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A finite volume scheme for a seawater intrusion
model with cross-diffusion

Ahmed Ait Hammou Oulhaj

Abstract We consider a finite volume scheme for a seawater intrusion model. It
is based on a two-point flux approximation with upwind mobilities. The scheme
preserves at the discrete level the main features of the continuous problem: the non-
negativity of the solutions, the decay of the energy and the control of the entropy
and its dissipation. Moreover the scheme converges towards a weak solution to the
problem. Numerical results are provided to illustrate the behavior of the model and
of the scheme.
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1 The continuous problem and objectives

Let Ω be a polygonal open bounded and connected subset of R2, and T > 0 be a
finite time horizon. We consider the following cross-diffusion system of degenerate
parabolic equations

∂t f −∇.
(
µ f ∇( f +g+b)

)
= 0 in ΩT := Ω × (0,T ),

∂tg−∇.
(
g∇(µ f +g+b)

)
= 0 in ΩT ,

∇ f ·n = ∇g ·n = 0, on ∂Ω × (0,T ),
f|t=0 = f0 ≥ 0, g|t=0 = g0 ≥ 0, in Ω .
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It models the seawater intrusion in an unconfined aquifer (see [4]). We assume
that the impermeable interface between the saltwater and the bedrock is given by
z = b(x). The saltwater and the freshwater are assumed to be immiscible. The inter-
faces between the salt-and freshwater, and between the freshwater and the dry soil
is located at height z=g(x,t)+b(x) and z=f(x,t)+g(x,t) + b(x) respectively (cf. Fig.
1). The parameter µ is given by µ =

ρfresh

ρsalt
∈ (0,1), with ρ the mass density of the

fluid. The initial data f0 and g0 are assumed to belong to L∞(Ω).

Fig. 1 Description of an unconfined aquifer

Following [2, 6, 5], there exists a weak solution to the problem (1). Moreover

f ≥ 0, g≥ 0 a.e in ΩT . (2)

We recall the definition of entropy (resp. energy) functional introduced in [2, 6]:

H( f ,g) =
∫

Ω

[
Γ (g)+

1
µ

Γ ( f )
]
dx, where Γ (s) = s logs− s+1,

E( f ,g) =
∫

Ω

[
µ

2
( f +g+b)2 +

1−µ

2
(g+b)2

]
dx.

Multiplying (formally) the first equation of (1) by
1
µ

log f (resp. µ( f +g+b)) and

the second equation by logg (resp. µ f + g+ b), integrating over Ω and summing
both equalities, get the classical entropy/dissipation property:

d
dt
H( f ,g)+

1−µ

2

∫
Ω

[
(∇ f )2 +(∇g)2

]
dx≤ 1

2(µ +1)

∫
Ω

(∇b)2dx, (3)

and the decay of the energy functional along time:

d
dt
E( f ,g)+

∫
Ω

[
µ

2 f (∇( f +g+b))2 +g(∇(µ f +g+b))2
]
dx = 0. (4)
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In this work, We propose a finite volume scheme for the problem (1). This
scheme is based on a two-point flux approximation with upwind mobilities. It is
designed in order to preserve at the discrete level the main features of the continu-
ous problem: the nonnegativity of the solutions (2), the decay of the energy (4), and
the control of the entropy and of its dissipation (3). Based on these estimates, the
convergence of the scheme can be proved. We refer to [1] for this purpose.

2 The finite volume scheme

An admissible mesh of Ω is given by a family T of a control volumes (open and
convex polygons), a family E of edges, and a family of points (xK)K∈T which sat-
isfy Definition 9.1 in [3]. This definition implies that the straight line between two
neighboring centers of cells (xK ,xL) is orthogonal to the edge σ = K|L.

We distinguish the interior edges σ ∈ Eint and the boundary edges σ ∈ Eext. The
set of edges E equals the union Eint∪Eext. For a control volume K ∈ E , we denote
by EK the set of its edges, by Eint,K the set of its interior edges, and by Eext,K the set
of edges of K included in ∂Ω .

Furthermore, we denote by d the distance in R2 and by m the Lebesgue measure
in R2 or R. We assume that the mesh satisfies the following regularity requirement:
there exists ζ > 0 such that it holds

d(xK ,σ)≥ ζ d(xK ,xL), ∀K ∈T , ∀σ ∈ Eint,K , with σ = K|L. (5)

For all σ ∈ Eint,K , with σ = K|L, we define dσ = d(xK ,xL), and the transmissibility

coefficient τσ =
m(σ)

dσ

, σ ∈ E . The size of the mesh is δ = maxK∈T (diam(K)).

Let N be a positive integer, and ∆ t =
T
N

; then a uniform discretization of (0,T ) is

given by the family (tn)n∈{0,...,N} where tn = n∆ t.
We denote by D an admissible space-time discretization of ΩT composed of an

admissible mesh T of Ω and the values ∆ t and N. The size of this space-time
discretization D is defined by η = max(δ ,∆ t).

Remark 1. Voronoı̈ meshes and triangular meshes with uniformly acute angles are a
typical examples of admissible meshes satisfying (5).

The initial conditions are discretized by

s0
T = ∑

K∈T
s0

K1K , where s0
K =

1
m(K)

∫
K

s0(x)dx, ∀K ∈T , with s = f or g,

and 1K is the characteristic function on K. The discretization of problem (1) is given
by the following set of nonlinear equations: for K ∈T and 0≤ n≤ N−1
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m(K)
f n+1
K − f n

K
∆ t

+ ∑
σ∈Eint,K

τσ f n+1
σ µ

(
un+1

K −un+1
L

)
= 0, (6)

m(K)
gn+1

K −gn
K

∆ t
+ ∑

σ∈Eint,K

τσ gn+1
σ

(
vn+1

K − vn+1
L

)
= 0, (7)

where un+1
K = f n+1

K +gn+1
K +bK , vn+1

K = µ f n+1
K +gn+1

K +bK , with bK = b(xK),

f n+1
σ =

{
( f n+1

K )+ if un+1
K ≥ un+1

L ,

( f n+1
L )+ if un+1

K < un+1
L ,

gn+1
σ =

{
(gn+1

K )+ if vn+1
K ≥ vn+1

L ,

(gn+1
L )+ if vn+1

K < vn+1
L ,

(8)

with x+ = max(x,0).

Proposition 1. (existence of a discrete solution) For n ∈ {0, ...,N} there exists (at
least) one solution of the scheme (6)-(8). Moreover f n

K ≥ 0, gn
K ≥ 0, for K ∈T .

Proof. Let us to prove the nonnegativity of f n
K (which is similar for gn

K). This prop-
erty clearly holds for n = 0. Assume now the nonnegativity holds at time step n, and
assume that f n+1

K < 0, for some K ∈ T . In view of the definition (8) of f n+1
σ one

has that

f n+1
K = f n

K−
µ∆ t

m(K) ∑
σ∈Eint,K

τσ ( f n+1
K )+︸ ︷︷ ︸
=0

(un+1
K −un+1

L )+−( f n+1
L )+(un+1

K −un+1
L )−)≥ 0,

yielding a contradiction, ensuring that f n+1
K ≥ 0, ∀K ∈T ,∀n≥ 0. The proof of

existence is detailed in [1]. ut

3 Entropy and energy estimates

We introduce a discrete version of entropy (resp. energy) functional:

Hn := H( f n
K ,g

n
K) = ∑

K∈T
m(K)

( 1
µ

Γ ( f n
K)+Γ (gn

K)
)
,

En := E( f n
K ,g

n
K) = ∑

K∈T
m(K)

(
µ

2
( f n

K +gn
K +bK)

2 +
1−µ

2
(gn

K +bK)
2
)
.

We etasblish now the discrete countrepart of (3) and (4).

Proposition 2. There exists C depending only on T,Ω and b such that

sup
n∈{0,...,N−1}

Hn+1 +
N−1

∑
n=0

∆ t ∑
σ∈Eint
σ=K|L

τσ

[
( f n+1

K − f n+1
L )2 +(gn+1

K −gn+1
L )2

]
≤C.
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Proof. We multiply (6) (resp. (7)) by ∆ t
log f n+1

K
µ

(resp. ∆ t loggn+1
K ) and sum over

K ∈T , provides that: A+B+C = 0, where

A = ∑
K∈T

mK

[ 1
µ
( f n+1

K − f n
K) log f n+1

K +(gn+1
K −gn

K) loggn+1
K

]
,

B = ∆ t ∑
K∈T

∑
σ∈Eint,K

τσ f n+1
σ

(
un+1

K −un+1
L

)
log f n+1

K ,

C = ∆ t ∑
K∈T

∑
σ∈Eint,K

τσ gn+1
σ

(
vn+1

K − vn+1
L )

)
loggn+1

K .

By the convexity of Γ , we find that

Hn+1−Hn = ∑
K∈T

m(K)
[ 1

µ
(Γ ( f n+1

K )−Γ ( f n
K))+Γ (gn+1

K )−Γ (gn
K)
]
≤ A.

We can rewrite B and C as:

B = ∆ t ∑
σ∈Eint
σ=K|L

τσ f n+1
σ (un+1

K −un+1
L )(log f n+1

K − log f n+1
L ),

C = ∆ t ∑
σ∈Eint
σ=K|L

τσ gn+1
σ (vn+1

K − vn+1
L )(loggn+1

K − loggn+1
L ).

It follows from the convexity of exp that

a(loga− logb)≥ a−b≥ b(loga− logb) ∀a,b ∈ [0,+∞[,

where we have used the convention log(0) = −∞ and 0log(0) = 0. Hence, in view
of the definition (8), one has

B≥ ∆ t ∑
σ∈Eint
σ=K|L

τσ

(
( f n+1

K − f n+1
L )2 +(gn+1

K −gn+1
L )( f n+1

K − f n+1
L )

+(bK−bL)( f n+1
K − f n+1

K )
)
,

C ≥ ∆ t ∑
σ∈Eint
σ=K|L

τσ

(
(gn+1

K −gn+1
L )2 +µ(gn+1

K −gn+1
L )( f n+1

K − f n+1
L )

+(bK−bL)(gn+1
K −gn+1

L )
)
.

Combining these inequalities, one deduces that
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Hn+1−Hn +∆ t ∑
σ∈Eint
σ=K|L

τσ ( f n+1
K − f n+1

L )2 +∆ t ∑
σ∈Eint
σ=K|L

τσ (gn+1
K −gn+1

L )2

+(µ +1)∆ t ∑
σ∈Eint
σ=K|L

τσ ( f n+1
K − f n+1

L )(gn+1
K −gn+1

L )

≤−∆ t ∑
σ∈Eint
σ=K|L

τσ (bK−bL)
[
( f n+1

K − f n+1
L )+(gn+1

K −gn+1
L )

]
:= D.

Using the Young inequality, one has for all ε > 0

D≤ 1
2ε

∆ t ∑
σ∈Eint
σ=K|L

τσ (bK−bL)
2 +

ε

2
∆ t ∑

σ∈Eint
σ=K|L

τσ

[
( f n+1

K − f n+1
L )+(gn+1

K −gn+1
L )

]2
.

We choose ε = 1+µ , we have

|D| ≤ ∆ t ∑
σ∈Eint
σ=K|L

τσ

(
1

2(µ +1)
(bK−bL)

2 +(µ +1)( f n+1
K − f n+1

L )(gn+1
K −gn+1

L )

)

+
µ +1

2
∆ t ∑

σ∈Eint
σ=K|L

τσ

(
( f n+1

K − f n+1
L )2 +(gn+1

K −gn+1
L )2

)
.

Finally, one has

Hn+1−Hn +
1−µ

2
∆ t ∑

σ∈Eint
σ=K|L

τσ ( f n+1
K − f n+1

L )2

+
1−µ

2
∆ t ∑

σ∈Eint
σ=K|L

τσ (gn+1
K −gn+1

L )2 ≤ 1
2(µ +1)

∆ t ∑
σ∈Eint
σ=K|L

τσ (bK−bL)
2.

Summing over n = 0, ...,N−1, concludes the proof of Proposition 2. ut

Proposition 3. For n ∈ {0, · · · ,N−1}

sup
n∈{0,...,N−1}

En+1 ≤ E0.

Proof. We multiply (6) (resp. (7)) by ∆ tµun+1
K (resp. ∆ tvn+1

K ) and sum over K ∈T .
Summing both equalities and reorganizing the sums, we get A+B = 0, where
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A = ∑
K∈T

m(K)
[
µ

(
( f n+1

K +gn+1
K +bK)− ( f n

K +gn
K +bK)

)(
f n+1
K +gn+1

K +bK

)]
+ ∑

K∈T
m(K)

[
(1−µ)

(
(gn+1

K +bK)− (gn
K +bK)

)(
gn+1

K +bK

)]
,

B = ∆ t ∑
σ∈Eint
σ=K|L

τσ

(
µ

2 f n+1
σ

(
un+1

K −un+1
L

)2
+gn+1

σ

(
vn+1

K − vn+1
L

)2
)
.

We use the following inequality: (a−b)a≥ 1
2
(a2−b2), ∀a,b ∈ R, to get

A≥ ∑
K∈T

m(K)
[

µ

2

(
( f n+1

K +gn+1
K +bK)

2− ( f n
K +gn

K +bK)
2
)]

+ ∑
K∈T

m(K)
[1−µ

2

(
(gn+1

K +bK)
2− (gn

K +bK)
2
)]

= En+1−En.

Summing over n = 0, ...,N−1, concludes the proof of Proposition 3. ut

Let us remark that Proposition 2 and Proposition 3 give a discrete L2(0,T ;H1(Ω))
and L∞(0,T ;L2(Ω)) bounds on the approximate solutions. These estimates are suf-
ficient to prove the convergence of the scheme when the discretization parameters δ

and ∆ t tend to 0. We refer to [1] for the proof. As a byproduct, this convergence re-
sult ensures the existence of a weak solution to the continuous model. The question
of uniqueness of the solution is open as far as we know.

4 Numerical results

Let us provide some illustrations of the behaviour of the numerical scheme (6)-
(8). The scheme leads to a nonlinear system that we solve thanks to the Newton-
Raphson method. The numerical analysis of the scheme was carried out for a uni-
form time discretization of (0,T ) only in order to avoid heavy notations. In order
to increase the robustness of the algorithm and to ensure the convergence of the
Newton-Raphson iterative procedure, we used an adaptive time step procedure in the
practical implementation. More precisely, we associate a maximal time step ∆ tmax
for the mesh . If the Newton-Raphson method fails to converge after 30 iterations
—we choose that the `∞ norm of the residual has to be smaller than 10−10 as stop-
ping criterion—, the time step is divided by two. If the Newton-Raphson method
converges, the time step is multiplied by two and projected on [0,∆ tmax].

In our test case, the domain is the unit square, i.e., Ω = (0,1)2. We con-
sider an admissible triangular mesh made of 14336 triangles. We choose b(x,y) =

max

(
0,

1
2

(
1−16(x−1/2)2

)(
(cos(πy)+2

))
. We set µ = 0.9, and
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f0(x,y) =


1
2

if x≤ 1
4
,

0 elsewher,
g0(x,y) =

b
(1

2
,0
)
−b(x,y)− (x− 1

2
) if x≤ 1

2
,

0 elsewhere.

Fig. 2 shows the evolution of b(x) (black), b(x)+ g(x, t) (red) and b(x)+ g(x, t)+
f (x, t) (blue) at different times, and also the evolution of the energy along time.
About the model, we observe that there is convergence towards an equilibrium state,
with horizontal interfaces as expected.

Fig. 2 Behaviour of the model at t = 0.2, t = 0.79, t = 12, and evolution of the energy along time
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