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Abstract: Real-time transmission of 14-GBd 4-PAM signal is demonstrated by combining a 

commercial 1.55-µm DML with a silicon MRR. BER below the HD-FEC threshold is measured 

after 26-km SSMF transmission without offline digital signal processing. 
OCIS codes: (140.3490) Lasers, distributed-feedback; (200.4650) Optical interconnects; (060.4510) Optical communications 

 

1.  Introduction 

The significant traffic growth in short-reach and inter-datacenter communications in recent years has been driving an 

increasing effort to provide low-cost high-speed integrated solutions for transmission distances in the range of few 

tens of km. Along this direction, several alternatives have been proposed, mainly focused on replacing expensive 

external modulators with directly modulated lasers (DMLs), thus enabling a significantly reduced footprint [1]. 

Additionally, in the quest for higher transmission rates, several impressive demonstrations have been reported by 

using more complex modulation schemes such as discrete multi-tone (DMT) signaling [2] and pulse amplitude 

modulation (PAM), including 4-PAM [1,3] and 8-PAM [3]. The use of n-PAM signals allows increasing the bitrate 

by a factor log2(n) for the same bandwidth usage, and enables a higher dispersion tolerance, compared to OOK 

transmission for the same bitrate. However, combining advanced signaling techniques with DMLs is particularly 

challenging due to the limited achievable extinction ratio (ER). A promising approach to tackle this challenge is 

optical spectral reshaping (OSR) by use of optical filters [4-8]. OSR has been shown to significantly enhance the 

achievable ER as well as to increase the dispersion tolerance for both OOK [4-7] and 4-PAM [8] signals. The use of 

micro-ring resonators (MRRs) to provide OSR is particularly beneficial as they can be fabricated on a silicon-on-

insulator (SOI) platform as compact devices. Furthermore, the integration of a III/V hybrid DML and an MRR on 

the same chip has shown to provide a significant reach improvement for 10-Gb/s OOK transmission [7]. 

Moving to 4-PAM, however, many of the demonstrations reported so far rely heavily on off-line digital signal 

processing (DSP), for example by performing adaptive equalization [8], which increases the latency as well as adds 

the need for analog-to-digital converters (ADCs) leading to an increased power consumption and cost.  

In this work, we report real-time directly-detected transmission of 14-GBd 4-PAM signals over 26 km of 

standard single mode fiber (SSMF), and demonstrate bit error ratios (BERs) below the hard-decision forward error 

correction (HD-FEC) threshold (BER=3.8×10-3, at 7% overhead), by combining a commercial 10-Gb/s DML with 

OSR performed using a silicon MRR without any complex off-line DSP nor dispersion compensation. 

2.  Experimental setup 

The experimental setup is shown in Fig. 1(a). A 4-PAM electrical signal was generated by feeding a pseudo random 

binary sequence (PRBS) of period 27-1 and its negated version (delayed by more than 10 symbols) into a 3-bit 

digital-to-analog converter (DAC, 19-GHz analog output bandwidth). The 4-PAM signal was then amplified by a 

linear electrical amplifier and combined with a DC bias in a 45-GHz bias-T to drive the DML. To enhance ER and 

dispersion tolerance of the 4-PAM signal, the laser output was coupled into an MRR used to provide a notch filter 

transfer function similarly to the OOK results of [5,6]. After spectral re-shaping the 4-PAM signal was transmitted 

through SSMF (D≈17 ps/nm∙km at the DML wavelength) and characterized by real-time BER measurements. 
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Fig. 1. a) Experimental setup for the transmission measurements; b) optical spectra without and with the MRR filter (solid) and MRR transfer function (dashed). 
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The standard pre-amplified receiver used consisted of an erbium doped fiber amplifier (EDFA) a 2-nm wide 

optical bandpass filter (OBPF) to remove the out-of-band amplified spontaneous emission noise and a 45-GHz 

photodiode (PD). A variable optical attenuator (VOA) at the receiver input was used to vary the received power, and 

measure the BER versus received power. After the PD, a real-time error detector (ED) measured the BER. Since the 

ED was designed for OOK modulation, i.e. considering only one threshold level, three error rates ERi were 

sequentially measured, one for each of the three eye openings of the 4-PAM signal, labelled from top to bottom. The 

overall BER was then calculated as BER = 0.5∙ER1 + ER2 + 0.5∙ER3 [3,9]. 

3.  Transmission results 

The principle of OSR with the MRR filter is highlighted in Fig. 1(b) reporting the optical spectra with and without 

MRR (100-GHz free spectral range [6]). The notch-filtering provided by the resonance of the MRR reshapes the 

spectrum of the optical signal and thus enhance the modulation ER as shown in the eye diagrams of Fig. 2(a) for a 

14-GBd 4-PAM signal both in back-to-back and after 26-km and 40-km transmission. The BER performance as a 

function of the received power is reported in Fig. 2(b). The DML transmitter with the MRR was benchmarked against 

the performance of the simple DML both in back-to-back conditions and after dispersion-uncompensated transmission.  
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Fig. 2.  Dispersion-uncompensated SSMF transmission of 14-GBd 4-PAM: a) Electrical eye diagrams in back-to-back and after SSMF 

transmission with and without MRR (Yellow lines provide the references for the zero levels.); b) BER versus received power. 

The BER as a function of the received power is reported in Fig. 3(b). Adding the MRR provided 8-dB of 

sensitivity improvement at the HD-FEC threshold already in back-to-back condition. The enhancement in dispersion 

tolerance allowed transmitting over 26 km of SSMF with no penalty compared to back-to-back, maintaining the 

8-dB of sensitivity improvement. Further transmission (32 km and 40 km) led to received power limitations as well 

as a tilt in the slope of the BER curves due to the temporal broadening and distortion of the eye diagram (Fig. 2(a)).  

However, comparing the results for 40-km transmission with and without the MRR, the significant benefit from 

using the MRR is evident, resulting in a factor 15 decrease in BER at maximum received power. Although the signal 

could not be received below the standard HD-FEC threshold (7% overhead, [10]) after 40-km transmission, a 

stronger FEC code could still enable successful transmission at the cost of higher overhead or latency.  

4.  Conclusions  

We have demonstrated real-time dispersion-uncompensated transmission of 14-GBd 4-PAM signals up to 26-km 

SSMF, without dispersion compensation or offline DSP. The ER and dispersion tolerance enhancements enabling 

such transmission reach are provided by OSR with a passive MRR. The improvement enabled by the MRR allowed 

an 8-dB increase in the receiver sensitivity at the HD-FEC threshold even after 26-km SSMF transmission.  
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