoretical (PFA and FJO) and numerical (DNS)
Vertical Mass fraction Gradient according to the tempera-
ture difference for a ternary mixture (Le1 = 613, Le2 = 538,
ψ1 = 0.17, ψ2 = 0.10, Cr12 = −0.016, Cr21 = −0.24) for a
thickness equal to (a) h = 3 · 10−2 m and (b) 5 · 10−3 m.
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Fig. 7. Theoretical (PFA and FJO) and numerical (DNS) mass
fraction of component 1 (Le1 = 613, Le2 = 538, ψ1 = 0.17,
ψ2 = 0.10, Cr12 = −0.016, Cr21 = −0.24) in the cavity at
the stationary state for a temperature difference of 6 K and a
thickness of 3 · 10−2 m (Ra = 0.4013).
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Fig. 8. Theoretical (PFA and FJO) and numerical (DNS) mass
fraction of component 2 (Le1 = 613, Le2 = 538, ψ1 = 0.17,
ψ2 = 0.10, Cr12 = −0.016, Cr21 = −0.24) in the cavity at
the stationary state for a temperature difference of 6 K and a
thickness of 3 · 10−2 m (Ra = 0.4013).

in temperature of 6K and a thickness of 3 · 10−2 m using
the two theoretical models and the numerical simulations.
The THN is the heaviest component of the ternary mix-
ture THN(0.8)-IBB(0.1)-nC12(0.1) and nC12 is the light-
est component. In fig. 7 the THN is more concentrated at



Table 2. Mean and worst case error between the numerical
and theoretical results (PFA and FJO).

Figure PFA FJO

E2 E∞ E2 E∞

5(a) 0.16% 0.21% 3.47% 4.64%

5(b) 0.17% 0.15% 3.72% 5.41%

6(a) 0.92% 2.16% 1.15% 2.24%

6(b) 0.62% 1.10% 1.73% 2.06%

7 10−3% 10−3% 10−3% 10−3%

8 0.01% 0.05% 0.04% 0.06%

the bottom of the cavity and in fig. 8 nC12 is at the top
of the thermo-gravitational column, which is consistent
with physics and the sign of the VMG observed in fig. 6.
The white zones observed in figs. 7 and 8 are the zones
in the thermo-gravitational column where the streamlines
are not parallel to the vertical walls so neither the PFA
nor FJO results are valid. The white zones represent 20%
of the area of the column and the coloured zone 80%. The
norms reported in table 2 are calculated for 80% of the
cavity. As can be observed in the table the error for the
mass fraction in 80% of the column is less than 0.1%, the
two theoretical models are a perfect match for the simu-
lations.

6 Conclusion

In this paper a theoretical analysis for the separation of
an N -component mixture in a vertical porous thermo-
gravitational column is proposed. Two theoretical mod-
els for the separation of N -component mixtures are pre-
sented. These models, based on the parallel flow approx-
imation allow the separation to be determined for each
component of an N -component mixture. The mass frac-
tion, velocity and temperature at the stationary state were
obtained analytically. These models indirectly validate the
measured transport coefficients. The Furry-Jones-Onsager
theory was extended to the N -component mixture and the
separation was expressed as a function of the Rayleigh
number, the matrix of Lewis numbers and the cross-
diffusion numbers. In order to assess the theoretical work,
direct numerical simulations were performed for a cavity
with an aspect ratio of 20. A good match was obtained
for the mass fraction in 80% of the cavity. The theoretical
and numerical results for the separation in the cavity were
in good agreement, thus validating the assumptions made
in the theoretical models. A quantitative analysis of the
errors for these models was performed.
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