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LINEAR ASYMPTOTIC STABILITY AND MODULATION BEHAVIOR

NEAR PERIODIC WAVES OF THE KORTEWEG–DE VRIES EQUATION

L. MIGUEL RODRIGUES

Abstract. We provide a detailed study of the dynamics obtained by linearizing the Korteweg–
de Vries equation about one of its periodic traveling waves, a cnoidal wave. In a suitable sense,
linearly analogous to space-modulated stability [14], we prove global-in-time bounded stability
in any Sobolev space, and asymptotic stability of dispersive type. Furthermore, we provide
both a leading-order description of the dynamics in terms of slow modulation of local param-
eters and asymptotic modulation systems and effective initial data for the evolution of those
parameters. This requires a global-in-time study of the dynamics generated by a non normal
operator with non constant coefficients. On the road we also prove estimates on oscillatory
integrals particularly suitable to derive large-time asymptotic systems that could be of some
general interest.

Keywords: periodic traveling waves; modulation systems; asymptotic stability; cnoidal waves ;
Korteweg–de Vries equation; dispersive estimates; oscillatory integrals.
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1. Introduction

Substantial efforts have been recently devoted to complete a rather comprehensive theory an-
alyzing the dynamics near periodic waves of dissipative systems of partial differential equations.
We refer the reader to [14, 32, 33] for a thorough account of the available parabolic analysis.
Comparatively, the parallel analysis of dispersive Hamiltonian systems seems still in its infancy.
The goal of the present contribution to a general theory, still to come, is to show, on a case-study,
how for the linearized dynamics one may completely recover the fine description of parabolic
cases.

1.1. Preliminary observations. As a preliminary warning we strongly emphasize that we
always consider waves as solutions of extended systems. This is perfectly common when dealing
with asymptotically constant wave profiles — corresponding to solitary waves, kinks, shocks...
— but is still rather unusual in the dynamical1 literature when focusing on periodic waves. We
believe however that this is the right way to capture some features of wave propagation and
in particular to incorporate the rich multi-scale space-time dynamics expected to occur near
periodic waves. References on an alternative point of view focusing on bounded domains with
periodic boundary conditions — and which has a long and successful history — may be found
in [1, 19, 4]. Another related feature of our point of view is that we do not break invariance
by translation by either focusing on a specific region of the space-time diagram or introducing
weighted norms. Though the author does not know any implementation of these strategies
in a periodic context2, for solitary waves and especially those of scalar equations the latter is
now a well-established way to effectively bring Hamiltonian equations in a form as parabolic as
possible, see [27, 19].

Research of L.Miguel Rodrigues was partially supported by the ANR project BoND ANR-13-BS01-0009-01.

1As opposed to the literature devoted to spectral studies.
2Excepting those relying on inverse scattering methods.
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Here we restrict our attention to the Korteweg–de Vries equation as an archetype of dispersive
Hamiltonian equation. It also comes with the key advantage of integrability. Indeed, whereas
our ultimate goal is to show how to derive dynamical behavior from spectral information and
thus to prove theorems where spectral properties are assumed, we believe that it is sounder to
do so only after a sufficient number of spectral studies have gathered clear evidence of what
is the best notion of spectral stability one may expect. Obviously the latter depends strongly
on the nature of the background solution and on the class of system under consideration. We
refer the reader to [32, 33] for detailed discussions of this question for periodic waves and
especially of the notion of diffusive spectral stability that has slowly emerged as the relevant set
of spectral conditions for periodic waves of dissipative systems. Yet, gathering either analytically
or sometimes even numerically the relevant pieces of spectral information may often appear as a
daunting task since in general profiles are not known explicitly and almost no a priori knowledge
of even a part of the spectrum of relevant operators — that have variable coefficients that are
not asymptotically constant – is available3. Moreover for the finer dynamical results one may
need very precise description of the (critical part of the) spectrum, not usually included in
classical spectral studies4. The reader may find in [15, 2] examples of spectral analyses required
to apply the abstract parabolic theory. This is where, here, we use integrability to offer relatively
elementary proofs of almost all relevant spectral claims and for the remaining ones, gathered in
Assumption A below, a way to observe them by well-conditioned soft numerics. On this spectral
side we strongly rely on the approach and results of [6].

Again, we are mostly interested in developing tools to study periodic waves of general dis-
persive equations so that the use of integrability is here restricted to obtaining relevant spectral
information. However for the Korteweg–de Vries equation it is possible to use integrability by
inverse scattering in a deeper way and derive large-time asymptotics directly at the nonlinear
level, as proved in [23, 24]. Moreover the decay proved here at the linearized level turns out
to be too slow to be used directly in any simple argument yielding a different proof of those
nonlinear asymptotics for the Korteweg–de Vries equation. We stress however that the strat-
egy of our proofs seems robust enough to be adapted to cases where one does expect to derive
asymptotics for the nonlinear dynamics from bounds on the linearized evolution combined with
a priori estimates. To the opinion of the author the analysis of a case where this occurs seems
to be the next natural step in laying foundations for a general theory.

1.2. Bounded stability. After these preliminary warnings, we now start a precise account of
results obtained in the present contribution. We choose the following form of the Korteweg–de
Vries equation (KdV)

(1.1) Ut +
(

1
2 U

2
)
x

+ Uxxx = 0

where U(t, x) is scalar and t and x denote time and space variable. A solution to (1.1) is called
a periodic (uniformly traveling) wave if it has the form U(t, x) = U(k x + ω t) for some profile
U periodic of period one, some wavenumber k and some time frequency ω. The corresponding
phase velocity is then c = −ω/k. We shall focus on the dynamics near a given wave with some
fixed wavenumber k and frequency ω and hence write (1.1) in the corresponding moving frame.
Introducing W through U(t, x) = W (t, k x+ ω t) equation (1.1) becomes

(1.2) Wt + ωWx + k
(

1
2 W

2
)
x

+ k3Wxxx = 0

so that U is a steady solution of (1.2). Setting W = U +W̃ and performing a naive linearization

yield W̃t − LW̃ = 0 where

(1.3) LW̃ = −ω W̃x − k
(
U W̃

)
x
− k3 W̃xxx .

3Whereas in the asymptotically constant case the essential spectrum is derived from simple Fourier computations.
4In particular in the Hamiltonian case, since there is no dynamical theory to motivate it...
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We stress however that even if the linear decay obtained below were faster we would not

expect W̃ to remain small at least in norms encoding some localization so that it is a priori
unclear what is the role of this linearization in the description of the large-time dynamics. To
be more specific let us recall that at the nonlinear level analyses of parabolic cases suggest that
one should not expect to control ‖W −U‖X , for some reasonable functional space X but instead
to bound

inf
Ψ one-to-one

‖W ◦Ψ− U‖X + ‖∂x(Ψ− Id)‖X .

This encodes preservation of shapes but allows for a synchronization of phases by a sufficiently
slow phase shift. That the corresponding notion of stability is indeed the relevant notion for
periodic waves has slowly emerged along years. In [14] this notion — coined there as space-
modulated stability — has been proved to be sharp for general parabolic systems. Moreover in
[14] have also been identified what are necessary and sufficient cancellations in the structure of
parabolic systems — called there phase uncoupling — to ensure usual orbital stability5 instead
of space-modulated stability. Though the parabolic machinery obviously does not apply to (1.1)
it is worth mentioning that (1.1) does not exhibit such null structures.

To unravel what is left of this at the linearized level, let us mimic the first steps of the natural
strategy to prove space-modulated stability. Namely, one pick an initial datum W0 and a couple
(V0, ψ0) such that

W0 ◦ (Id− ψ0) = U + V0

with (V0, ∂xψ0) sufficiently small and try to prove that there exists a corresponding solution W
such that there exists (V, ψ) with (V, ∂xψ) small and W ◦ (Id − ψ) = U + V . The first key
observation is that in terms of the sought (V, ψ) equation (1.2) takes the form

(V + Uxψ)t − L (V + Uxψ) = N [V, ψt, ψx] .

where L is the operator defined above, andN is nonlinear in (V, ψt, ψx) and their derivatives, and,
locally, at least quadratic. In particular neglecting terms expected to be at least quadratically
small leaves

(V + Uxψ)t − L (V + Uxψ) = 0 .

As readily observed this more involved point of view also leads to the consideration of the
group (S(t))t∈R generated by L. But it also shows that linear space-modulated stability should
be defined by requiring a control of

(1.4) NX(W ) = inf
W=V+Uxψ

‖V ‖X + ‖ψx‖X

and not of ‖W‖X . Therefore the following result should be interpreted as bounded linear stability
of periodic waves of (1.1) in a space-modulated sense.

Theorem 1.1. Bounded linear stability. For any s ∈ N, there exists C such that for any W0

such that NHs(R)(W0) <∞ and any time t ∈ R

NHs(R)(S(t)W0) ≤ C NHs(R)(W0) .

We emphasize that the result is non trivial even for s = 0 since L is not a normal operator6

and (S(t))t∈R is not expected to be a group of unitary transformations on any subspace of
L2(R). Since coefficients of L are not constant one should also notice that the proof requires
an s-by-s analysis7. Indeed, in the reverse direction, there is now a large literature devoted to
the analysis of growth rates of higher-order Sobolev norms for some classes of evolutions that
are unitary on L2 — for instance those generated by linear Schrödinger equations including a

5Here this amounts to controlling
inf

Ψ uniform translation
‖W ◦Ψ− U‖X .

6We shall observe for instance that zero is a Floquet eigenvalue of L associated with a non trivial Jordan chain.
7In contrast with proofs for constant coefficients operators.
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(time-dependent) potential. Observe also that whereas the Korteweg-de Vries evolution sup-
ports an infinite number of conservations laws providing in other contexts a uniform control of
Sobolev norms of solutions the kind of initial data considered here does not seem compatible
with any form of integration of those conservation laws that would provide conservations of
useful functionals so that they do not play any role in our analysis.

1.3. Asymptotic stability. We now turn to asymptotic linear stability. Since our focus is
mostly on methodology we first recall some facts that are well-known to experts. Note first that
the system at hand possesses classical real and Hamiltonian symmetries so that one already
knows without any further knowledge that (marginally) spectrally stable8 waves come with L2-
spectrum that lies on the imaginary axis. For the operator L under study this may be extended
to all Sobolev spaces by a rather general functional-analytic argument9 showing that the W s,p-
spectrum does not depend on (s, p). In particular for none of the waves under consideration
one expects exponential decay of (S(t))t∈R, or of any part of it, in B(W s,p(R))-norm. But once
exponential decay has been ruled out corollaries of the Datko-Pazy theorem [25, Theorem 3.1.5
& Corollary 3.1.6] preclude any reasonable form of decay in B(W s,p(R))-norm for (S(t))t∈R.

In short, in the former paragraph we have recalled why for situations similar to those dealt
with here, to exhibit decay one needs to leave the semi-group framework where initial data
and solutions at later times are estimated in same norms. Specifically, here, the mechanism
expected to yield some form of return to equilibrium is dispersive decay, in particular the trade-
off is localization of the data against uniform decay of the solution. Therefore one aims at
proving that the solution may be decomposed into a continuum of elementary blocks traveling
with distinct velocities and that this effectively results into spreading and uniform decay10 of
the solution. As expounded in Section 2, in the periodic context the existence of a continuous
decomposition follows from the Bloch-wave decomposition11, where each block is parametrized
by a Floquet exponent ξ, combined with a spectral decomposition of Bloch symbol Lξ that
provides the action of L on the ξ-part of the Floquet decomposition. Then we still need to know
that velocities corresponding to the decomposition vary in a sufficiently non-degenerate way to
yield dispersive spreading. This is the content of the following Assumption.

(A0)
At no point of spectral curves the second-order and
third-order derivatives with respect to Floquet exponents
vanish simultaneously.

We give a more precise account of Assumption A0 in Section A. Despite the relatively explicit
description of the spectrum of L, the author has not been able to prove that this assumption
does hold for any cnoidal wave. One may indeed prove in a rather straight-forward way that
this condition holds in distinguished asymptotic regimes, that is, for large or for small eigenval-
ues. But out of these limits the fact that the explicit description does not provide directly a
parametrization of the spectrum in terms of the Floquet exponent but rather a parametrization
of both Floquet exponent and spectral parameter in terms of a third auxiliary variable, the
spectral Lax parameter, leads any attempt to derive a closed-form for those derivatives to cum-
bersome expressions with signs not readily apparent. However based on easy well-conditioned
numerics one may plot corresponding graphs. Experiments of the author — see Appendix A —
based on eye inspection of those graphs clearly indicate that condition A0 is always satisfied.

8In the weak sense that the spectrum of the generator of the linearized evolution does not intersect the open
right-half plane.
9The main nontrivial step is to notice that for operators with compact resolvents, as the Bloch symbols Lξ
introduced in Section 2.1, this independence does hold. See [10, Theorem 4.2.15].
10Those two are actually strongly connected by some form of preservation of L2-norms.
11See Subsection 2.1 for definitions. At first reading, to follow the rest of the introduction it is essentially sufficient
to know that there is some continuous decomposition parametrized by ξ and that phenomena that are slow up
to periodic oscillations correspond to |ξ| � 1.
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Theorem 1.2. Asymptotic linear stability. For any cnoidal wave such that condition A0 holds,
there exists C such that for any W0 such that NL1(R)(W0) <∞ and any time t ∈ R such that12

|t| ≥ 1

NL∞(R)(S(t)W0) ≤ C |t|−1/3NL1(R)(W0) .

In particular for any such wave, there exists C such that for any time t ∈ R and any W0 such
that NL1(R)∩H1(R)(W0) <∞

NL∞(R)(S(t)W0) ≤ C (1 + |t|)−1/3NL1(R)∩H1(R)(W0) .

As already alluded to above, establishing decay here involves the proof of global-in-time
dispersive estimates for operators with variable coefficients — actually quite far from having
constant coefficients. Needless to say that such form of results is quite unusual in the literature.
The only related results the author is aware of are due to Cuccagna [7, 8] and Prill [28], and
have been subsequently used to prove nonlinear results with sufficiently nice nonlinearities [9, 29].
A significant difference is that periodicity in their cases stem from the presence of a periodic
potential, and that they linearize about the zero solution hence receive a self-adjoint operator,
which extends the range of techniques available.

1.4. Slow modulation behavior. Actually numerical experiments suggests that a stronger
version of condition A0 holds, namely

(A)
At no nonzero point of spectral curves the second-order
derivative with respect to Floquet exponents vanish
and the third-order derivatives do not vanish at zero.

The spectral point 0 is associated with Floquet exponent 0. Thus through classical considerations
on oscillatory integrals condition A leads to the fact that critical decay rate |t|−1/3 corresponds
to the evolution of the spectral part of the initial data corresponding to small spectrum and
small Floquet exponents, the remaining part of the solution decaying faster, at rate |t|−1/2.
It may then be expected that one could accurately describe the long-time evolution within
a two-scale ansatz, essentially a periodic oscillation when looking at a fixed bounded domain
but whose characteristics evolve in time and space on larger scales. Moreover the well-known
fact that eigen modes corresponding to the spectral point 0 are given in terms of variations at
U along the manifold of periodic traveling wave profile suggests that in a formal ansatz the
local structure of oscillations could be captured by picking at each spatio-temporal point one
neighboring periodic wave and slow evolutions would then result from a slow spatio-temporal
motion along the manifold of periodic traveling waves. This is commonly referred to as a slow
modulation behavior.

Our following results prove that this intuition is indeed correct at the linearized level we
consider here and give a precise account of the large-time asymptotic behavior. To state it
we first choose a parametrization of periodic traveling waves. Many choices are available in
the present case, some of them being very explicit, others diagonalizing the first-order system
formally driving at main order the slow evolution... We choose one of them that is not very
explicit but both simple and known to be available essentially near any non degenerate wave of
a system of partial differential equations. We refer the reader to [36, 18, 3] for a look at other
possible parametrizations for the Korteweg–de Vries equation and to [5, Appendix B.2] or [32,
Section 2.1] for a proof that our choice is still available in a broader context. In the context of
the Korteweg–de Vries equation simple quadrature combined with reduction by symmetry shows
that periodic traveling waves are smoothly given as U(t, x) = Uk,M,P (k x + ω(k,M,P ) t + φ)
with

Uk,M,P of period 1,

∫ 1

0
Uk,M,P = M,

∫ 1

0

1
2(Uk,M,P )2 = P .

12One may remove the restriction |t| ≥ 1 under the stronger form of condition A0 described below, see condition A.

The weaker form considered here would instead provide C max({|t|−1/2, |t|−1/3})NL1(R)(W0) as a global bound.
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Correspondingly the phase velocity is given as c(k,M,P ) = −ω(k,M,P )/k. Note in particular
that for some average values M , P and some phase shift ψ we have U = Uk,M,P ( · + ψ),
ω = ω(k,M,P ) and c = c(k,M,P ). By translating profiles with ψ we may actually ensure
ψ = 0. For the sake of writing convenience we shall do so from now on. In the following we shall
also denote by dU the differential with respect to parameters (k,M,P ). Now the validation at
our linearized level of the slow modulation scenario takes the following simple form.

Theorem 1.3. Slow modulation behavior. Assume that the cnoidal wave of parameters (k,M,P )
and phase shift zero is such that condition A holds. There exists C such that for any W0 such
that NL1(R)(W0) < ∞ there exist local parameters ψ, M and P such that for any time t ∈ R

with13 |t| ≥ 1∥∥S(t) (W0) − ψ(t, ·)Uk,M,P
x − dUk,M,P · (k∂xψ(t, ·),M(t, ·), P (t, ·))

∥∥
L∞(R)

≤ C |t|−1/2NL1(R)(W0)

where ψ(t, ·) is centered, ψ(t, ·), M(t, ·) and P (t, ·) are low-frequency and

‖(k∂xψ(t, ·),M(t, ·), P (t, ·))‖L∞(R) ≤ C |t|−1/3NL1(R)(W0) .

We refer the reader to Section 3.1 for precise definitions of the intuitive notions of being
centered or low-frequency. A few other comments are in order.

(1) The description implicitly contains the relation k(t, ·) = k∂xφ(t, ·) between local wavenum-
ber k(t, ·) and local phase shift φ(t, ·) that is familiar in spatio-temporal modulation
theories.

(2) In the introduction we have chosen to state our results in a rather concise and abstract
form. Yet our proof shows that (ψ,M,P ) may be chosen as explicit linear functions of
W0.

(3) The fact that ψ(t, ·) is centered for any t expresses that the time dynamics can not create
any global-in-space phase-shift. This may seem in strong contrast with what happens
near traveling waves with localized variations, such as solitary waves or fronts, where
the main effect of perturbations is usually captured by a global-in-space phase-shift that
evolves in time. The heuristics is as follows. In any case perturbations affects solutions
in a nearly local way. However for localized unimodal waves since at infinity the solution
is approximately translation invariant and a single local shift effectively occurs the main
effect may be described by a global-in-space phase-shift.

(4) Note carefully that ψ does not decay so that even when W0 is small one can not replace
the first quantity estimated with a more nonlinear form

U(x) + S(t)(W0)(x)− Uk+kψx(t,x),M+M(t,x),P+P (t,x)(x+ ψ(t, x)) .

This is consistent with the fact that the above form is not the right formula to undo
the linearization expounded at the introduction of space-modulated norms. One correct
formulation is that S(t)(W0)(x) = ψ(t, x)Ux(x) + V (t, x) and, with

Ψ(t, ·) = (IdR − ψ(t, ·))−1, W (t, x) = U(Ψ(t, x)) + V (t,Ψ(t, x))

and

(κ,M,P)(t, x) = (k∂xΨ(t, x),M +M(t,Ψ(t, x)), P + P (t,Ψ(t, x))) ,

the quantity

W (t, x)− Uκ(t,x),M(t,x),P(t,x)(Ψ(t, x))

is bounded by a constant multiple of |t|−1/2NL1(R)(W0) provided that NL1(R)(W0) is
sufficiently small.

13One may relax the constraint t ≥ 1 and replace |t|−1/2 with min({|t|−1/2, |t|−1/3}). A similar remark applies to
other similar restrictions below.
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1.5. Averaged dynamics. The last thing we would like to do is to provide a large-time de-
scription of the dynamics of (ψ,M,P ) introduced in the foregoing theorem. In other words
we would like to identify some equivalent averaged dynamics. Relevant effective equations may
indeed be obtained as a correction to the famous first-order Whitham system, linearized about
the constant parameters a = (k,M,P ) of our reference background wave

(1.5)

 k
M
P


t

+ ω

 k
M
P


x

+ k

dω(a) · (k,M,P )x
Px

dF (a) · (k,M,P )x

 = k3D(a)

 k
M
P


xxx

where D(a) is a 3× 3-matrix and

F (k,M,P ) =

∫ 1

0

(
1
3(U (k,M,P ))3 − 3

2k
2((U (k,M,P ))′)2

)
is the averaged of the flux associated with conservation law for Benjamin’s impulse 1

2U
2. A

higher-order correction to the classical Whitham theory is required to describe accurately large-
time behavior. Indeed one needs to reach a level of description accounting for dispersive effects,
hence here the third order is the lowest relevant order of description.

Such a suitable system could actually be derived by arguing on formal grounds and those
formal derivations may be thought as geometric optic expansions of WKB type, following from
a higher-order version of the two-timing method of Whitham in the spirit of [26]. However to
keep the analysis as tight as possible we here follow a different process expounded below.

The gain on going from the full scalar linear equation Wt − LW to system (1.5) is of averag-
ing nature as L has periodic coefficients while linear averaged systems are constant-coefficients
systems and as such are expected to be much easier to understand directly. Yet as in classical
homogenization problems the coefficients of reduced systems require averaging quantities de-
pending on solutions of cell-problems. In particular D(a) has a quite daunting explicit form. It
should be noted however that on one hand knowing that such reduction exists disregarding the
specific form of the system already yields a wealth of information and that on the other hand if
needed the coefficients involved may be computed numerically in a relatively simple way.

In any case the above-mentioned formal arguments do not yield any insight on effective
initial data. Besides putting on sound mathematical grounds those formal arguments the main
achievement of the following result is to provide equivalent initial data for averaged systems.

Theorem 1.4. Averaged dynamics, third order. Assume that the cnoidal wave of parameters
(k,M,P ) and phase shift zero is such that condition A holds. There exists C such that for
any W0 such that NL1(R)(W0) < ∞ there exists ψ0 centered and low-frequency such that with
V0 = W0 − Uxψ0

‖V0‖L1(R) + ‖∂xψ0‖L1(R) ≤ 2NL1(R)(W0)

and for any such ψ0 the local parameters (ψ,M,P ) of Theorem 1.3 may be chosen in such a
way that for any time t ∈ R with |t| ≥ 1∥∥(k∂xψ(t, ·),M(t, ·), P (t, ·))− ΣW (t)(k∂xψ0, V0, U V0)

∥∥
L∞(R)

≤ C |t|−2/5NL1(R)(W0)

and
‖ψ(t, ·)− e1 · (k∂x)−1ΣW (t)(k∂xψ0, V0, U V0)‖L∞(R) ≤ C |t|−1/5NL1(R)(W0)

where ΣW denotes the solution operator for System 1.5.

Of course the point is that |t|−2/5 is negligible in front of |t|−1/3 in the large-time limit. Note
also that while ψ does not decay to zero in the large-time limit we do provide a description of
ψ up to eventually vanishing terms. This is a crucial achievement since creating phase shifts
is indeed the leading effect of perturbations. It is important14 however to understand that
whereas knowing phase shifts is in principle sufficient to construct a leading-order description

14But classical, even for asymptotically constant waves.
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of the original solution, the obtention of the the dynamical behavior of the phase itself requires
a knowledge of all the modulation parameters. In particular even when one may enforce ψ0 ≡ 0
the time evolution will still create a significant phase shift.

The fact that in our statement the prescription of effective initial data for modulation equa-
tions is relatively simple in terms of (V0, ψ0) is closely related to the fact that we choose ψ0

to be low-frequency, which is consistent with a slow modulation scenario. It is actually pos-
sible to pick any (V0, ψ0) such that W0 = V0 + Uxψ0 and obtain equivalent statement where
‖V0‖L1(R) + ‖∂xψ0‖L1(R) replaces NL1(R)(W0) but then effective initial data have a more com-
plicated form that encode projection to slow phase shift. Explicitly in this case, in Theorems 1.4
and 1.5, (k∂xψ0, V0, U V0) should be replaced with

(1.6)


k∂xψ0

V0 −
(
U −

∫ 1

0
U

)
∂xψ0

U V0 −
(

1
2U

2 −
∫ 1

0

1
2U

2

)
∂xψ0

 .

See [14, Remark 1.14] for a more detailed, related discussion.
In view of the decay rates obtained in Theorem 1.3 and the heuristics concerning orders

of vanishing derivatives of spectral curves one may rightfully wonder whether there is a way
to obtain a more precise description achieving O(|t|−1/2) remainders. It is indeed possible to
reach this precision if one replaces the third order correction with a pseudo-differential one.
Moreover one may achieve rates intermediate between O(|t|−2/5) and O(|t|−1/2) infinitely close

to O(|t|−1/2) by replacing the third order correction with higher-order differential corrections.
This is the content of our last main results.

However it seems hard to obtain those higher-order corrections by formal arguments of geo-
metric optic type. Instead the higher-order systems may be obtained directly in a way that we
explain now. We first make the following observations, to be obtained as corollaries of the proofs
of our main results, that the first-order system

(1.7)

 k
M
P


t

+ ω

 k
M
P


x

+ k

dω(a) · (k,M,P )x
Px

dF (a) · (k,M,P )x

 = 0

is strictly hyperbolic and that when diagonalizing the corresponding operator as Q−1
0 diag(∂t +

a
(0)
0 ∂x, ∂t + a

(1)
0 ∂x, ∂t + a

(2)
0 ∂x)Q−1

0 one obtains first-order expansions of the three Floquet eigen-

values λ0(ξ), λ1(ξ), λ2(ξ) passing trough the origin, λj(ξ) = iξa
(j)
0 +O(|ξ|3) as ξ → 0. Now we

claim that it is sufficient to include dispersion corrections

(1.8)

 k
M
P


t

+ ω

 k
M
P


x

+ k

dω(a) · (k,M,P )x
Px

dF (a) · (k,M,P )x

 = Dq(i
−1∂x)

 k
M
P


through

Dq(ξ) = Q−1
0 diag(λ

(q)
0 (ξ)− a(0)

0 iξ, λ
(q)
1 (ξ)− a(1)

0 iξ, λ
(q)
2 (ξ)− a(2)

0 iξ)Q−1
0

where λ
(q)
j (ξ) is the qth order Taylor expansion of λj(ξ) near 0. By convention we also include

the pseudo-differential case where q = ∞ by choosing λ
(∞)
j as a smooth real-valued function

that coincide with λj in a neighborhood of zero. For simplicity, in (1.5), we have also chosen
D = D3.

Theorem 1.5. Averaged dynamics, higher order. Assume that the cnoidal wave of parameters
(k,M,P ) and phase shift zero is such that condition A holds.
Let q be an odd integer larger than 3, or q =∞.
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There exists C and a cut-off function χ such that for any W0 such that NL1(R)(W0) < ∞
there exists ψ0 centered and low-frequency such that with V0 = W0 − Uxψ0

‖V0‖L1(R) + ‖∂xψ0‖L1(R) ≤ 2NL1(R)(W0)

and for any such ψ0 the local parameters (ψ,M,P ) of Theorem 1.3 may be chosen in such a
way that for any time t ∈ R with |t| ≥ 1∥∥(k∂xψ(t, ·),M(t, ·), P (t, ·))−ΣW

q (t)χ(i−1∂x)(k∂xψ0, V0, U V0)
∥∥
L∞(R)

≤ C |t|−(q+1)/(2(q+2))NL1(R)(W0)

and

‖ψ(t, ·)− e1 · (k∂x)−1ΣW
q (t)χ(i−1∂x)(k∂xψ0, V0, U V0)‖L∞(R) ≤ C |t|−1/3NL1(R)(W0)

where ΣW
q is the solution operator to System 1.8.

The foregoing construction of Dq follows closely the classical construction of artificial vis-
cosity system as large-time asymptotic equivalents to systems that are only parabolic in the
hypocoercive sense of Kawashima. We refer the reader for instance to [13, Section 6], [31], [14,
Appendix B] or [32, Appendix A] for a description of the latter. A notable difference how-
ever is that in the diffusive context higher-order expansions of dispersion relations beyond the
second-order necessary to capture some dissipation does not provide any sharper description
as the second-order expansion already provides the maximal rate compatible with a first-order
expansion of eigenvectors.

We stress also that a significant difference with the third-order case dealt with in Theorem 1.4
is the necessity to introduce the low-frequency cut-off χ(i−1∂x). This is due to the fact that for
higher-order expansions one can not derive good dispersion properties for the full evolution from
the mere knowledge of such behavior for the low-frequency part. This is somehow analogous to
the fact that slow expansions of well-behaved parabolic systems may produce ill-posed systems.

At last one may also improve the description of the phase itself up to O(|t|−1/2) remainders.
But this requires a suitably tailored refined effective initial data.

Theorem 1.6. Averaged dynamics, sharpest description. Assume that the cnoidal wave of
parameters (k,M,P ) and phase shift zero is such that condition A holds.
Let q be an odd integer larger than 3, or q =∞.

There exists C such that for any W0 such that NL1(R)(W0) <∞ there exists a low-frequency

(ψ̃0, M̃0, P̃0) such that the local parameters (ψ,M,P ) of Theorem 1.3 may be chosen in such a
way that for any time t ∈ R with |t| ≥ 1∥∥(k∂xψ(t, ·),M(t, ·), P (t, ·))− ΣW

q (t)(ψ̃0, M̃0, P̃0)
∥∥
L∞(R)

≤ C |t|−(q+1)/(2(q+2))NL1(R)(W0)

and

‖ψ(t, ·)− e1 · (k∂x)−1ΣW
q (t)(ψ̃0, M̃0, P̃0)‖L∞(R) ≤ C |t|−(q−1)/(2(q+2))NL1(R)(W0) .

Before entering into proofs of our main statements, to make those statements slightly more
concrete let us summarize what we have learned at leading order from Theorems 1.3 and 1.4.
At leading order the behavior of S(t)(W0) is captured by a linear modulation of phase ψ(t, ·)Ux
and the phase shift kψ is the antiderivative of the first component of a three-dimensional vector
(kψx,M, P ) that is at leading-order a sum of three linear dispersive waves of Airy type, each
one traveling with its own velocity. In particular, three scales coexist : the oscillation of the
background wave at scale 1 in Ux, spatial separation of the three dispersive waves at linear
hyperbolic scale t, width of Airy waves of size t1/3. This is illustrated by direct simulations in
Figure 1. To fully appreciate the figure, note that oscillatory Airy tail is on the left for the
left-hand side and right-hand side dispersive waves and on the right for the middle one.

9



Figure 1. Three looks at the same time-evolution. The background wave has
elliptic parameter m = 0.5 hence period approximately 3.7081. Initial data for
the perturbation W0 is the product of a sinus with a Gaussian. Dark lines start
from the center of the Gaussian, and corresponds to linear group velocities.

1.6. Perspectives. For the linearized Korteweg–de Vries equation itself, besides the question of
proving condition A, still remains the question of providing a derivation of suitable modulation
systems similar to (1.8), when q > 3, by formal arguments, either by using directly a geometric
optic ansatz or by expanding the Hamiltonian energy.

Recall also that the decay proved here is too slow to be directly relevant at nonlinear level.
From this, two natural follow-up questions arise:

(1) At the nonlinear level, for the Korteweg–de Vies equation, can we still provide a —
more nonlinear! — slow modulation description of the asymptotic behavior obtained in
[23, 24] ?

(2) Can we perform a similar linear analysis in another situation that could be carried to
the nonlinear level ?

On the latter, natural candidates are to be found in dynamics near periodic plane waves of
dispersive systems in sufficienty high dimension.

1.7. Structure of the paper. The remaining part of the paper is devoted to the proofs of
foregoing theorems. In the next section we first recall some elements of Bloch analysis, extract
from [6] detailed information on the spectrum of L and derive from it some representations
of the corresponding time-evolution. In particular we provide both a spectral decomposition
of the evolution and its counterpart in terms of Green kernels. We also gather there spectral
asymptotic expansions in singular limits where either Floquet eigenvalues converge to zero or go
to ±i∞. In the third section we prove Theorems 1.1 and 1.2, by using respectively the above-
mentioned spectral and kernel representations. In the fourth section we achieve the proofs of
remaining results. Those rely mostly on low Floquet/low eigenvalue expansions in the spirit
of [14] combined with suitable oscillatory integral estimates. Proofs of the latter are given in
Appendix B. We point out that though the subject is quite classical Appendix B, oriented
towards derivation of asymptotically equivalent systems, could be of some general interest. In
Appendix A we gather some numerical experiments supporting that Assumption A always holds.

2. Spectral preparation

2.1. Integral transform. We first recall how to decompose any function g into a sum of func-
tions that are simpler from the point of view of periodicity, namely

(2.1) g(x) =

∫ π

−π
eiξx ǧ(ξ, x) dξ,
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with each ǧ(ξ, ·) periodic of period one, that is

∀x ∈ R, ǧ(ξ, x+ 1) = ǧ(ξ, x).

Such an inverse formula may be obtained by rewriting appropriately an inverse Fourier de-
composition. For this purpose we introduce direct and inverse Fourier transforms, via

ĝ(ξ) :=
1

2π

∫
R

e−iξxg(x) dx, g(x) =

∫
R

eiξx ĝ(ξ) dξ.

Then the adequate integral transform, called the Bloch transform or the Floquet-Bloch trans-
form, may be defined by

(2.2) B(g)(ξ, x) = ǧ(ξ, x) :=
∑
j∈Z

ei 2jπx ĝ(ξ + 2jπ).

The Poisson summation formula provides an alternative equivalent formula

ǧ(ξ, x) =
∑
`∈Z

e−iξ(x+`)g(x+ `) .

As follows readily from (2.2),
√

2π B is a total isometry from L2(R) to L2((−π, π), L2
per((0, 1))).

Interpolating with triangle inequalities also yields Hausdorff-Young inequalities, for 2 ≤ p ≤ ∞,

‖g‖Lp(R) ≤ (2π)1/p‖ǧ‖Lp′ ([−π,π],Lp((0,1))) , ‖ǧ‖Lp([−π,π],Lp′ ((0,1))) ≤ (2π)−1/p‖g‖Lp′ (R)

where p′ denotes conjugate Lebesgue exponent, 1/p+ 1/p′ = 1.
We have introduced the Bloch transform so as to turn differential operators with periodic

coefficients in multipliers with respect to the Floquet exponent ξ. Indeed for L as in (1.3) we
have

(Lg)(x) =

∫ π

−π
eiξx (Lξ ǧ(ξ, ·))(x) dξ,

where each Lξ acts on periodic functions as

Lξ := −ω (∂x + iξ) − k (∂x + iξ)(U ·) − k3 (∂x + iξ)3 .

On L2
per((0, 1)) each Lξ has compact resolvent and it depends analytically on ξ in the strong

resolvent sense.

2.2. Spectrum of L. Now we recall the content of [6, Theorem 7.1], slightly extended by using
[6, Remark 4] and some extra functional-analytic arguments.

We have fixed a cnoidal wave profile U to (1.1). Though such waves form a four-dimensional
family one may use Galilean invariance and invariances by spacial translation and a suitable
scaling to restrict the present discussion to a one-dimensional sub-family

U(x) = 12m cn2( xk ,m)

where m is an elliptic parameter15, m ∈ (0, 1), cn( · ,m) denotes the corresponding Jacobi elliptic
cosine function and wavenumber k is such that

2

k
=

∫ π/2

0

dθ√
1−m sin2(θ)

.

Corresponding velocity is then given by c = 4 (2m− 1).
For U as above we set η1 = 4 (m − 1), η2 = 4 (2m − 1) and η3 = 4m. Then for any couple

(λ, ξ) ∈ C× [−π, π) \ {(0, 0)}, λ ∈ σ(Lξ) if and only if there exists η ∈ ]−∞, η1) ∪ (η2, η3) such
that

λ2 = (η − η1) (η − η2) (η − η3)

15Note carefully that it is the square of the elliptic modulus.
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and

Im

(
− λ
k

∫ 1

0

dθ

η − c+ 1
3U(θ)

)
∈ ξ + 2πZ .

Moreover in this case λ is a simple eigenvalue of Lξ and an eigenfunction φ is provided by

eiξ xφ(x) =
(

1− k
3λ
−1Ux(x)

)
exp

(
−λ
k

∫ x

0

dθ

η − c+ 1
3U(θ)

)
while a solution φ̃ of the formally dual problem

λ̄ φ̃ = ω (∂x + iξ) φ̃ + k (∂x + iξ)
(
U φ̃
)

+ k3 (∂x + iξ)3 φ̃

is given by

eiξ xφ̃(x) =
η − c+ 1

3U(x)

η − c+ 1
3

∫ 1
0 U

exp

(
−λ
k

∫ x

0

dθ

η − c+ 1
3U(θ)

)
.

Normalization of φ and φ̃ ensures all together a suitable form of bi-orthogonality, detailed below,
convergence to trigonometric monomials in the limit |λ| → ∞ and the absence of singularities

on φ̃ in the limit λ→ 0.
To carry out our Floquet analysis we shall use some consistent labeling of the spectrum of

each Lξ. To this purpose we first observe that on ]−∞, η1) both

η 7→
√

(η1 − η) (η2 − η) (η3 − η) and η 7→ 1

k

∫ 1

0

√
(η1 − η) (η2 − η) (η3 − η)

c− η − 1
3U(θ)

dθ

are decreasing, respectively from ∞ to 0 and from ∞ to 2π. Therefore we may parametrize the
part of the spectrum of L arising from η ∈ ]−∞, η1] as λe,j(ξ), (j, ξ) ∈ Z× [−π, π) in a way that
ensures λe,0(0) = 0; the map (j, ξ) 7→ Im(λe,j(ξ)) is increasing when Z× [−π, π) is endowed with

alphabetical order, and odd; for any (j, ξ), λe,j(ξ) ∈ σ(Lξ); and for any j, λe,j(ξ)
ξ→π−→ λe,j+1(−π).

The structure of the spectrum related to (η2, η3) is less obviously read on above formulas even
though some pieces of information may be deduced from a count of multiplicity16. Since it is
immaterial to our analysis, for simplicity of notation, we shall do as it could be minimally17

parametrized, that is we shall write it as18 λp,j(ξ), (j, ξ) ∈ {1, 2}× [−π, π) in a way that ensures
λp,j(0) = 0 for any j; each map ξ 7→ Im(λp,j(ξ)) is odd; for any (σ, ξ), λp,j(ξ) ∈ σ(Lξ); and

λp,1(ξ)
ξ→π−→ λp,2(−π), λp,2(ξ)

ξ→π−→ λp,1(−π). Likewise we shall use notation φe,j(ξ, x), φp,j(ξ, x),

φ̃e,j(ξ, x), φ̃p,j(ξ, x), for corresponding eigenfunctions.
We use the above spectral decomposition to represent when ξ 6= 0 the evolution generated by

Lξ as

Sξ(t) =
∑

j∈{1,2}

eλp,j(ξ) t φp,j(ξ, ·) 〈φ̃p,j(ξ, ·), ·〉 +
∑
j∈Z

eλe,j(ξ) t φe,j(ξ, ·) 〈φ̃e,j(ξ, ·); ·〉

16For instance one knows in advance that each λ is at most triply covered by ∪ξσ(Lξ). Hence the loop may only
visit twice each λ.
17Otherwise one would need to introduce a larger number of pieces parametrized by a finite number of j. Numerical
experiments suggests that minimal parametrization does hold. This claim would follow from an examination of
limits η → η2 and η → η3 provided we were able to prove monotonicity of

η 7→ − 1

k

∫ 1

0

√
(η1 − η) (η2 − η) (η3 − η)

c− η − 1
3
U(θ)

dθ

on (η2, η3) or provided that we were able to prove that the previous mapping does note take the value −2π on
(η2, η3).
18The notational convention p and e is motivated by the fact that in the large period limit the spectrum associated
with the line may be thought as arising from the essential spectrum of the generator of the dynamics linearized
about a solitary wave while the loop emerges from an embedded eigenvalue. See [11, 34].
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where 〈·; ·〉 denotes canonical Hermitian scalar product19 on L2((0, 1)). Even when t = 0 this
requires some justification. Let us first observe that since for each fixed Floquet exponent ξ
the operator k3(∂x + iξ)3 is skew-adjoint on L2

per((0, 1)) with trace-class resolvents20, and Lξ
is a relatively compact perturbation of this operator, it follows from Keldysh’ theory that root
vectors of Lξ — that is, (φe,j(ξ, ·))j∈Z and (φp,j(ξ, ·))j∈{1,2} when ξ 6= 0 — form a complete

subset of L2
per((0, 1)) [22, Theorem 4.3]. The same is true for root vectors of their formally

adjoint operators. Since we have built simultaneously bi-orthogonal families, this ensures that
they form minimally complete families. It actually follows from very general arguments that for
ξ 6= 0 they do form a Schauder basis [12, Lemma 2.3]. Here we rather provide a direct proof of
the fact that they form a Risez basis, that is, an unconditional basis. This is a direct consequence
of the characterization in [10, Theorem 3.4.5] together with estimates proving Theorem 1.1 when
s = 0, see Proposition 3.1.

2.3. Small-eigenvalue expansions. When ξ → 0, λe,0(ξ), λp,1(ξ) and λp,2(ξ) converge to
zero and φe,0(ξ, ·), φp,1(ξ, ·) and φp,2(ξ, ·) become singular21. However as follows from Kato’s
perturbation theory their combined evolution

eλe,0(ξ) t φe,0(ξ, ·) 〈φ̃e,0(ξ, ·); ·〉 + eλp,1(ξ) t φp,1(ξ, ·) 〈φ̃p,1(ξ, ·); ·〉 + eλp,2(ξ) t φp,2(ξ, ·) 〈φ̃p,2(ξ, ·); ·〉
remains analytic in ξ even when ξ → 0. Moreover one may readily check on explicit formulas that
singularities are mild compared to those arising from generic splitting of Jordan block structures,
that include algebraic singularities described by Puiseux series, see [20, Section II.§1.2, p.65]. In
the case under study, since the spectrum lies on the imaginary axis such strong singularities are
precluded by arguments similar to those leading to Rellich’s theorem, see [30, Theorem XII.3].
However in the spectral analysis of dynamics linearized about periodic waves this fact turns out
to be a much wider phenomenon that is strongly connected with the existence of an averaged
dynamics, even when underlying waves are spectrally unstable and a Rellich-type argument fails.
See for instance [35, 26, 16, 5, 17]. In particular the small eigenvalue asymptotics provided below
is a corollary of the proof of [5, Theorem 1].

To stress symmetries in its statement and in similar following propositions, we simply drop

suffixes p and e when dealing with λe,0, λp,1 and λp,2, and φ̃e,0, φ̃p,1 and φ̃p,2. Concerning right
eigenfunctions however our convention is that suffix-less functions are desingularized, that is for
ξ 6= 0

(2.3) φ0(ξ, ·) = ikξ φe,0(ξ, ·) and φj(ξ, ·) = ikξ φp,j(ξ, ·) , j = 1, 2 .

Proposition 2.1. There exist ε0 > 0 and ξ0 ∈ (0, π) such that curves λj : [−ξ0, ξ0]→ B(0, ε0),
j = 0, 1, 2, are analytic and that for ξ ∈ [−ξ0, ξ0]

σ(Lξ) ∩B(0, ε0) = { λj(ξ) | j ∈ {0, 1, 2} }

and associated left and right eigenfunctions φ̃j(ξ, ·) and φj(ξ, ·), j = 0, 1, 2, satisfying pairing
relations

〈φ̃j(ξ, ·), φk(ξ, ·)〉 = ikξ δjk, 0 ≤ j, k ≤ 2,

are obtained as

(2.4)

φj(ξ, ·) = β
(j)
0 (ξ) q0(ξ, ·) + (ikξ)

2∑
l=1

β
(j)
l (ξ) ql(ξ, ·)

φ̃j(ξ, ·) = −(ikξ) β̃
(j)
0 (ξ) q̃0(ξ, ·) +

2∑
l=1

β̃
(j)
l (ξ, ·) q̃l(ξ, ·)

where

19That is, 〈f ; g〉 =
∫ 1

0
f̄g.

20They belong to the Schatten class Sp(L
2
per((0, 1))) whenever p > 1/3.

21We have indeed normalized φ and φ̃ to ensure that singularities remain confined to right eigenfunctions.
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• (q0(ξ, ·), q1(ξ, ·), q2(ξ, ·)) and (q̃0(ξ, ·), q̃1(ξ, ·), q̃2(ξ, ·)) are dual bases of spaces associated
with the spectrum in B(0, ε0) of respectively Lξ and its formal adjoint L∗ξ , that are an-

alytic in ξ and emerge from (U′, ∗ , ∗ ) and ( ∗ ,1,U ) at ξ = 0, where 1 denotes the
constant function with value 1;

• (β(0)(ξ), β(1)(ξ), β(2)(ξ)) and (β̃(0)(ξ), β̃(1)(ξ), β̃(2)(ξ)) are dual bases of C3 that are ana-
lytic in ξ.

The foregoing proposition enables us to perform a splitting of the evolution semi-group tailored
to quantify space-modulated stability, and essentially identical to those used by the author and
its collaborators in the study of parabolic systems, see [14]. Explicitly,

(2.5) S(t) = Ux e1 · sp(t) + S̃(t)

with sp(t) =
∑

j∈{0,1,2} s
p
j (t), the action of sp

j (t), j = 0, 1, 2, on a function g being defined on

the Fourier side by, for22 ξ ∈ R,

(2.6) ̂sp
j (t)(g)(ξ) =

χ(ξ)

ikξ
β(j)(ξ) eλj(ξ) t

〈
φ̃j(ξ, ·); ǧ(ξ, ·)

〉
and S̃(t) = S̃o(t)+S̃e(t), S̃o(t) and S̃e(t) being defined by their Bloch symbols as, for ξ ∈ (−π, π),

(2.7)

(S̃o(t))ξ =
(1− χ(ξ))

ikξ

∑
j∈{0,1,2}

eλj(ξ) tφj(ξ, ·)
〈
φ̃j(ξ, ·); ·

〉
+ χ(ξ)

∑
j∈{0,1,2}

eλj(ξ) t
φj(ξ, ·)− β(j)

1 (ξ)Ux
ikξ

〈
φ̃j(ξ, ·); ·

〉
(S̃e(t))ξ =

∑
j∈Z∗

eλe,j(ξ) tφe,j(ξ, ·)
〈
φ̃e,j(ξ, ·); ·

〉
where χ is a suitable symmetric cut-off function and e1 is the third vector of the canonical basis
of C3. For proofs of Theorems 1.1 and 1.2 we could have replaced in above definitions β(j)(ξ)

with β(j)(0) to deal with

φj(ξ, ·)− β(j)
0 (0)Ux = φj(ξ, ·)− φj(0, ·) .

The above definitions prove to be more convenient only when we turn to analyze asymptotic
behavior of solutions.

2.4. Large-eigenvalue expansions. In contrast with expansions when (λ, ξ)→ (0, 0), expan-
sions when |λ| → ∞ are readily obtained from explicit formulas of Subsection 2.2. Yet since they
play a prominent role in the analysis we find convenient to state at least some of them explicitly
here. Note also that, while we derive them here from explicit formulas, those expansions are in
principle accessible by a direct analysis, not relying on integrability.

We start with a basic lemma.

Lemma 2.2. Uniformly in ξ ∈ (−π, π),

λe,j(ξ)
|j|→∞

= (k(2π j + ξ))3 + O(j) .

Proof. We focus on the limit j → ∞, the full result being then derived from the symmetry
λe,j(ξ) = −λe,−j(−ξ). In this case the lemma follows from the fact that in terms of the Lax
spectral parameter η we have on one hand

(2.8)
λ

i|η|
3
2

η→−∞
= 1 + O

(
1

|η|

)
22With usual meaning that zero times something undefined equals zero.
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and, on the other hand,

i(2π(j + 1) + ξ)
η→−∞

= − λ

kη
,+O

(
|λ|
|η|2

)
so that

(2.9) ik(2π(j + 1) + ξ)
η→−∞

= |η|
1
2 + O

(
|η|−

1
2

)
.

Note that here we have left implicit the dependence of λ and η on (j, ξ). For the sake of concision
in formulas, we shall do so repeatedly from now on. �

The foregoing lemma quantifies at the level of eigenvalues how close Lξ is from −k3(∂x+ iξ)3.
We now provides similar results at the level of eigenfunctions.

Lemma 2.3. For any s ∈ N, uniformly in (ξ, x) ∈ (−π, π)×R,

∂sxφe,j(ξ, x)
|j|→∞

= (2iπ j)s φe,j(ξ, x) + O(|j|s−1) .

Uniformly in (ξ, x) ∈ (−π, π)×R,

φ̃e,j(ξ, x)
|j|→∞

= φe,j(ξ, x) + O(|j|−2) .

Proof. Again we may focus on the limit j → ∞, relying this time on symmetries φe,j(ξ, x) =

φe,−j(−ξ, x) and φ̃e,j(ξ, x) = φ̃e,−j(−ξ, x). The first expansion is then derived from the fact that
φe,j(ξ, x) equals

e2iπ x (j+1) ×
(

1− k
3λ
−1Ux(x)

)
× exp

(
−λ
k

∫ x

0

∫ 1

0

1
3(U(θ)− U(θ′)) dθ dθ′

(η − c+ 1
3U(θ)) (η − c+ 1

3U(θ′))

)
combined with estimates (2.8)-(2.9). Along the same lines the second one follows readily from

the fact that φ̃e,j(ξ, x) equals

e2iπ x (j+1) ×

(
1 +

U(x)−
∫ 1

0 U

3(η − c) +
∫ 1

0 U

)
× exp

(
−λ
k

∫ x

0

∫ 1

0

1
3(U(θ)− U(θ′)) dθ dθ′

(η − c+ 1
3U(θ)) (η − c+ 1

3U(θ′))

)
combined with the foregoing expansions. �

Proposition 2.4. There exist a family of smooth functions of period one (r`)`∈N and a sequence
of coefficients (a`(j, ξ))(`,j,ξ)∈N×Z∗×(−π,π) such that for any ` ∈ N, uniformly in ξ ∈ (−π, π)

a`(j, ξ)
|j|→∞

= O
(

1

|j|`

)
and for any s ∈ N, there exists Rs(j, ξ, x) such that

φ̃e,j(ξ, x) =

s∑
`=0

a`(j, ξ) exp (2iπ x j) r`(x) + Rs(j, ξ, x)

and uniformly in (ξ, x) ∈ (−π, π)×R

Rs(j, ξ, x)
|j|→∞

= O
(

1

|j|s+1

)
Proof. Again by using symmetries we may restrict to j ∈ N∗. To turn expansions near infinity
into expansions near zero we introduce Φ(τ, x) defined as

e2iπ x ×

(
1 + τ2 −U(x) +

∫ 1
0 U

3 + 3τ2c− τ2
∫ 1

0 U

)

× exp

(
τ

√
(1 + τ2η1) (1 + τ2η2) (1 + τ2η3)

k

∫ x

0

∫ 1

0

1
3(U(θ)− U(θ′)) dθ dθ′

(1 + τ2c− 1
3τ

2U(θ)) (1 + τ2c− 1
3τ

2U(θ′))

)
15



so that for any (j, ξ) ∈ N∗ × (−π, π)

φ̃e,j(ξ, x) = e2iπ x j Φ
(
|ηe,j(ξ)|−

1
2 , x
)
.

Note that Φ is smooth in both variables on (−|η1|−
1
2 , |η1|−

1
2 )×R and periodic of period one in

its second variable. The result is now obtained with functions

r`(x) =
1

`!
∂`τΦ(0, x) , (`, x) ∈ N∗ ×R ,

coefficients
a`(j, ξ) = |ηe,j(ξ)|−

`
2 , (`, j, ξ) ∈ N×N∗ × (−π, π) ,

and remainders

Rs(j, ξ, x) = |ηe,j(ξ)|−
s+1

2

∫ 1

0

∂s+1
τ Φ(t |ηe,j(ξ)|−

1
2 , x)

s!
(1− t)s dt .

�

In Subsection 2.3, we have exhibited the very special role played by Ux in the spectral decom-
position of L0. To make the most of the associated cancellations for non zero Floquet exponents
we then need a uniform control on how left eigenfunctions vary with ξ. The following expansion
provides such a control.

Proposition 2.5. There exist a family of smooth functions of period one (r`)`∈N∗ and a sequence
of coefficients (b`(j, ξ))(`,j,ξ)∈N∗×Z∗×(−π,π) such that for any ` ∈ N∗, uniformly in ξ ∈ (−π, π)

b`(j, ξ)
|j|→∞

= O
(
|ξ|
|j|`+1

)
and for any s ∈ N, there exists R̃s(j, ξ, x) such that

φ̃e,j(ξ, x) = φ̃e,j(0, x) +

s∑
`=1

b`(j, ξ) exp (2iπ x j) r`(x) + R̃s(j, ξ, x)

and uniformly in (ξ, x) ∈ (−π, π)×R

R̃s(j, ξ, x)
|j|→∞

= O
(
|ξ|
|j|s+2

)
Proof. With Φ as in the foregoing proof the result is obtained with functions

r`(x) =
1

`!
∂`τΦ(0, x) , (`, x) ∈ N∗ ×R ,

coefficients

b`(j, ξ) = |ηe,j(ξ)|−
`
2 − |ηe,j(0)|−

`
2 , (`, j, ξ) ∈ N∗ ×N∗ × (−π, π) ,

and remainders R̃s(ξ, x) given by(
|ηe,j(ξ)|−

s+1
2 − |ηe,j(0)|−

s+1
2

) ∫ 1

0

∂s+1
τ Φ(t |ηe,j(ξ)|−

1
2 , x)

s!
(1− t)s dt

+ |ηe,j(0)|−
s+1

2

(
|ηe,j(ξ)|−

1
2 − |ηe,j(0)|−

1
2

)
×
∫ 1

0

∫ 1

0

∂s+2
τ Φ(t (|ηe,j(0)|−

1
2 + σ (|ηe,j(ξ)|−

1
2 − |ηe,j(0)|−

1
2 ), x)

s!
t (1− t)s dσ dt

since, as follows from an elementary computation, ∂ξ(|ηe,j |
1
2 ) converges uniformly on (−π, π) to

k−1 as j →∞. Indeed for some explicit smooth function J satisfying J(0) = 1 stands

kξ = |ηe,j(ξ)|
1
2 J(|ηe,j(ξ)|−1)− |ηe,j(0)|

1
2 J(|ηe,j(0)|−1) .
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�

2.5. Kernel representation. We shall prove dispersive decay by estimating spatial represen-
tation of the solution. To do so we need to convert the foregoing purely spectral description in
terms of Green kernels.

The first easy key observation is that expanding Bloch transform definition (2.2) yields for

any smooth periodic function φ̃, any smooth localized g and any ξ ∈ (−π, π)

〈φ̃; ǧ(ξ, ·)〉 =

∫
R

e−iξz φ̃(z) g(z) dξ

since Fourier series inversion formula provides for any z

1

2π

∑
`∈Z

∫ 1

0
e−2iπ`(y−z) φ̃(y) dy = φ̃(z) .

With the purpose of analyzing oscillatory integrals where amplitudes are separated from
oscillations we also pull out from Floquet right and left eigenfunctions some oscillating factors.
This factorization allows for a consistent gluing of these Floquet eigenfunctions. Therefore for
(j, ξ) ∈ Z× [−π, π) \ {(0, 0)} we set for any x ∈ R

λe(2π j+ξ) = λe,j(ξ) , Φe(2π j+ξ, x) = φe,j(ξ, x) e−2iπ j x , Φ̃e(2π j+ξ, x) = φ̃e,j(ξ, x) e−2iπ j x .

Likewise for ξ ∈ [−π, 0) ∪ (0, π) and x ∈ R we set

λp(ξ) = λp,1(ξ) , Φp(ξ, x) = φp,1(ξ, x) , Φ̃p(ξ, x) = φ̃p,1(ξ, x) ,

and for (j, ξ) ∈ {1} × [−π, 0) ∪ {−1} × (0, π)

λp(2π j+ξ) = λp,2(ξ) , Φp(2π j+ξ, x) = φp,2(ξ, x) e−2iπ j x , Φ̃p(2π j+ξ, x) = φ̃p,2(ξ, x) e−2iπ j x .

Accordingly we build a ”glued” version of the cut-off function introduced in Section 2.3 by
setting

χ̃ = χ + χ(·+ 2π) + χ(· − 2π) .

After this preparation we may define in a distributional23 sense

Ke(t, x, y) =

∫
R

eλe(ξ) t+i ξ (x−y) (1− χ(ξ)) Φe(ξ, x) Φ̃e(ξ, y) dξ

and in a point-wise sense

Kp(t, x, y) =

∫ 2π

−2π
eλp(ξ) t+i ξ (x−y) (1− χ̃(ξ)) Φp(ξ, x) Φ̃p(ξ, y) dξ

and for j ∈ {0, 1, 2}

Ko,j(t, x, y) =

∫ π

−π
eλp,j(ξ) t+i ξ (x−y) χ(ξ)

φj(ξ, x)− β(j)
1 (ξ)Ux(x)

ikξ
φ̃p,j(ξ, y) dξ .

This ensures that for any smooth and localized g and any (t, x)

S̃(t)(g)(x) =

∫
R

(
Ke(t, x, y) +Kp(t, x, y) +

∑
j∈{0,1,2}

Ko,j(t, x, y)
)
g(y) dy .

We need a similar description for the action on ψUx in terms of ψx. It follows from the
discussion in Section 3.1 that we may focus on the case where ψ is low-frequency and centered.
To quantify the corresponding gain we choose a symmetric cut-off function χ0 such that supp χ ⊂

23It turns out that this actually defines a bounded function Ke(t, ·, ·) when t 6= 0.
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supp(1 − χ0) and supp χ0 ⊂ (−π, π). Then if ψ is centered, low-frequency in the sense that

supp ψ̂ ⊂ supp χ and such that ∂xψ is localized, then for any (t, x)

S̃(t)(ψ Ux)(x) =

∫
R

(
Ge(t, x, y) +Gp(t, x, y) +

∑
j∈{0,1,2}

Go,j(t, x, y)
)
ψx(y) dy

where Ge, Gp and Go, are defined in a point-wise way respectively by

(2.10) Ge(t, x, y) =
∑
j∈Z

∫ π

−π
eλe,j(ξ) t+i ξ (x−y) +2iπj xAe,j(ξ, x) dξ

with amplitudes

Ae,j(ξ, x) = χ0(ξ) (1− χ(2πj + ξ)) Φe(2π j + ξ, x)
〈

e2iπj · Φ̃e(2π j+ξ, · )−Φ̃e(2π j, · )
−iξ ;Ux

〉
by

(2.11) Gp(t, x, y) =
∑

j∈{1,2}

∫ π

−π
eλp,j(ξ) t+i ξ (x−y)Ap,j(ξ, x) dξ

with amplitudes

Ap,j(ξ, x) = χ0(ξ)(1− χ(ξ))φp,j(ξ, x)
〈
φ̃p,j(ξ, · )−φ̃p,j(0, · )

−iξ ;Ux

〉
and for j ∈ {0, 1, 2} by

(2.12) Go,j(t, x, y) =

∫ π

−π
eλp,j(ξ) t+i ξ (x−y)Ao,j(ξ, x) dξ

with amplitude

Ao,j(ξ, x) = χ(ξ)
φj(ξ, x)− β(j)

1 (ξ)Ux(x)

ikξ

〈
φ̃p,j(ξ, · )−φ̃p,j(0, · )

−iξ ;Ux

〉
.

For easy reference we also state within our new set of notation corollaries of the analysis
carried out along the proof of Propositions 2.4 and 2.5 and also needed in the study of foregoing
kernels.

Proposition 2.6. Φe, Φ̃e and ∂ξΦ̃e are uniformly bounded on supp(1− χ)×R and, uniformly
in x ∈ R,

|∂ξΦe(ξ, x)| + |∂ξΦ̃e(ξ, x)| + |∂2
ξ Φ̃e(ξ, x)| |ξ|→∞= O

(
|ξ|−2

)
.

At last representations corresponding to sp may also be obtained. Explicitly, for j ∈ {0, 1, 2},
when g is smooth and localized

k∂xs
p
j (t)(g)(x) = e1 ·

∫
R
ko,j(t, x, y) g(y) dy

with

ko,j(t, x, y) =

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(ξ) φ̃j(ξ, y) dξ ;

and, when ψ is centered, ∂xψ is localized and supp ψ̂ ⊂ supp χ

k∂xs
p
j (t)(ψ Ux) = e1 ·

∫
R
go,j(t, x, y) ψx(y) dy

with

go,j(t, x, y) =

∫ π

−π
ei ξ (x−y) +λj(ξ) t χ(ξ) β(j)(ξ)

〈
φ̃j(ξ, · )−φ̃j(0, · )

−iξ ;Ux

〉
dξ .

3. Stability estimates

Here begins the core of our proofs.
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3.1. Reduction to centered slow space modulation. We first show that as far as stability
results in X = W s,p(R), (s, p) ∈ N × [1,∞], are concerned we may replace the definition (1.4)
with

(3.1) NX(W ) = inf
W=V+Uxψ

ψ(∞)=−ψ(−∞)
ψ is low frequency

‖V ‖X + ‖ψx‖X .

By ψ(∞) = −ψ(−∞) we mean that ψ = ∂−1
x ψx, where ∂−1

x is defined as a principal value
on the Fourier side. Obviously this constraint does not restrict potential applications of linear
estimates to a nonlinear analysis since at the nonlinear level it could be achieved initially by
translating U by 1

2(ψ0(∞) + ψ0(−∞)). However it may also be achieved directly at the linear
level since S(t) commutes with translation by a constant multiple of Ux.

As for being low-frequency, it means here having a Fourier transform supported in (−π, π).
We shall exhibit decompositions that satisfy this extra constraint so the only thing to be proved

here is that one may replace any decomposition V0 + Uxψ0 with a decomposition Ṽ0 + Uxψ̃0

satisfying the extra constraint and such that

‖Ṽ0‖X + ‖(ψ̃0)x‖X ≤ C (‖V0‖X + ‖(ψ0)x‖X)

when X is any W s,p(R) and with a constant C depending only on X. To do so we introduce
localizations in frequencies (ψ0)LF and (ψ0)HF defined on the Fourier side by, for any ξ ∈ R,

̂(ψ0)LF (ξ) = χ(ξ) ψ̂0(ξ) and ̂(ψ0)HF (ξ) = (1− χ(ξ)) ψ̂0(ξ)

where χ is a suitable symmetric cut-off function. Then we set

Ṽ0 = V0 + (ψ0)HFUx and ψ̃0 = (ψ0)LF .

This achieves a suitable decomposition since both ∂x(ψ0)LF and (ψ0)HF are obtained from ∂xψ0

by a convolution with a L1 function as both ξ 7→ χ(ξ) and ξ 7→ (1− χ(ξ)) ξ−1 lie in H1(R) and
x 7→ (1 + |x|)−1 is square-integrable.

3.2. Bounded stability. Since the evolution is unitary in coordinates

(〈φ̃e,j(ξ, ·); W̌ (ξ, ·)〉)(j,ξ)∈Z∗×(−π,π) , (〈φ̃j(ξ, ·); W̌ (ξ, ·)〉)(j,ξ)∈{0,1,2}×(−π,π) ,

Theorem 1.1 can be proved by showing that NHs(R) may be equivalently written in terms of
those coordinates.

To do so we define, for s ∈ R+, ‖ · ‖Xs through

‖W‖2Xs =
∥∥∥(j, ξ) 7→ (2π j)s

〈
φ̃e,j(ξ, ·); W̌ (ξ, ·)

〉∥∥∥2

`2(Z∗;L2([−π,π]))

+
∥∥∥(j, ξ) 7→

〈
φ̃j(ξ, ·); W̌ (ξ, ·)

〉∥∥∥2

`2({0,1,2};L2([−π,π]))
.

Theorem 1.1 follows from the following proposition.

Proposition 3.1. For any s ∈ N there exist positive C and C ′ such that

C ‖ · ‖Xs ≤ NHs(R)(·) ≤ C ′ ‖ · ‖Xs .

Proof. As follows from the discussion in Subsection 3.1, we may safely use definition in (3.1).
We first prove the right-hand side inequality and starts by the case s = 0. Since

Id = S(0) = Uxe1 · sp(0) + S̃(0)

and sp(0) provides centered low-frequency phases we only need to prove that there exists some
constant C such that

‖S̃(0)(W0)‖L2(R) ≤ C ‖W0‖X0

‖∂xsp(0)(W0)‖L2(R) ≤ C ‖W0‖X0 .
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The latter inequality stems directly from classical Parseval identity with

C =
√

2π
√

3 k−1 max
(j,ξ){0,1,2}×[−ξ0,ξ0]

|β(j)(ξ)| .

Likewise ‖S̃o(0)(W0)‖L2(R) is bounded by C ‖W0‖X0 with

C =
√

2π
√

3 k−1

 max
j∈{0,1,2}
ξ∈[−π,π]

|χ′(ξ)|2‖φj(ξ, ·)‖2L2((0,1)) + max
j∈{0,1,2}
ξ∈[−π,π]

|ξ|−2‖φj(ξ, ·)− β(j)
1 (ξ)Ux‖2L2((0,1))


1/2

by using Parseval identity for the Bloch transform. There only remains to bound ‖S̃e(0)(W0)‖L2(R).

Applying again Parseval identity the result would follow from bounding ‖(S̃e(0)(W0))̌ (ξ, ·)‖L2((0,1))

by a multiple uniform in ξ of ‖j 7→ 〈φ̃e,j(ξ, ·); W̌0(ξ, ·)〉‖`2(Z∗). Now for any ξ ∈ [−π, π] bi-
orthogonality relations imply

‖(S̃e(0)(W0))̌ (ξ, ·)‖2L2((0,1))

=
∑
j∈Z∗

∣∣∣〈φ̃e,j(ξ, ·); W̌0(ξ, ·)
〉∣∣∣2

+

〈∑
j∈Z∗

(φe,j(ξ, ·)− φ̃e,j(ξ, ·))
〈
φ̃e,j(ξ, ·); W̌0(ξ, ·)

〉
; (S̃e(0)(W0))̌ (ξ, ·)

〉
≤
∑
j∈Z∗
|〈φ̃e,j(ξ, ·); W̌0(ξ, ·)〉|2 + C0

( ∑
j∈Z∗
|〈φ̃e,j(ξ, ·); W̌0(ξ, ·)〉|2

)1/2‖(S̃e(0)(W0))̌ (ξ, ·)‖L2((0,1))

with

C0 = sup
ζ∈[−π,π]

( ∑
j∈Z∗
‖φe,j(ζ, ·)− φ̃e,j(ζ, ·)‖2L2((0,1))

)1/2
that is indeed finite by Proposition 2.3. This concludes the proof of the right-hand inequality
when s = 0.

We now explain how to extend the foregoing analysis to general s. A slight variation on above

arguments show that actually both ‖∂xsp(0)(W0)‖Hs(R) and ‖S̃o(0)(W0)‖Hs(R) are bounded by

a multiple of ‖W0‖X0 so that we may focus on bounding ‖S̃e(0)(W0)‖Hs(R). To rely on Parseval

identity we aim at bounding ‖(∂x + iξ)s(S̃e(0)(W0))̌ (ξ, ·)‖L2((0,1)). To do so we expand

‖(∂x + iξ)s(S̃e(0)(W0))̌ (ξ, ·)‖L2((0,1))

≤

∥∥∥∥∥∥
∑
j∈Z∗

(2πij + iξ)sφe,j(ξ, ·)
〈
φ̃e,j(ξ, ·); W̌0(ξ, ·)

〉∥∥∥∥∥∥
L2((0,1))

+

∥∥∥∥∥∥
∑
j∈Z∗

((∂x + iξ)sφe,j(ξ, ·)− (2πij + iξ)sφe,j(ξ, ·))
〈
φ̃e,j(ξ, ·); W̌0(ξ, ·)

〉∥∥∥∥∥∥
L2((0,1))

.

It follows from the s = 0 analysis that the first term on the right-hand side inequality is bounded

by a multiple of ‖j 7→ (2πij + iξ)s〈φ̃e,j(ξ, ·); W̌0(ξ, ·)〉‖`2(Z). Moreover Proposition 2.3 yields

that the second one is also bounded by a multiple of ‖j 7→ |j|s〈φ̃e,j(ξ, ·); W̌0(ξ, ·)〉‖`2(Z). This is
sufficient to conclude the proof of the second inequality in Proposition 3.1.

We now turn to the proof of the first inequality. We must prove that there exists some
constant C such that for any V0 ∈ Hs(R) and any ψ0 low-frequency, centered and such that
∂xψ0 ∈ Hs(R)

‖V0‖Xs ≤ C ‖V0‖Hs(R) , ‖Uxψ0‖Xs ≤ C ‖∂xψ0‖Hs(R) .
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We derive the former inequality essentially from Proposition 2.4. First observe that uniformly
in ξ ∈ (−π, π) ∥∥∥j 7→ 〈

φ̃j(ξ, ·); V̌0(ξ, ·)
〉∥∥∥

`2({0,1,2})
≤ C ‖V̌0(ξ, ·)‖L2((0,1))

with

C = max
η∈(−π,π)

∥∥∥(j, x) 7→ φ̃j(η, x)
∥∥∥
`2({0,1,2};L2((0,1)))

Moreover with notation of Proposition 2.4 uniformly in ξ ∈ (−π, π)∥∥∥j 7→ (2π j)s
〈
φ̃e,j(ξ, ·); V̌0(ξ, ·)

〉∥∥∥
`2(Z∗)

≤
s∑
`=0

C` ‖r` V̌0(ξ, ·)‖Hs−`((0,1)) + C ′s ‖V̌0(ξ, ·)‖L2((0,1))

with

C` = sup
j∈Z∗

ζ∈(−π,π)

(2π|j|)` |a`(j, ζ)| , 0 ≤ ` ≤ s ,

and

C ′s =
∥∥ j 7→ (2π j)s sup

ζ∈(−π,π)
‖Rs(j, ζ, ·)‖L2((0,1))

∥∥
`2(Z∗)

.

Hence for some constant C, uniformly in ξ ∈ (−π, π)

∥∥∥j 7→ (2π j)s
〈
φ̃e,j(ξ, ·); V̌0(ξ, ·)

〉∥∥∥
`2(Z∗)

≤ C

(
s∑
`=0

‖(∂x + iξ)`V̌0(ξ, ·)‖2
)1/2

.

This enables us to achieve the proof of the claimed estimate by appealing to Parseval identity.
To prove the remaining estimate we first observe that since ψ0 is low-frequency we may benefit
from orthogonality relations provided by Proposition 2.1 to derive

〈
φ̃(ξ, ·); (Uxψ0)̌ (ξ, ·)

〉
= (̂∂xψ0)(ξ)

〈
φ̃(ξ, ·)− φ̃(0, ·)

−iξ
;Ux

〉

both for φ̃ = φ̃e,j , j ∈ Z∗, and for φ̃ = φ̃j , j ∈ {0, 1, 2}. Then with notation of Proposition 2.5,
uniformly in ξ ∈ (−π, π)

‖j 7→ (2π j)s〈φ̃e,j(ξ, ·); (Uxψ0)̌ (ξ, ·)〉‖`2(Z∗)

+ ‖j 7→ 〈φ̃j(ξ, ·); (Uxψ0)̌ (ξ, ·)〉‖`2({0,1,2}) ≤ C |(̂∂xψ0)(ξ)|

with

C = ‖j 7→ (2πj)−1‖`2(Z∗)

s∑
`=1

‖r̄` Ux‖Hs−`((0,1)) sup
j∈Z∗

ζ∈(−π,π)

|j|`+1

|ζ| |b`(j, ζ)|

+ ‖j 7→ (2πj)−2‖`1(Z∗) ‖Ux‖L2((0,1)) sup
j∈Z∗

ζ∈(−π,π)

(2π |j|)s+2

|ζ| ‖R̃s(j, ζ, ·)‖L2((0,1))

+ ‖Ux‖L2((0,1)) ‖j 7→ max
ζ∈(−π,π)

‖∂ξφ̃j(ζ, ·)‖L2((0,1))‖0,1,2 .

Then applying the classical Parseval identity achieves the proof of the proposition. �
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3.3. Asymptotic stability. Theorem 1.2 follows readily from the following proposition.

Proposition 3.2. For any cnoidal wave satisfying condition A, there exists a constant C such
that for any (t, x, y) ∈ R3

|t|1/2 |Ke(t, x, y)| + (1 + |t|)1/2 |Kp(t, x, y)| + (1 + |t|)1/3
∑

j∈{0,1,2}

|Ko,j(t, x, y)| ≤ C

|t|1/2 |Ge(t, x, y)| + (1 + |t|)1/2 |Gp(t, x, y)| + (1 + |t|)1/3
∑

j∈{0,1,2}

|Go,j(t, x, y)| ≤ C

and

(1 + |t|)1/3
∑

j∈{0,1,2}

|ko,j(t, x, y)| + (1 + |t|)1/3
∑

j∈{0,1,2}

|go,j(t, x, y)| ≤ C .

In turn Proposition 3.2 follows readily from estimates obtained in Section 2 and the classical
van der Corput Lemma which we recall below ; see for instance [21, Corollary 1.1] or Appendix B
for a proof.

Lemma 3.3. Let p ∈ N\{0}. There exists C such that for any closed interval I and any smooth
functions a : I → R and F : I → C such that

• |a(p)| is bounded away from 0 on I and, when p = 1, |a(p)| is monotone and coercive
• F ′ is integrable

then
∫
I ei a(ξ) F (ξ) dξ is well-defined and∣∣∣∣∫

I
ei a(ξ) F (ξ) dξ

∣∣∣∣ ≤ C

(infI |a(p)|)1/p

[
sup
I
|F | +

∫
I
|F ′|

]
.

4. Asymptotic behavior

Estimates of the foregoing section.

4.1. Spectral validity. The following proposition is the key spectral observation leading to
Theorem 1.3.

Proposition 4.1. In Proposition 2.1 one may choose

(q0(0, ·), q1(0, ·), q2(0, ·)) = (Uk,M,P
x , ∂MUk,M,P , ∂PUk,M,P )

and

∂ξq0(0, ·) = ik ∂kUk,M,P .

Moreover, then, (β0(0), β1(0), β2(0)) and (β̃0(0), β̃1(0), β̃2(0)) are dual right and left eigenbases
of

−ωI− k

dω(a)
dP (a)
dF (a)


associated with eigenvalues (a

(0)
0 , a

(1)
0 , a

(2)
0 ), that are such that

λj(ξ)
ξ→0
= iξa

(j)
0 +O(|ξ|3) .

Again this is a corollary of the proof of [5, Theorem 1].

The corresponding choice will be made from now on.
22



4.2. Slow modulation behavior. To prove Theorem 1.3 we first choose (ψ,M,P ) according
to

ψ(t, ·) = e1 · sp(t)(W0)

and k∂xψ(t, ·)
M(t, ·)
P (t, ·)

 = k∂xs
p(t)(W0) .

In particular if we pick (ψ0, V0) such that W0 = ψ0 Ux +V0 and ‖∂xψ0‖L1(R) + ‖V0‖L1(R) < +∞
then k∂xψ(t, x)

M(t, x)
P (t, x)

 =
∑

j∈{0,1,2}

∫
R

[ko,j(t, x, y)V0(y) + go,j(t, x, y) ∂xψ0(y)] dy

so that estimates of Theorem 1.3 on (k∂xψ,M,P ) are corollaries of Proposition 3.2.
Actually Proposition 3.2 contains already a significant part of Theorem 1.3. The remaining

part is to prove that the foregoing definitions do capture the main contributions corresponding
to Ko,j and Go,j terms. For j ∈ {0, 1, 2} we may explicitly derive from Proposition 4.1 that

Ko,j(t, x, y) = dUk,M,P (x) · (ko,j(t, x, y)) + K̃o,j(t, x, y)

Go,j(t, x, y) = dUk,M,P (x) · (go,j(t, x, y)) + G̃o,j(t, x, y)

with

K̃o,j(t, x, y) =

∫ π

−π
eλp,j(ξ) t+i ξ (x−y) χ(ξ)

φj,quad(ξ, x)

ikξ
φ̃p,j(ξ, y) dξ .

and

G̃o,j(t, x, y) =

∫ π

−π
eλp,j(ξ) t+i ξ (x−y) χ(ξ)

φj,quad(ξ, x)

ikξ

〈
φ̃p,j(ξ, · )−φ̃p,j(0, · )

−iξ ;Ux

〉
dξ

where with notational conventions introduced in Proposition 2.1

φj,quad(ξ, ·) = β
(j)
0 (ξ) [q0(ξ, ·)− q0(0, ·)− ∂ξq0(0, ·) ξ] + (ikξ)

2∑
l=1

β
(j)
l (ξ) [ql(ξ, ·)− ql(0, ·)] .

Now we achieve the proof of Theorem 1.3 with the following proposition.

Proposition 4.2. For any cnoidal wave satisfying condition A, there exists a constant C such
that for any (t, x, y) ∈ R3

(1 + |t|)1/2
∑

j∈{0,1,2}

( |K̃o,j(t, x, y)|+ |G̃o,j(t, x, y)| ) ≤ C .

In turn the foregoing proposition follows from the following refined van der Corput lemma,
applied with p = 3, α = 1, ξ∗ = 0. See Appendix B for a proof of the lemma.

Lemma 4.3. Let p ∈ N \ {0, 1} and α ∈ [0, 1]. There exists C such that for any closed interval
I and any smooth functions a : I → R and F : I → C such that

• |a(p)| is bounded away from 0 on I

• |a(p−1)| vanishes at ξ∗ ∈ I such that G := F × | · −ξ∗|−α is bounded
• F ′ is integrable

then ∣∣∣∣∫
I

ei a(ξ) F (ξ) dξ

∣∣∣∣ ≤ C

(infI |a(p)|)(α+1)/(p+α(p−2))

[
sup
I
|F | +

∫
I
|F ′| + sup

I
|G|
]
.
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4.3. Modulation equations. The foregoing oscillatory lemma are well-adapted to expan-
sions of eigenvectors. It already tell us that to prove Theorems 1.4 and 1.5 one may replace∑

j∈{0,1,2} ko,j(t, x, y) with∑
j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0) φ̃j(0, y) dξ

=
∑

j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0) β̃(j)(0) ·

 0
1

U(y)

 dξ

and
∑

j∈{0,1,2} go,j(t, x, y) with∑
j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0)

〈
∂ξφ̃j(0, · )
−i ;Ux

〉
dξ

=
∑

j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0) β̃(j)(0) ·

k0
0

 dξ

since
〈 ∂ξ q̃1(0);Ux〉 = −〈 q̃1(0); ∂ξq0(0)〉 = −ik∂kM(a) = 0

〈 ∂ξ q̃2(0);Ux〉 = −〈 q̃2(0); ∂ξq0(0)〉 = −ik∂kP (a) = 0 .

For comparison, note that

ΣW
q (t)χ(i−1∂x)(a) =

∫
R
σ(q)(t, x, y) a(y) dy

with σ(q) =
∑

j∈{0,1,2} σ
(q)
j and, for j ∈ {0, 1, 2},∫ π

−π
eiξ(x−y)+λ

(q)
j (ξ) t χ(ξ) β(j)(0) β̃(j)(0) dξ .

Therefore the missing piece is a lemma allowing to measure the effect of expansions of eigenvalues.
This is the purpose of the following lemma. Its proof is also given in Appendix B.

Lemma 4.4. Let p ∈ N \ {0, 1}, q > p, κ > 0 and M ∈ R+. There exist positive ε0 and C such
that for any closed interval I and any smooth functions ω : I → R, ω0 : I → R and F : I → C
such that

• |ω(p)| and |ω(p)
0 | are larger than κ

• |ω(p−1)| and |ω(p−1)
0 | vanish at ξ∗ ∈ I such that I ⊂ [ξ∗ − ε0, ξ∗ + ε0]

• F ′ is integrable on I

• |ω(`) − ω(`)
0 | × | · −ξ∗|−q+` is bounded by M for any 0 ≤ ` ≤ p− 2

then for any |t| ≥ 1∣∣∣∣∫
I
(eiω(ξ)t − eiω0(ξ)t) F (ξ) dξ

∣∣∣∣ ≤ C

|t|(q−1)/(q(p−1))

[
sup
I
|F | +

∫
I
|F ′|

]
.

Lemma 4.5. Let q be an odd integer larger than 3, κ > 0 and M ∈ R+. There exist positive
ε0 and C such that for any closed interval I and any smooth functions ω : I → R, ω0 : I → R
and F : I → C such that

• |ω′′′ | and |ω′′′0 | are larger than κ and smaller than M

• |ω′′ | and |ω′′0 | vanish at ξ∗ ∈ I such that I ⊂ [ξ∗ − ε0, ξ∗ + ε0]
• G := F × | · −ξ∗| and H := F ′ × | · −ξ∗|2 are bounded

• |ω(`) − ω(`)
0 | × | · −ξ∗|−q+` is bounded by M for any 0 ≤ ` ≤ 2
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then for any |t| ≥ 1∣∣∣∣∫
I
(eiω(ξ)t − eiω0(ξ)t) F (ξ) dξ

∣∣∣∣ ≤ C

|t|(q−3)/(2q)

[
sup
I
|G| + sup

I
|H|

]
.

Those are directly applied to obtain Theorem 1.5. To conclude the proof of Theorem 1.4,
we only need to add that by using classical van der Corput lemma, one proves that one may
actually replace ΣW

3 (t)χ(i−1∂x) with ΣW
3 (t) at the level of comparison we aim at.

To prove Theorem 1.6, the main change is that to apply Lemma 4.3 and reach the required
level of approximation one may only replace

∑
j∈{0,1,2} ko,j(t, x, y) with∑

j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0)

(
φ̃j(0, y) + ξ ∂ξφ̃j(0, y)

)
dξ

and
∑

j∈{0,1,2} go,j(t, x, y) with∑
j∈{0,1,2}

∫ π

−π
eiξ(x−y)+λj(ξ) t χ(ξ) β(j)(0)

〈
i
(
∂ξφ̃j(0, · ) + ξ ∂2

ξ φ̃j(0, ·
)

;Ux

〉
dξ

so that the theorem is proved with24 ψ̃0

M̃0

P̃0

 =

k∂xψ0

V0

U V0

 +
∑

j∈{0,1,2}

∂x

(
i∂ξφ̃j(0, ·)V0 − 〈 ∂2

ξ φ̃j(0, · );Ux〉 ∂xψ0

)
βj(0) .

At last, to prove formula (1.6) for the case where ψ0 is not low-frequency, from the reduction
of Subsection 3.1 it follows that we only need to show that at our level of description the initial
data for modulations systems

−k(∂xψ0)HF

Ux(ψ0)HF

U Ux(ψ0)HF

 may be replaced with


0

−
(
U −

∫ 1

0
U

)
∂xψ0

−
(

1
2U

2 −
∫ 1

0

1
2U

2

)
∂xψ0

 .

This is obtained by a repeated use of Lemma 4.3 that implies that initial data that are derivatives
of localized data — in particular high-frequency data — are negligible. To begin with, an
integration by part shows that the former data may be replaced with 0

−U (∂xψ0)HF

−1
2U

2 (∂xψ0)HF

 .

Then the claim follows from the fact that (
∫ 1

0 U) (∂xψ0)HF , (
∫ 1

0
1
2U

2) (∂xψ0)HF , (U−
∫ 1

0 U) (∂xψ0)LF

and (1
2U

2 −
∫ 1

0
1
2U

2) (∂xψ0)LF are all high-frequency.

Appendix A. Numerical investigation of dispersive spectral stability

As already discussed in the introduction our study of asymptotic decay and leading-order
behavior shall rely on good dispersive properties of the dynamics originating in

(A)
At no nonzero point of spectral curves the second-order
derivative with respect to Floquet exponents vanish
and the third-order derivatives do not vanish at zero.

24Note that by using the invariance of the dual spectral problem under (λ, ξ, φ̃) 7→ (λ,−ξ, φ̃) one shows that

∂`ξφ̃j(0, ·) is real when ` is even and purely imaginary when ` is odd.
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The asymptotic decay part, as stated in Theorem 1.2, may be obtained under the slightly
weaker condition A0. Yet as variations needed along the proof are mostly of notational order25 we
perform the full analysis under condition A. This is also consistent with the fact that numerical
experiments suggest that condition A does hold for all waves. We give now some pieces of
evidence to support this claim.

Recall first that by symmetries of the equation it is sufficient to analyze a one-parameter
family given by the square of cnoidal functions. To ease comparisons corresponding to different
periods we plot here the spectrum of operators that have not been scaled to be of period one

and hence analyze the spectrum of L̃m,ξ acting through

L̃m,ξg = 4× (2m− 1)∂xg + ∂x(12m cn2( · ,m) g)− ∂3
xg

for ξ varying in a suitable Brillouin zone depending on m, where m is the square of a elliptic
modulus. Also we use ”glued” representations of the spectrum as introduced in the kernel
representation subsection, Subsection 2.5. At last, note that by Hamiltonian and real symmetries
it is sufficient to investigate only the upper half of the spectrum.

In Figure 2 we show half of the ”line” spectrum for m = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 0.95. In Figure 3 we plot corresponding third-order derivatives. Likewise
for the same parameters we show half of the ”loop” spectrum in Figure 4 and corresponding
second-order derivatives in Figure 5. The intermediate Lax spectral parametrization — used
to compute our graphs — being singular near zero and infinity we avoid to get to close to
singularities 0 at both ends of the half-loop and 0 and i∞ at the end of the half-line.

Beyond the mere observation that condition A appears clearly to hold, a few comments are
in order. We stress that one may actually prove most of the following claims by inspecting
distinguished limits m → 0 (small amplitude), m → 1 (homoclinic/solitary wave limit), or
|λ| → ∞ (fast).

(1) In the limit m → 0, the full spectrum (line and loop) converges locally uniformly far
from singularities |λ| = 0 and |λ| =∞ to the Fourier spectral curve ξ 7→ −4iξ − (iξ)3 =

i(−4ξ + ξ3). In particular the maximal height of the curve converges to 16/(3
√

(3))
which is approximately 3.0792, the second order derivative converges to ξ 7→ 6ξ and the
third to ξ 7→ 6.

(2) In the limit m→ 1, the ”line” spectrum converges locally uniformly far from singularities
to the Fourier spectral curve ξ 7→ 4iξ − (iξ)3 = i(4ξ + ξ3). In turn, the loop spectrum
shrinks to the embedded eigenvalue 0, associated with invariance by translation (in
space).

(3) In the large spectrum limit the ”line” spectrum is equivalent to ξ3 and the third-order
derivative converges to 6.

Appendix B. Proofs of oscillatory integrals estimates

For the sake of completeness we provide here proofs of elementary estimates on oscillatory
estimates used along our proofs of main results. As a warming up we first give a proof of the
classical Lemma 3.3.

Proof. We begin with the easiest case when p = 1. Assume first that I is bounded. An
integration by parts gives∫

I
ei a F =

[
ei a F

ia′

]
I

−
∫
I

ei a

(
F ′

ia′
− F a′′

i(a′)2

)
25As follows from large-eigenvalue asymptotics there are only a finite number of points where the second-order
derivatives could possibly vanish so that most of the extra trouble consists in introducing notation for those points
and an adapted finite partition of unity in the extended Floquet variable ξ.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 2. Imaginary part of the spectrum along the upper half-line versus ex-
tended Floquet exponent for m = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 and 0.95.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 3. Third-order derivative with respect to the Floquet exponent of the
imaginary part of the spectrum along the upper half-line versus extended Floquet
exponent for m = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 4. Imaginary part of the spectrum along the upper half-loop versus
extended Floquet exponent for m = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 0.95.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5. Second-order derivative with respect to the Floquet exponent of the
imaginary part of the spectrum along the upper half-loop versus extended Floquet
exponent for m = 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95.
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which is bounded by
2 supI |F |

infI |a′|
+

supI |F | +
∫
I |F

′|
infI |a′|

since monotonicity yields ∫
I

|a′′|
(a′)2

≤ 1

infI |a′|
.

The case where I is unbounded is then obtained by a simple limiting argument using that |a′|
is coercive.

We turn now to the case when p ≥ 2. The assumption implies that |a′| is coercive and
monotone at infinity, thus the reduction to the bounded case may be carried out as in the case
when p = 1. Therefore we only deal with the case when I is bounded. For this case we argue by
induction. Assume the case p− 1 has been obtained. The assumption implies that there exists
a unique ξ∗ ∈ I minimizing |a(p−1)| on I. Now, for any δ > 0, the assumptions of the p− 1 case
are satisfied on each connected component of Iδ := I \ (ξ∗ − δ, ξ∗ + δ) with

inf
Iδ
|a(p−1)| ≥ δ inf

I
|a(p)|

therefore by splitting I as Iδ and I \ Iδ∣∣∣∣∫
I

ei a F

∣∣∣∣ ≤ 2Cp−1

(δ infI |a(p)|)1/(p−1)

[
sup
I
|F | +

∫
I
|F ′|

]
+ 2 δ sup

I
|F |

where Cp−1 denotes the constant obtained in the (p− 1) case. Setting26

δ =

(
inf
I
|a(p)|

)−1/p

in the above estimate achieves the proof. �

We now prove Lemma 4.3.

Proof. For writing convenience we set

K = sup
I
|F | +

∫
I
|F ′| + sup

I
|G| and A = inf

I
|a(p)| .

If A ≤ 1 the results follows directly from Lemma 3.3 so we assume A ≥ 1. We detail only the
case where ξ∗ belongs to the boundary of I. The general result is then obtained by applying
this special case to I ∩ [ξ∗,∞[ and I∩]−∞, ξ∗] and doubling the constant derived in the special
case.

In this special case it follows that |a(p−2)| vanishes at most once and that a(p−2) is monotone.

If it exists we denote the point where |a(p−2)| vanishes as ξ0. If either |a(p−2)| does not vanish

or if |ξ0 − ξ∗| ≤ δ1 with δ1 = A−1/(p+α (p−2)) we derive

inf
I∩(R\(ξ∗−2 δ1,ξ∗+2 δ1))

|a(p−2)| ≥ 3
2 Aδ

2
1

that yields the bound

K

α+ 1
(2δ1)α+1 +

C K

(3
2 Aδ

2
1)1/(p−2)

=

 2α+1

α+ 1
+ C

(
2

3

) 1
p−2

 KA−(α+1)/(p+α (p−2))

where C is obtained from the p− 2 case of Lemma 3.3. When there is a zero ξ0 and it satisfies
δ1 ≤ |ξ0 − ξ∗| ≤ 1 we use that when 0 < δ2 ≤ |ξ0 − ξ∗| one may derive

inf
I∩(R\(ξ0−δ2,ξ0+δ2))

|a(p−2)| ≥ 1
2 A |ξ0 − ξ∗| δ2

26This is motivated by a minimization in δ of the estimate but provides the optimal value only up to a multiplying
constant that depends only on p. As is customary we chose a non optimal value to receive expressions as simple
as possible. We shall repeat the same pattern often in the present section.
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that yields the bound

2K (2 |ξ0 − ξ∗|)α δ2 +
2C K

(1
2 A |ξ0 − ξ∗| δ2)1/(p−2)

which by choosing

δ2 = A−1/(p−1) |ξ0 − ξ∗|−(1+α (p−2))/(p−1)

leads to(
2α+1 + 2C

)
KA−1/(p−1) |ξ0 − ξ∗|(α−1)/(p−1) ≤

(
2α+1 + 2C

)
KA−1/(p−1) δ

(α−1)/(p−1)
1

=
(
2α+1 + 2C

)
KA−(α+1)/(p+α (p−2)) .

Note that the foregoing choice of δ2 is indeed available since δ2 ≤ |ξ0 − ξ∗| follows from

|ξ0 − ξ∗| ≥ δ1 ≥ A−1/(p+α (p−2)) .

At last, when there is a zero ξ0 and it satisfies |ξ0− ξ∗| ≥ 1 we alternatively rely on the fact that
for any 0 < δ′2 ≤ |ξ0 − ξ∗| we may also bound the quantity of interest by

2K δ′2 +
2C K

(1
2 A |ξ0 − ξ∗| δ′2)1/(p−2)

then choose
δ′2 = A−1/(p−1) |ξ0 − ξ∗|−1/(p−1)

to derive the bound

2 (1 + C)KA−1/(p−1) |ξ0 − ξ∗|−1/(p−1) ≤ 2 (1 + C)KA−1/(p−1) .

Note that the latter choice of δ′2 is legitimate since δ′2 ≤ |ξ0 − ξ∗| stems from

|ξ0 − ξ∗| ≥ δ1 ≥ A−1/p

and that the dependence on A of latter bound is indeed as least as good as the one obtained in
the first step since α ≤ 1 yields

α+ 1

p+ α (p− 2)
≤ 1

p− 1
.

�

An examination of the previous proof shows that the case α > 1 would yield the same bound
as in the case α = 1 and that this bound is optimal.

We begin the proof of our last oscillating integral lemmas by providing a control on stagnating
points in terms of variations of phases.

Lemma B.1. Let I be an open interval, ξ∗ ∈ I, ρ > 2, M ≥ 0 and κ > 0. There exist positive
ε0 and C0 such that if

• A : I → R and B : I → R are C2, and such that A′′ and B′′ are lower-bounded by κ ;
• A′(ξ∗) = B′(ξ∗) = 0 ;
• for any ξ ∈ I, |A(ξ)−B(ξ)| ≤M |ξ − ξ∗|ρ

then if there exists ξ0 ∈ I such that A(ξ0) = 0 and |ξ0 − ξ∗| ≤ ε0 there also exists ξ1 ∈ I such
that B(ξ1) = 0 and |ξ0 − ξ1| ≤ C0|ξ0 − ξ∗|ρ−1.

Proof. We first pick ε′0 such that [ξ∗ − 2ε′0, ξ∗ + 2ε′0] ⊂ I. Let ξ0 be such that A(ξ0) = 0 and
|ξ0 − ξ∗| ≤ ε′0. Since ρ > 0, if ξ0 = ξ∗ then B(ξ∗) = 0 so that we may focus on the case where
ξ0 6= ξ∗. Then let σ denote the sign of ξ0 − ξ∗. When 0 ≤ r ≤ |ξ0 − ξ∗| on one hand

A(ξ0 + σ r) ≥ 1
2κ(2|ξ0 − ξ∗|+ r)r ≥ κ |ξ0 − ξ∗| r

and
A(ξ0 − σ r) ≤ −1

2κ (2|ξ0 − ξ∗| − r) r ≤ −1
2κ |ξ0 − ξ∗| r

and on the other hand

|A(ξ0 + σ r)−B(ξ0 + σ r)| ≤M (|ξ0 − ξ∗|+ r)ρ
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and

|A(ξ0 − σ r)−B(ξ0 − σ r)| ≤M (|ξ0 − ξ∗| − r)ρ .
From here the Intermediate Value Theorem yields the result provided one chooses r = C0|ξ0 −
ξ∗|ρ−1 and ensures

C0|ξ0 − ξ∗|ρ−1 ≤ |ξ0 − ξ∗| , M ≤ 1
2κC0 and M 2ρ < κC0

when |ξ0 − ξ∗| ≤ ε0 for some 0 < ε0 ≤ ε′0. The latter may indeed be achieved by first choosing
C0 large enough to satisfy the two last constraints then ε0 small enough, since ρ > 2. �

We now prove Lemma 4.4.

Proof. First we pick ε0 and C0 given by Lemma B.1 applied to A = ω(p−2) and B = ω
(p−2)
0

with ρ = q − p + 2. If necessary we restrict ε0 further to ensure that C0ε
ρ−2
0 ≤ 1/4. As in

previous proofs without loss of generality we assume that ξ∗ belongs to the boundary of I. Also
we denote by ξ0 a possible zero of ω(p−2) and when such a zero exists by ξ1 the corresponding

zero of ω
(p−2)
0 . Note in particular that corresponding ξ0 and ξ1 lie indeed on the same side of ξ∗.

For notational convenience, unlike what we have done so far we do not track here dependences
on harmless constants and only focus on powers of t. We may also focus on the case where t is
large since a crude estimate shows that the quantity of interest is bounded by a multiple of |t|.
We shall do so without mention from now on.

For any δ > 0 if ω(p−2) does not vanish or, if it does, when 2|ξ0− ξ∗| < δ one obtains a bound

by a multiple of (δ2|t|)−1/(p−2) +δq+1|t|. Choosing then δ as a multiple of |t|−(p−1)/(p+q(p−2)) one

derives a bound decaying as |t|−(q−1)/(p+q(p−2)) when either there is no ξ0 or |ξ0 − ξ∗| is smaller

than some multiple of |t|−(p−1)/(p+q(p−2)). This is indeed better than the claimed bound since
q(p− 1)− (p+ q(p− 2)) = q − p > 0.

In turn, for any positive δ such that 2C0|ξ0 − ξ∗|q−p+1 ≤ δ ≤ |ξ0 − ξ∗|/4 one may bound

the studied quantity by a multiple of (δ|ξ0 − ξ∗||t|)−1/(p−2) + δ|ξ0 − ξ∗|q|t|. From this, choos-

ing δ as a sufficiently small multiple of |t|−1|ξ0 − ξ∗|−(q(p−2)+1)/(p−1) provides a bound by a

multiple of |ξ0 − ξ∗|(q−1)/(p−1) provided that |ξ0 − ξ∗| is larger than some arbitrary small mul-

tiple of |t|−(p−1)/(p+q(p−2)) and smaller than some multiple of |t|−(p−1)/((2q−p+1)(p−2)+q−p+2) =

|t|−(p−1)/(p+q(p−2)+(q−p)(p−1)).
Alternatively for any δ such that 0 < δ ≤ |ξ0 − ξ∗|/4 one may also obtain a bound like

(δ|ξ0 − ξ∗||t|)−1/(p−2) + δ. From here choosing δ as a multiple of (|t||ξ0 − ξ∗|)−1/(p−1) yields a

bound by a multiple of (|t||ξ0 − ξ∗|)−1/(p−1) provided that |ξ0 − ξ∗| is larger than some multiple

of |t|−1/p.
One concludes the proof by using the first estimate when there is no vanishing or |ξ0 − ξ∗| is

smaller than some multiple of |t|−(p−1)/(p+q(p−2)), the second estimate from there to a multiple

of |t|−1/q and the last one in the remaining zone. That this is indeed possible follows from the
observation that (p − 1)/(p + q(p − 2)) = (p − 1)/(q(p − 1) − (q − p)) > 1/q and (p − 1)/(p +
q(p− 2) + (q − p)(p− 1)) = (p− 1)/(q(p− 1) + (q − p)(p− 2)) ≤ 1/q. �

We now prove Lemma 4.5.

Proof. We chose ε0 and C as in the foregoing proof and adopt the same simplifying convention.
We note however that here instead of bounding integrals far from stagnating points by appealing
to the van der Corput Lemma we use sharper bounds following from an inspection of its proof.
To be more concrete note that one may replace bounds like (δ′δ|ξ0−ξ∗| |t|)−1 for integrals where
|ξ − ξ∗| > δ′ and |ξ − ξ0| > δ obtained when 4δ < |ξ0 − ξ∗| and 4δ′ < |ξ0 − ξ∗| by a bound by a
multiple of a sum of ∫ |ξ0−ξ∗|−δ

δ′

dζ

ζ2(|ξ0 − ξ∗|2 − ζ2)|t|
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and similar integral and boundary terms that are bounded by a multiple of

(δ′|ξ0 − ξ∗|2|t|)−1 + (δ|ξ0 − ξ∗|2|t|)−1 .

As in the proof of Lemma 4.4, for any δ > 0 if ω′ does not vanish or otherwise if its zero ξ0 is
such that 2|ξ0− ξ∗| < δ one obtains a bound by a multiple of δ−1(δ2|t|)−1 + δq|t|. Choosing then

δ as a multiple of |t|−2/(q+3) one derives a bound decaying as |t|−(q−3)/(q+3) when either there

is no ξ0 or |ξ0 − ξ∗| is smaller than some multiple of |t|−2/(q+3). This is indeed better than the
claimed bound (q − 3)/(q + 3) > (q − 3)/2q.

With our preliminary remark in mind, we now observe that for any positive δ and δ′ such that
2C0|ξ0− ξ∗|q−2 ≤ δ ≤ |ξ0− ξ∗|/4 and δ′ ≤ |ξ0− ξ∗|/4 one may bound the quantity of interest by
a multiple of

(δ′)q|t|+ (δ′|ξ0 − ξ∗|2|t|)−1 + (δ|ξ0 − ξ∗|2|t|)−1 + δ|ξ0 − ξ∗|q−1|t| .

From this choosing δ and δ′ as sufficiently small multiples of respectively |t|−1|ξ0 − ξ∗|−(q+1)/2

and (|ξ0 − ξ∗||t|)−2/(q+1) provides a bound by a multiple of

|ξ0 − ξ∗|(q−3)/2 + (|ξ0 − ξ∗|2q|t|q−1)−1/(q+1)

provided that |ξ0 − ξ∗| is larger than some arbitrary small multiple of |t|−2/(q+3) and smaller

than some multiple of |t|−2/(3(q−1)). Note that, by convexity, at any fixed time t, when |ξ0 − ξ∗|
varies in an interval the latter bound reaches is upper bound on the boundary of the interval.

At last when δ and δ′ are such that 0 < δ ≤ |ξ0 − ξ∗|/4 and 0 < δ′ ≤ |ξ0 − ξ∗|/4 one may also
obtain a bound like

(δ′)q|t|+ (δ′|ξ0 − ξ∗|2|t|)−1 + (δ|ξ0 − ξ∗|2|t|)−1 + δ|ξ0 − ξ∗|−1 .

From here choosing δ as a multiple of (|t||ξ0 − ξ∗|)−1/2 and δ′ as sufficiently small multiple of

(|ξ0 − ξ∗||t|)−2/(q+1) yields a bound by a multiple of

(|t||ξ0 − ξ∗|3)−1/2 + (|ξ0 − ξ∗|2q|t|q−1)−1/(q+1)

provided that |ξ0−ξ∗| is larger than some multiple of |t|−2/(q+3). Actually in the previous regime

the latter bound is always smaller than a multiple of (|t||ξ0 − ξ∗|3)−1/2.
We conclude the proof by using the first estimate when there is no vanishing or |ξ0 − ξ∗| is

smaller than some multiple of |t|−2/(q+3), the second estimate from there to a multiple of |t|−1/q

and the last one in the remaining zone. That this is indeed possible follows from the observation
that 2/(q + 3) = 2/(2q − (q − 3))) > 1/q and 2/(3(q − 1)) = 2/(2q + q − 3) < 1/q. �
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