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Abstract: To find interesting items in genome-wide association studies or next generation
sequencing data, a crucial point is to design powerful false discovery rate (FDR) control-
ling procedures that suitably combine discrete tests (typically binomial or Fisher tests). In
particular, recent research has been striving for appropriate modifications of the classical
Benjamini-Hochberg (BH) step-up procedure that accommodate discreteness. However, de-
spite an important number of attempts, these procedures did not come with theoretical
guarantees. The present paper contributes to fill the gap: it presents new modifications of
the BH procedure that incorporate the discrete structure of the data and provably control
the FDR for any fixed number of null hypotheses (under independence). Markedly, our FDR
controlling methodology allows to incorporate simultaneously the discreteness and the quan-
tity of signal of the data (corresponding therefore to a so-called π0-adaptive procedure). The
power advantage of the new methods is demonstrated in a numerical experiment and for
some appropriate real data sets.

Keywords and phrases: false discovery rate, discrete hypothesis testing, type I error rate
control, adaptive procedure, step-up algorithm, step-down algorithm.

Multiple testing procedures are now routinely used to find significant items in massive and complex
data. An important focus has been given to methods controlling the false discovery rate (FDR)
because this scalable type I error rate “survives” to high dimension. Since the original procedure
of Benjamini and Hochberg (1995), much effort has been undertaken to design FDR controlling
procedures that adapt to various underlying structures of the data, such as the quantity of signal,
the signal strength and the dependencies, among others.

In this work, we deal with adaptation to discrete data. This type of data arises in many relevant
applications, in particular when data are represented by counts. Examples can be found in clinical
studies (see e.g. Westfall and Wolfinger (1997)), genome-wide association studies (GWAS) (see
e.g. Dickhaus et al. (2012)) and next generation sequencing data (NGS) (see e.g. Chen and Doerge
(2015b)). It is well known (see e.g. Westfall and Wolfinger (1997)) that using discrete test statistics
can generate a severe power loss, already at the stage of the single tests. A consequence is that
using “blindly” the BH procedure with discrete p-values will control the FDR in a too conservative
manner. Therefore, more powerful procedures that avoid this conservatism are much sought after
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in applications, see for instance Karp et al. (2016), van den Broek et al. (2015) and Dickhaus et al.
(2012).

In the literature, building multiple testing procedures that take into account the discreteness
of the test statistics has a long history that can be traced back to Tukey and Mantel (1980).
Some null hypotheses can be a priori excluded from the study because the corresponding tests are
unable to produce sufficiently small p-values. This results in a multiplicity reduction that should
increase the power. While this idea has been exploited in Tarone (1990) and in a more general
manner in Westfall and Wolfinger (1997) for family-wise error rate, an attempt has been made for
FDR later in Gilbert (2005). More recently, Heyse (2011) has proposed a more powerful solution,
relying on the following averaged cumulative distribution function (c.d.f.):

F (t) =
1

m

m∑
i=1

Fi(t), t ∈ [0, 1], (1)

where each Fi corresponds to the c.d.f. of the i-th test p-value under the null hypothesis. To
illustrate the potential benefit of using F , Figure 1 displays this function for the pharmacovigilance
data from Heller and Gur (2011) (see Section 4 for more details). The critical values of the
Heyse procedure can be obtained by inverting F at the values αk/m, 1 ≤ k ≤ m. Thus, the
smaller the F -values, the larger the critical values. Here, Heyse critical values improve the BH
critical values roughly by a factor 3, thereby yielding a potentially strong rejection enhancement.
Furthermore, since the functions Fi’s are known, so is F . Hence, the user has a good prior idea of
the improvements reachable by this discrete approach. Unfortunately, the Heyse procedure does
not rigorously control the FDR in general; counter-examples are provided in Heller and Gur (2011)
and Döhler (2016).

Meanwhile, different solutions have been explored by modifying directly the p-values, either by
randomization (see Habiger (2015) and references therein), or by shrinking them to build so-called
midP-values (see Heller and Gur (2011) and references therein). Other approaches incorporate
discreteness to obtain less conservative FDR estimates, see, e.g., Pounds and Cheng (2006), or by
combining grouping and weighting approaches, see Chen and Doerge (2015b).

Overall, although many new procedures have been proposed in the literature, only few of them
have been proved to achieve a rigorous FDR control under standard conditions, especially in the
finite sample case. To the best of our knowledge, we can only refer to the discretised version of the
procedure of Benjamini and Liu (1999) introduced by Heller and Gur (2011) and to the asymptotic
work of Ferreira (2007). Chen and Doerge (2015b) sum up the status quo by noting that ’. . . how
to derive better FDR procedures in the discrete paradigm remains an urgent but still unresolved
problem.’ This paper offers a solution by presenting new procedures that achieve both theoretical
validity and good practical performance.

The paper is organised as follows: after having precisely defined the setting in Section 1, we
introduce in Section 2 new procedures relying on the following modifications of the F function

F SU(t) =
1

m

m∑
i=1

Fi (t)

1− Fi (τm)
; F SD(t) =

1

m

m∑
i=1

Fi (t)

1− Fi (t)
, t ∈ [0, 1],

(with the convention 1/0 = +∞), where an appropriate choice of τm is made. To feel how light
these modifications are, Figure 1 displays these functions and shows they are very close to the
original F for small values of t. In addition, we also introduce more powerful “adaptive” versions,
meaning that the derived critical values are designed in a way that “implicitly estimate” the
overall proportion of true null hypotheses and thus may outperform the original Heyse procedure.
Next, in Section 3, we establish rigorous FDR control of the corresponding non-adaptive and
adaptive procedures under standard conditions. Our proofs rely on new bounds on FDR that
generalise some prominent results of the multiple testing literature. These bounds are the main
mathematical contributions of the paper and are interesting in their own right, beyond the discrete
setting. Also, to explore in detail the improvement of our procedures, we analyse both real and
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simulated data in Sections 4 and 5. Finally, while the proofs are given in appendix (together with
some additional procedures), complementary results are provided in Appendix C.
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Fig 1. Plots of variants of F for the pharmacovigilance data. The grey line corresponds to the uniform case, the
discrete variants are represented by blue (for F ), green (for FSD) and red (for FSU) lines.

1. Preliminaries

1.1. General model

Let us observe a random variable X, defined on a probabilistic space and valued in an observation
space (X ,X). We consider a set P of possible distributions for the distribution of X and we
denote the true one by P . We assume that m null hypotheses H0,i, 1 ≤ i ≤ m, are available
for P and we denote the corresponding set of true null hypotheses by H0(P ) = {1 ≤ i ≤ m :
H0,i is satisfied by P}. We also denote by m0(P ) = |H0(P )| the number of true nulls.

We assume that the user has at hand a set of p-values to test each null, that is, a set of random
variables {pi(X), 1 ≤ i ≤ m}, valued in [0, 1]. Throughout the paper, we also make the important
(but classical) assumption that the p-values pi(X), 1 ≤ i ≤ m, are mutually independent.

Now, we denote F = {Fi, 1 ≤ i ≤ m}, where for each i ∈ {1, . . . ,m}, the function

Fi(t) = sup
P∈P : i∈H0(P )

PX∼P (pi(X) ≤ t), t ∈ [0, 1], 1 ≤ i ≤ m

is assumed to be known. Note that we necessarily have Fi(·) non decreasing, Fi(t) ∈ [0, 1], Fi(1) = 1
and we add the technical condition Fi(0) = 0. Loosely, each Fi corresponds to the cumulative
distribution of pi under the null. Above, we have taken the supremum to cover the case where the
null hypothesis is composite: in that situation, each Fi is adjusted according to the least favorable
configuration within the null H0,i.

Here are some conditions on F that will be useful to compare some of the studied procedures
(these conditions are not assumed in our results unless explicitly mentioned):

Fi(t) ≤ t, t ∈ [0, 1], 1 ≤ i ≤ m, (2)

Fi(t) = t, t ∈ [0, 1], 1 ≤ i ≤ m. (3)
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Condition (2) ensures that the p-values have marginals stochastically lower-bounded by a uniform
variable under the null, called a super-uniform distribution in the sequel. This is the classical
setting which is used in most of the work dealing with FDR controlling theory, see, e.g., Benjamini
and Hochberg (1995). Condition (3) is more restrictive: if each null hypothesis is a singleton, it is
equivalent to the p-values having uniform marginals under the null.

1.2. Discrete and continuous modelling

In order to describe the overall support of p-value distributions we assume one of the two following
situations to be at hand throughout the paper (except in Section 3 which is written in a more
general manner):

• Continuous case: for all i ∈ {1, . . . ,m}, Fi is continuous. In that case, we let Ai = [0, 1],
1 ≤ i ≤ m and A = ∪mi=1Ai = [0, 1] is the overall p-value support.

• Discrete case: each p-value pi (both under the null and alternative) takes values in some finite
set Ai = {ai,k, 0 ≤ k ≤ Ki}, where Ki ≥ 0 and (ai,k)0≤k≤Ki

∈ [0, 1]Ki+1 is an increasing
sequence (with ai,0 = 0, ai,Ki

= 1). We denote A = ∪mi=1Ai the overall p-value support.

The continuous setting is typically valid in situations where the p-values are calibrated from test
statistics having a continuous distribution under the null. In this situation, (3) is often satisfied.
The discrete setting typically arises in situations where the p-values are calibrated from test
statistics having a finitely supported distribution under the null. In this situation, we generally
have that (3) holds true only on the support of Fi, that is,

Fi(t) = t, t ∈ Ai, 1 ≤ i ≤ m. (4)

In the discrete framework, let us underline that while (4) will typically hold, the equality Fi(t) = t,
t ∈ A will fail in general because A contains points of Aj for j 6= i. Then F (t) defined by (1) will
be smaller than t in general (see Figure 1), which is exactly the property that we want to exploit
in this paper.

To illustrate the above framework, we provide below two simple examples (for more advanced
examples, see for instance Chen and Doerge (2015b)).

Example 1.1 (Gaussian testing). Observe X = (Xi)1≤i≤m with independent coordinates and
marginals Xi ∼ N (µi, 1), where µi ∈ R is the parameter of interest, 1 ≤ i ≤ m. In that situation,
a possible hypothesis testing problem is to consider the nulls H0,i : “µi ≤ 0” against H1,i :
“µi > 0”. Then pi(X) = 1 − Φ(Xi), 1 ≤ i ≤ m, is a family of p-values satisfying (3) (where Φ
denotes the c.d.f. of a standard Gaussian variable).

Example 1.2 (Binomial testing). Observe X = (Xi)1≤i≤m with independent coordinates and
marginals Xi ∼ B(ni, θi), where ni ≥ 1 is known and θi ∈ (0, 1) is the parameter of interest,
1 ≤ i ≤ m. In that situation, a possible hypothesis testing problem is to consider the nulls H0,i :
“θi ≤ 1/2” against H1,i : “θi > 1/2”. Then pi(X) = Ti(Xi), 1 ≤ i ≤ m, define a family of p-values
where Ti(x) = 2−ni

∑x
j=0

(
ni

j

)
is the upper-tail distribution function of a binomial distribution

of parameters (ni, 1/2). The support of the p-values under the null and alternative is covered by

letting Ki = ni + 1 and ai,k = 2−ni
∑k−1
j=0

(
ni

j

)
, 1 ≤ k ≤ Ki. We merely check in that case that (3)

is violated while (2) and (4) hold.

1.3. Step-wise procedures

First define a critical value sequence as any nondecreasing sequence τ = (τk)1≤k≤m ∈ [0, 1]m (with
τ0 = 0 by convention).

The step-up procedure of critical value sequence τ , denoted by SU(τ), rejects the i-th hypothesis

if pi ≤ τk̂, with k̂ = max{k ∈ {0, 1, ...,m} : p(k) ≤ τk}, where p(1) ≤ p(2) ≤ ... ≤ p(m) denote the
ordered p-values (with the convention p(0) = 0).

imsart-generic ver. 2014/10/16 file: DDR2017_arXiv2.tex date: September 14, 2017



/Improving BH for discrete tests 5

The step-down procedure of critical value sequence τ , denoted by SD(τ), rejects the i-th hy-

pothesis if pi ≤ τk̃, with k̃ = max{k ∈ {0, 1, ...,m} : ∀k′ ≤ k, p(k′) ≤ τk′}. It is straightforward
to check that, for the same set of critical values, the step-up version always rejects more hypothe-
ses than the step-down version. More comments and illustrations on step-wise procedures can be
found in Blanchard et al. (2014) and Dickhaus (2014), among others.

1.4. False discovery rate

We measure the quantity of false positives of a step-up (resp. step-down) procedure by using the
false discovery rate (FDR), introduced and popularised by Benjamini and Hochberg (1995), which
is defined as the averaged proportion of errors among the rejected hypotheses. More formally, for
some procedure R rejecting the i-th hypothesis if pi ≤ t̂(X) (for some threshold t̂(X)), we let

FDR(R,P ) = EX∼P

[∑
i∈H0(P ) 1{pi ≤ t̂(X)}

1 ∨
∑m
i=1 1{pi ≤ t̂(X)}

]
, P ∈ P. (5)

The main contribution of this work is to propose procedures that control the FDR at a prescribed
level α and that incorporate the knowledge of the Fi’s in a way that increases the number of
discoveries.

2. Procedures

In this section we briefly review some existing methods for FDR control and introduce our new
procedures.

2.1. Existing methods

We use the following methods as starting points for constructing new procedures.

- [BH]: the seminal procedure proposed in Benjamini and Hochberg (1995), corresponding to
the step-up procedure SU(τ), with critical values τk = αk/m, 1 ≤ k ≤ m;

- [BR-λ]: an adaptive version of the BH procedure that was proposed in Blanchard and
Roquain (2009), corresponding to the step-up procedure SU(τ), with critical values

τk =

(
(1− λ)

αk

m− k + 1

)
∧ λ, 1 ≤ k ≤ m; (6)

- [GBS]: an adaptive version of the BH procedure that has been proposed in Gavrilov et al.
(2009), corresponding to the step-down procedure SD(τ), with critical values

τk =
αk

m− (1− α)k + 1
, 1 ≤ k ≤ m; (7)

- [Heyse]: the step-up procedure SU(τ) using critical values given by

τk = max{t ∈ A : F (t) ≤ αk/m}, 1 ≤ k ≤ m; (8)

where F is defined by (1). This procedure was proposed in Heyse (2011).

The rationale behind the critical values of [BR-λ] and [GBS] is that they are intended to mimic
the oracle critical values τk = αk/m0(P ), 1 ≤ k ≤ m, which are less conservative than those of
[BH] when m0(P )/m is not close to 1, see, e.g., Benjamini et al. (2006); Blanchard and Roquain
(2009) for more details on adaptive procedures.

Let us now comment on [Heyse]. First, in the continuous setting where (2) holds, F (t) ≤ t,
t ∈ [0, 1], and thus the critical values given by (8) satisfy τk ≥ αk/m, 1 ≤ k ≤ m, which means
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that [Heyse] rejects at least as many hypotheses as [BH]. When (3) additionally holds, we have
F (t) = t, t ∈ [0, 1], and the two critical value sequences are the same. Second, in the discrete
setting where (2) holds, A is finite and τk is not necessarily greater than αk/m anymore. However,
[Heyse] is also less conservative (or equal) than [BH] in the latter case, as stated in the following
result (proved in Appendix C for completeness).

Lemma 2.1. Consider the model of Section 1.1 assuming (2), both in the continuous and discrete
setting described in Section 1.2. Then the set of nulls rejected by [Heyse] is larger than the one of
[BH] (almost surely). Furthermore, under (4), these two rejection sets are equal (almost surely) if
Fi = Fj for all i 6= j.

The equality case of Lemma 2.1 was provided in Proposition 2.3 of Heller and Gur (2011), who
presented it as a limitation of Heyse procedure in the discrete case. However, we argue that the
condition Fi = Fj for all i 6= j is a somehow extreme configuration which is rarely met in practice
(in the discrete case). More typically, the Fi’s have an heterogeneous structure implying that F (t)
is smaller than t (see Figure 1). This entails that [Heyse] can substantially improve [BH] (see
Figure 2).

While [Heyse] incorporates the knowledge of the Fi’s in a natural way (see also Remark 2.2
below), it is not correctly calibrated for a rigorous FDR control: as shown in Heller and Gur (2011);
Döhler (2016), it fails to control the FDR in general. We propose suitable modifications of [Heyse]
in the next sections.

Remark 2.2 (Empirical Bayes point of view on the Heyse procedure). We claim that [Heyse]
corresponds to a suitable empirical Bayes procedure. To see this, consider the “binomial example”
of Section 1.2, but assume now that the counts n1, . . . , nm are observed from a sample N1, . . . , Nm
i.i.d. of a priori distribution ν. Unconditionally, the p-values pi, i ∈ H0, are thus i.i.d. with
c.d.f. F̄0 =

∑
n≥0 ν({n})F0,n, where F0,n is the c.d.f. jumping at each xk,n = 2−n

∑k−1
j=0

(
n
j

)
with

F0,n(xk,n) = xk,n, 1 ≤ k ≤ n+ 1. This suggests to normalise the p-values pi as F̄0(pi) which leads
to the step-up procedure with critical values τk = max{t : F̄0(t) ≤ αk/m}. Following an empirical
Bayes approach, the prior ν can be estimated by ν̂({n}) = m−1

∑m
i=1 1{Ni=n}, which gives rise

to the estimator of F̄0 defined by ˆ̄F0 =
∑
n≥0 ν̂({n})F0,n = m−1

∑m
i=1 F0,Ni , which is equal to F

given by (1). Hence, the corresponding (empirical Bayes) step-up procedure reduces to [Heyse].

2.2. Two new methods

We now present two procedures that aim at correcting [Heyse] :

- [DBH-SU]: the step-up procedure SU(τ) using the critical values defined in the following
way:

τm = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ α

}
(9)

τk = max

{
t ∈ A : t ≤ τm,

1

m

m∑
i=1

Fi (t)

1− Fi (τm)
≤ αk/m

}
, 1 ≤ k ≤ m− 1. (10)

- [DBH-SD]: the step-down procedure SD(τ) using the critical values defined in the following
way :

τk = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ αk/m

}
, 1 ≤ k ≤ m. (11)

[DBH-SU] can be seen as a correction of [Heyse]: the correction term in the critical values
(10) lies in the additional denominator 1−Fi (τm). A consequence is that [DBH-SU] can be more
conservative than [BH]. However, the magnitude of this phenomenon is always small, as the next
lemma shows (proved in Appendix C for completeness).
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Lemma 2.3. Under the conditions of Lemma 2.1, the set of nulls rejected by [DBH-SU] contains
the one of [BH] taken at level α/(1 + α) (almost surely).

For [DBH-SD], the following result can be established.

Lemma 2.4. Under the conditions of Lemma 2.1, the set of nulls rejected by [DBH-SD] contains
the one of the step-down procedure with critical values (αk/m)/(1 + αk/m), 1 ≤ k ≤ m (almost
surely).

From (10) and (11) it is clear that the critical values of [DBH-SD] are always at least as large
as those for [DBH-SU]. However, since the step-up direction is more powerful than the step-down
direction (see Section 1.3) neither of the two generally dominates the other one.

Remark 2.5. We may ask whether we can construct a uniform improvement of [BH] that incorpo-
rate the Fi’s. There is indeed such a procedure (see procedure [RBH] in Appendix A.1 for more
details). However, the improvement brought by the Fi’s information is less substantial than for
[DBH-SU], so we have chosen to omit [RBH] from the main stream of the paper.

2.3. Adaptive versions

In this section, we define adaptive versions of [DBH-SU] and [DBH-SD] in the following way:

- [A-DBH-SU]: the step-up procedure SU(τ) using the critical values defined in the following
way: τm as in (9) and for 1 ≤ k ≤ m− 1,

τk = max

{
t ∈ A : t ≤ τm,

(
F (t)

1− F (τm)

)
(1)

+ · · ·+
(

F (t)

1− F (τm)

)
(m−k+1)

≤ αk

}
, (12)

where each
(

F (t)
1−F (τm)

)
(j)

denotes the j-th largest elements of the set
{

Fi(t)
1−Fi(τm) , 1 ≤ i ≤ m

}
.

- [A-DBH-SD]: the step-down procedure SD(τ) using the critical values defined in the follow-
ing way :

τk = max

{
t ∈ A :

(
F (t)

1− F (t)

)
(1)

+ · · ·+
(

F (t)

1− F (t)

)
(m−k+1)

≤ αk

}
, 1 ≤ k ≤ m, (13)

where each
(

F (t)
1−F (t)

)
(j)

denotes the j-th largest elements of the set
{

Fi(t)
1−Fi(t)

, 1 ≤ i ≤ m
}

.

Note that the critical values of [A-DBH-SU] and [A-DBH-SD] are clearly larger than or equal
to those of their non-adaptive counterparts [DBH-SU] and [DBH-SD], respectively. This means
that the adaptive versions are always less conservative.

The following result establishes a connection of the adaptive procedures to the [BR-λ] and
[GBS] procedures (proved in Appendix C for completeness).

Lemma 2.6. Under the conditions of Lemma 2.1, the following holds:

(i) the set of nulls rejected by [A-DBH-SU] contains the one of [BR-λ] (almost surely), where λ
is taken equal to (9);

(ii) the set of nulls rejected by [A-DBH-SD] contains the one of [GBS] (almost surely);

The above lemma ensures that the user can incorporate the knowledge of the Fi’s in adaptive
procedures with a “no loss” guarantee with respect to [BR] and [GBS]. This is a somehow striking
fact, coming loosely from a “fortunate marriage” between the proof technics of discreteness theory
and adaptation theory.

Remark 2.7. We may ask whether we can build a procedure that is a uniform improvement of
[BR-λ], for any fixed value of λ ∈ (0, 1). We propose a solution in Appendix A.2, called [DBR-λ].
It does not improve uniformly [DBH-SU], but is an interesting variant of [A-DBH-SU].
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3. New FDR bounds

In this section, we present new FDR bounds which are the main mathematical contributions of
this paper and that are of independent interest. They generalise some classical bounds from super-
uniform null distributions to arbitrary heterogeneous (not necessarily discrete) null distributions,
and immediately yield FDR control of our new procedures.

3.1. Results

First, remember that the model of Section 1.1 basically only assume independence between the
p-values (and not super-uniformity of the null distribution). The following result holds.

Theorem 3.1. In the model of Section 1.1, for any critical values τk, 1 ≤ k ≤ m and for all
P ∈ P, we have

FDR(SU(τ), P ) ≤ min

 m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max
1≤k≤m

max
A⊂{1,...,m}
|A|=m−k+1

(
1

k

∑
i∈A

Fi (τk)

1− Fi (τm)

) ; (14)

FDR(SD(τ), P ) ≤ min

 m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max
1≤k≤m

max
A⊂{1,...,m}
|A|=m−k+1

(
1

k

∑
i∈A

Fi (τk)

1− Fi (τk)

) . (15)

The proof of Theorem 3.1 is deferred to Appendix B. It combines several techniques: the first
tool is an expression of the FDR introduced by Ferreira (2007) (step-up case) and Roquain and
Villers (2011) (step-down case). A second idea comes from the work Blanchard and Roquain (2009)
(step-up case) and Gavrilov et al. (2009) (step-down case), which introduced a new term (here, the
denominator (1 − Fi(·))) to make the adaptive argument works fine. Finally, another inspiration
is the study of Roquain and van de Wiel (2009) and Döhler (2016) that allowed to deal with
heterogeneous FDR thresholding. Let us underline that the obtained proof is especially concise,
which means that these different techniques fit together perfectly well, which is perhaps surprising
at first glance, see Appendix B.3.

Next, let us note that taking the maximum over the subset A in (14) and (15) allows us to
adapt to the unknown number of true null hypotheses: loosely, if k−1 is the number of rejections,
A corresponds to the acceptation set (hence of cardinality m− k + 1), which “estimates” H0 and
thus the sums in (14) and (15) are indexed by a set “close” to the unknown set H0. Taking the
maximum then corresponds to account for the least favorable possible H0.

Finally, let us underline again that the above bounds do not use the super-uniformity of the
Fi’s which makes them quite general and flexible tools. As a case in point, consider mid-p-values
which were introduced by Lancaster (1961) and are sometimes used for analysing discrete data
(see e.g. Karp et al. (2016)). These p-values are no longer super-uniform under the null hypotheses,
however our theorem can accomodate such distributions in a natural way to still yield valid FDR
controlling procedures. In addition, note that our bounds can be useful outside the discrete setting,
when the Fi’s are continuous but with flat parts, see the (toy) Example 3.3 below.

3.2. Rationale and relation to previous work

Let us now give some intuition behind these bounds by showing how it allows to cover previous
work in the literature.

imsart-generic ver. 2014/10/16 file: DDR2017_arXiv2.tex date: September 14, 2017



/Improving BH for discrete tests 9

First, assuming the super-uniformity Fi(t) ≤ t for all t and i, then these bounds entail

FDR(SU(τ), P ) ≤ m max
1≤k≤m

{τk/k}; (16)

FDR(SU(τ), P ) ≤ max
1≤k≤m

m− k + 1

1− τm
τk
k

; (17)

FDR(SD(τ), P ) ≤ max
1≤k≤m

m− k + 1

1− τk
τk
k
, (18)

which immediately recover the fact that [BH], [BR-λ] (with τm = λ) and [GBS] all control the
FDR at level α. To this respect, bounds (16), (17) and (18) encompass Theorem 3.1 of Benjamini
and Hochberg (1995), Theorem 9 of Blanchard and Roquain (2009) and Theorem 1.1 of Gavrilov
et al. (2009), respectively.

Second, by removing the adaptative part of the bounds, that is, by replacing A by {1, . . . ,m},
we obtain the simpler but more conservative bounds

FDR(SU(τ), P ) ≤ max
1≤k≤m

(
1

k

m∑
i=1

Fi (τk)

1− Fi (τm)

)
= max

1≤k≤m
mF SU(τk)/k; (19)

FDR(SD(τ), P ) ≤ max
1≤k≤m

(
1

k

m∑
i=1

Fi (τk)

1− Fi (τk)

)
= max

1≤k≤m
mF SD(τk)/k, (20)

where F SU and F SD are defined in the introduction, see also Figure 1. These variants illustrate
perhaps more intuitively how the Heyse-type procedures take advantage of the heterogeneous
structure: if some of the Fi’s are really small, they will not contribute much into F SU (or F SD),
offering some additional room for the other Fj ’s.

Finally, these bounds immediately imply that our new procedures enjoy the desired FDR con-
trolling property.

Corollary 3.2. In the model of Section 1.1, both in the continuous and discrete setting described
in Section 1.2, the procedures [DBH-SU]; [DBH-SD]; [A-DBH-SU]; [A-DBH-SD] all control the
FDR at level α.

Example 3.3. Assume that the hypotheses are structured in 3 non-overlapping groups S1, S2 and
S3, each of cardinality m/3 (assumed to be an integer). Assume that Fi(x) is equal to x if i ∈ S1,
0 if i ∈ S2, and Fi(x) = 2x (x ∈ [0, 1/4]); 1/2 (x ∈ [1/4, 3/4]); 2x− 1 (x ∈ [3/4, 1]), if i ∈ S3. Then
the bound (20) becomes (for τk ≤ 1/4):

max
1≤k≤m

mτk
3k

(
1

1− τk
+

2

1− 2τk

)
,

which entails a new step-down FDR controlling procedure by taking τk such that the above
expression is equal to α. For α small, we get τk ≈ αk/m which yields to a procedure close to a
step-down version of [BH]. It thus controls the FDR even though the super-uniformity of the p-
values is violated. In particular, this illustrates that our methodology exceeds the scope of discrete
tests.

4. Empirical data

To illustrate the performance of FDR-controlling procedures for discrete data, we analyse two
benchmark data sets which have also been used in previous publications. In what follows, our
main goal is to compare the performance of the new procedures [DBH-SU], [A-DBH-SU] and
[A-DBH-SD] to the classical [BH] procedure. As a further benchmark we also include [Heyse] in
the analysis. All analyses were performed using the R language for statistical computing (R Core
Team, 2016).
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Table 1
Number of rejections (discoveries) for the pharmacovigilance and Arabidopsis methylation data.

Data set [BH] [DBH-SU] [Heyse] [A-DBH-SU] [A-DBH-SD]

Pharmacovigilance 24 27 27 27 27
Arabidopsis methylation 2097 2358 2379 2446 2453

4.1. Pharmacovigilance data

This data set is derived from a database for reporting, investigating and monitoring adverse
drug reactions due to the Medicines and Healthcare products Regulatory Agency in the United
Kingdom. It contains the number of reported cases of amnesia as well as the total number of
adverse events reported for each of the m = 2446 drugs in the database. For more details we refer
to Heller and Gur (2011) and to the accompanying R-package ’discreteMTP’ (Heller et al., 2012),
which also contains the data. Heller and Gur (2011) investigate the association between reports
of amnesia and suspected drugs by performing for each drug a Fisher’s exact test (one-sided) for
testing association between the drug and amnesia while adjusting for multiplicity by using several
(discrete) FDR procedures.

4.2. Next generation sequencing data

We also revisit the next generation sequencing (NGS) count data analysed by Chen and Doerge
(2015b), to which we also refer for more details. More specifically, we reanalyse the methylation
data set for cytosines of Arabidopsis in Lister et al. (2008) which is part of the R-package ’fdrDis-
creteNull’ (Chen and Doerge, 2015a). This data set contains the counts for a biological entity under
two different biological conditions or treatments. Following Chen and Doerge (2015b), m = 7421
genes whose treatment-wise total counts are positive but row-total counts are no greater than 100
are analysed using the exact binomial test, see Chen and Doerge (2015b).

4.3. Results

Table 1 summarises the number of discoveries for the pharmacovigilance and NGS data when
using the respective FDR procedures at level α = 0.05. Compared to the classical FDR controlling
procedures, the new procedures are able to detect three additional candidates linking amnesia and
drugs in the pharmacovigilance data. Note also that for this data, they reject the same number
of hypotheses as [Heyse], even though [Heyse] is not correctly calibrated for FDR control. For the
Arabidopsis data, the new procedures improve considerably on [BH]. Moreover, there is a clear
separation between the adaptive and non-adaptive procedures.

Figure 2 illustrates graphically the data and the critical constants of the involved multiple
testing procedures. In particular, the benefit of taking discreteness into account becomes more
apparent: for the pharmacovigilance data, the discrete critical values are considerably (by a fac-
tor of 2.5 − 3.5) larger than their respective classical counterparts. This leads to more powerful
procedures. For the NGS data, we can observe quite clearly that the [DBH-SU] critical constants
are dominated by the [A-DBH-SU] constants, as explained in Section 2. This leads to roughly 100
additional rejections. Again, the discrete critical values are considerably larger than their respec-
tive classical counterparts. In 2.2 we mentioned that the correction factor 1− Fi(τm), introduced
for guaranteeing FDR control of [DBH-SU], may lead to a procedure which is more conservative
than [BH]. However, Figure 2 shows that – at least for the data sets considered here – this risk is
by far compensated by the benefit of taking discreteness adequately into account.
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Fig 2. Critical constants and sorted p-values (represented by black dots) for the pharmacovigilance (left panel) and
Arabidopsis methylation data (right panel). The [BH], [DBH-SU], [A-DBH-SU], [A-DBH-SD] and [Heyse] critical
constants are represented respectively by blue, green, purple, orange and grey solid lines.

5. Simulation study

We now investigate the power of the procedures from the previous section in a simulation study
similar to those described in Gilbert (2005), Heller and Gur (2011) and Döhler (2016). Again, we
focus on comparing the performance of the new discrete procedures to [BH].

5.1. Simulated Scenarios

We simulate a two-sample problem in which a vector of m independent binary responses (“adverse
events”) is observed for each subject in two groups, where each group consists of N = 25 subjects.
Then, the goal is to simultaneously test the m null hypotheses H0i : “p1i = p2i”, i = 1, . . . ,m,
where p1i and p2i are the success probabilities for the ith binary response in group 1 and 2,
respectively. We take m = 800, 2000 where m = m1 +m2 +m3 and data are generated so that the
response is Bernoulli(0.01) at m1 positions for both groups, Bernoulli(0.10) at m2 positions for
both groups and Bernoulli(0.10) at m3 positions for group 1 and Bernoulli(q) at m3 positions for
group 2 where q = 0.15, 0.25, 0.4 represents weak, moderate and strong effects respectively. The
null hypothesis is true for the m1 and m2 positions while the alternative hypothesis is true for the
m3 positions. We also take different configurations for the proportion of false null hypotheses, m3

is set to be 10%, 30% and 80% of the value of m, which represents small, intermediate and large
proportion of effects (the proportion of true nulls π0 is 0.9, 0.7, 0.2, respectively). Then, m1 is set
to be 20%, 50% and 80% of the number of true nulls (that is, m−m3) and m2 is taken accordingly
as m−m1 −m3.

For each of the 54 possible parameter configurations specified by m,m3,m1 and q, 10000 Monte
Carlo trials are performed, that is, 10000 data sets are generated and for each data set, an un-
adjusted two-sided p-value from Fisher’s exact test is computed for each of the m positions, and
the multiple testing procedures mentioned above are applied at level α = 0.05. The power of each
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procedure was estimated as the fraction of the m3 false null hypotheses that were rejected, aver-
aged over the 10000 simulations. For random number generation the R-function rbinom was used.
The two-sided p-values from Fisher’s exact test were computed using the R-function fisher.test.

5.2. Results

We have computed the (average) power of the five procedures under investigation in all the scenar-
ios (see Table 1 in Appendix C for the full display). For weak and moderate effects, i.e. q = 0.15
and q = 0.25, none of the procedure possesses relevant power. For strong effects, the results are
summarised in Figure 3. (Since the power of the discrete procedures is slightly increasing in m1

for fixed m3 and q, we present – in order to avoid over-optimism – the configuration with smallest
m1).
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Fig 3. Average power for the [BH] and discrete procedures in the simulation study. The coloring is the same as in
Figure 2

The results are consistent with the findings of the previous section: The new discrete procedures
are considerably more powerful than their classical counterparts and perform roughly similarly for
small and intermediate proportions of alternatives. When the proportion of alternatives is large,
the benefit of using adaptive procedures – especially the [A-DBH-SU] procedure – is clearly visible
in Figure 3.

6. Conclusion and discussion

In this paper, we provided new bounds for the FDR of step-up and step-down procedures that
use discrete test statistics. This allowed to define a new class of multiple testing procedures that
provably control the FDR while they incorporated the discreteness of the tests statistics in a
convenient way. We have shown that our approach can be seen as correcting and improving the
approach of Heyse (2011): while it ensures a theoretical control, it can also make more rejections
when the signal amplitude is strong enough.

Let us also mention that our procedures are fully usable in practice. An R-package is in prepa-
ration and it will be presented in a companion paper (which will also deal with computational
aspects).

Finally, this paper opens several directions for future research, especially by trying to extend
our arguments to other frameworks. For instance, it may be worth to relax the independence
requirements. To this respect, we believe that our procedures will inheritate the behavior of BH
procedure: while the FDR control is likely to be maintained under “realistic” dependence, formally
proving such a result is probably a challenging problem.
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Appendix A: Additional procedures

A.1. A rescaled BH procedure

The procedure [RBH] (rescaled-BH) is defined as the step-up procedure using the critical values
τk = λαk/m, 1 ≤ k ≤ m, where λα = max{λ ∈ [0, 1] : Ψ(λα) ≤ α} for

Ψ(λ) = min

(
λ, max

1≤k≤m

(
1

k

m∑
i=1

Fi (λk/m)

1− Fi (λ)

))
.

The following result is straightforward from Theorem 3.1 (SU part).

Corollary A.1. In the model of section 1.1 with the additional assumption (2), we have ∀P ∈ P,
FDR(RBH, P ) ≤ α.

Moreover, if α is such that the equality Ψ(λα) = α holds true, then λα ≥ Ψ(λα) = α and
[RBH] always dominates [BH] in terms of critical values and therefore rejects at least as many
hypotheses.

A.2. A discrete BR procedure

The procedure [DBR-λ] (discrete BR) is defined as the step-up procedure SU(τ) using the crit-
ical values defined in the following way τm = max {t ∈ A : t ≤ ((1− λ)mα) ∧ λ} (that is, the
discretised last critical value of [BR-λ]) and

τk = max
{
t ∈ A : t ≤ λ, (F (t))(1) + · · ·+ (F (t))(m−k+1) ≤ αk(1− λ)

}
, 1 ≤ k ≤ m− 1,

where each (F (t))(j) denotes the j-th largest elements of the set {Fi (t) , 1 ≤ i ≤ m}. The following

result is straightforward from Theorem 3.1 (SU part).

Corollary A.2. In the model of section 1.1 with the additional assumption (2), we have ∀P ∈ P,
FDR(DBR, P ) ≤ α. Moreover, the set of nulls rejected by [DBR-λ] is larger than the one of [BR-λ]
(almost surely), with equality (almost surely) under (4) and Fi = Fj for all i 6= j.
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Appendix B: Proof of Theorem 3.1

B.1. Lemmas for step-down and step-up procedures

Let us introduce the following modifications of SU(τ) :

• SU′(τ) = SU(τ ′) the step-up withm critical values defined by (τ ′1, . . . , τ
′
m) = (τ2, . . . , τm, τm);

• for some given index i ∈ {1, . . . ,m}, SU′−i(τ) = SU(τ ′−i) the step-up with m − 1 critical
values defined by (τ ′−i1 , . . . , τ ′−im−1) = (τ2, . . . , τm) and restricted to the p-values of the set
{pj , j 6= i}.

The following lemma holds (classical from Ferreira and Zwinderman (2006) and proved in
Appendix C):

Lemma B.1. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i) pi ≤ τk̂; (ii)

pi ≤ τk̂′−i+1; (iii) k̂′−i + 1 = k̂, where k̂′−i denotes the number of rejected hypotheses of the

procedure SU′−i(τ). Moreover, we have {pi > τm} ⊂ {k̂′ = k̂′−i}, where k̂′ denotes the number of
rejected hypotheses of the procedure SU′(τ).

Let us introduce the following modifications of SD(τ) :

• for some given index i ∈ {1, . . . ,m}, SD−i(τ) = SD(τ−i) the step-down procedure withm−1
critical values defined by (τ−i1 , . . . , τ−im−1) = (τ1, . . . , τm−1) and restricted to the p-values of
the set {pj , j 6= i}.

• for some given index i ∈ {1, . . . ,m}, SD′−i(τ) = SD(τ ′−i) the step-down procedure with
m−1 critical values defined by (τ ′−i1 , . . . , τ ′−im−1) = (τ2, . . . , τm) and restricted to the p-values
of the set {pj , j 6= i}.

The following lemma holds (classical from Ferreira and Zwinderman (2006) and proved in
Appendix C):

Lemma B.2. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i) pi ≤ τk̃; (ii)

pi ≤ τk̃+1; (iii) pi ≤ τk̃−i+1; (iv) k̃′−i + 1 = k̃, where k̃−i is the number of rejections of SD−i(τ)

and k̃′−i is the number of rejections of SD′−i(τ). Moreover, we have {pi > τk̃−i+1} ⊂ {k̃ = k̃−i}.

B.2. Proof of Theorem 3.1, step-up part

By using Lemma B.1 (ii) and (iii) and independence, we easily obtain

FDR(SU(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̂}

k̂

)
=
∑
i∈H0

E

(
1{pi ≤ τk̂′−i+1}

k̂′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
,

where the last expectation is taken only with respect to (pj , j 6= i). Now, on the one hand,

∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤

m∑
i=1

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤

m∑
i=1

max
1≤k≤m

Fi(τk)

k
.

Next, on the other hand, by using again the independence,

∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
1− Fi (τm)

1{pi > τm}
k̂′−i + 1

)

=
∑
i∈H0

E

(
Fi
(
τk̂′+1

)
1− Fi (τm)

1{pi > τm}
k̂′ + 1

1{k̂′ + 1 ≤ m}

)
,
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where the latter equality comes from the last assertion of Lemma B.1. Now, since τk̂′+1 ≤ τm, we
have that the last display is smaller or equal to

E

(
m∑
i=1

Fi
(
τk̂′+1

)
1− Fi (τm)

1{pi > τk̂′+1}
k̂′ + 1

1{k̂′ + 1 ≤ m}

)
≤ max

0≤k≤m−1
max

A⊂{1,...,m}
|A|=m−k

∑
i∈A

Fi (τk+1)

1− Fi (τm)

1

k + 1
,

by taking the maximum over all the possible realizations of the set A = {1 ≤ i ≤ m : pi >
τk̂′+1} = {1 ≤ i ≤ m : pi > τ ′k̂′} which is the index set corresponding to the non-rejected null

hypotheses of SU(τ ′) (the latter being by definition of cardinality m − k̂′). This concludes the
proof.

B.3. Proof of Theorem 3.1, step-down part

It is similar to the step-up case, but relies now on Lemma B.2 (iii) and (iv) (and still independence):
we have

FDR(SD(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̃}

k̃

)
=
∑
i∈H0

E

(
1{pi ≤ τk̃−i+1}

k̃′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
k̃−i + 1

)
,

which gives the first part of the bound. Next, by using independence and the last assertion of
Lemma B.2, we obtain

∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
k̃−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
1− Fi

(
τk̃−i+1

) 1{pi > τk̃−i+1}
k̃−i + 1

)

≤ E

(
m∑
i=1

Fi
(
τk̃+1

)
1− Fi

(
τk̃+1

) 1{pi > τk̃+1}
k̃ + 1

1{k̃ + 1 ≤ m}

)

≤ E

 max
0≤k≤m−1

max
A⊂{1,...,m}
|A|=m−k

∑
i∈A

Fi (τk+1)

1− Fi (τk+1)

1

k + 1

 ,

because {1 ≤ i ≤ m : pi > τk̃+1} is equal to {1 ≤ i ≤ m : pi > τk̃}, which is the set of non-rejected

hypotheses of SD(τ). Since SD(τ) rejects exactly k̃ hypotheses, the proof is completed.

Appendix C: Supplement

C.1. Proofs for lemmas comparing procedures

The lemmas presented here rely on the fact that, there is almost surely no p-value in [0, 1]\A (both
in the continuous and discrete cases). All symbols “=” or “⊂” are intended to be valid almost
surely in this section.

A result which will be extensively used in the proofs of this section is the following one : for
p-values valued in the set A, then the step-up procedure with critical values τk, 1 ≤ k ≤ m, has
the same rejection set as the step-up procedure with critical values ξk = max {t ∈ A : t ≤ τk},
1 ≤ k ≤ m. This fact comes from the simple following observation : for all k,

{1 ≤ i ≤ m : pi ≤ τk} = {1 ≤ i ≤ m : pi ∈ A, pi ≤ τk}
= {1 ≤ i ≤ m : pi ∈ A, pi ≤ ξk} = {1 ≤ i ≤ m : pi ≤ ξk}.

The ξk’s are called the “effective” critical values of SD(τ) or SU(τ) in the sequel.
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C.1.1. Proof of Lemma 2.1

The effective critical values of the BH procedure are given by ξk = max {t ∈ A : t ≤ αk/m},
1 ≤ k ≤ m. If (2) holds, then F (t) ≤ t and each ξk is clearly smaller than the k-th critical values
of [Heyse]. This implies that the rejection set of [Heyse] is larger than the one of [BH]. Conversely,
under (4) and if Fi = Fj = F for all i 6= j, we always have F (t) = Fi(t) = t for t ∈ A. This implies
that the ξk’s are the critical values of [Heyse] and shows the reversed inclusion.

C.1.2. Proof of Lemmas 2.3 and 2.4

Let τk, 1 ≤ k ≤ m, be the critical values of [DBH-SU]. Let ξk = max
{
t ∈ A : t ≤ α

1+α
k
m

}
be the

effective critical values of the [BH] procedure at level α/(1 +α). Now, for all t ∈ [0, 1], we have by
(2),

F SU(t) =
1

m

m∑
i=1

Fi(t)

1− Fi(τm)
≤ t

m

m∑
i=1

1

1− Fi(τm)
= t · (1 + F SU(τm)) ≤ t · (1 + α), (21)

where the last inequality follows from the definition of τm. Thus we have F SU(ξm) ≤ α, which in
turn implies ξm ≤ τm. Additionally, the bound (21) yields for 1 ≤ k < m

τk = max
{
t ∈ A : t ≤ τm, F SU(t) ≤ αk/m

}
≥ max {t ∈ A : t ≤ τm, t(1 + α) ≤ αk/m}
= max {t ∈ A : t(1 + α) ≤ αk/m}
= ξk,

where we used that ξm ≤ τm. This proves Lemma 2. The proof of Lemma 3 is analogue and is left
to the reader.

C.1.3. Proof of Lemma 2.6

Let us first focus on the case (i) and denote by τk, 1 ≤ k ≤ m, the critical values of [A-DBH-SU].
From (2), we have for 1 ≤ k ≤ m− 1,

τk ≥ max {t ∈ A : t ≤ τm, t ≤ αk(1− τm)/(m− k + 1)}

= max

{
t ∈ A : t ≤

(
(1− τm)

αk

m− k + 1

)
∧ τm

}
,

which correspond to the effective critical values of [BR-λ] with λ = τm. Now consider the case
(ii) and denote again by τk, 1 ≤ k ≤ m, the critical values of [A-DBH-SD]. From (2), we have for
1 ≤ k ≤ m,

τk ≥ max {t ∈ A : (m− k + 1)t/(1− t) ≤ αk} = max {t ∈ A : t ≤ αk/(m− k(1− α) + 1)}

which correspond to the effective critical values of [GBS]. This implies the result.

C.2. Proofs of technical lemmas for step-down and step-up procedures

C.2.1. Proof of Lemma B.1

First note that for any step-up procedure

k̂ = max

{
k ∈ {0, 1, ...,m} :

m∑
i=1

1{pi ≤ τk} ≥ k

}
,
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which is sometimes more handy, because this definition avoids to rely explicitly on the order
statistics of the p-values.

Now, it is not difficult to check that k̂′−i ≥ k̂ − 1 always holds: this comes from the inequality

k̂ − 1 =

m∑
j=1

1{pj ≤ τk̂} − 1 ≤
∑
j 6=i

1{pj ≤ τk̂} =
∑
j 6=i

1{pj ≤ τ ′−ik̂−1
},

because τ ′−i`−1 = τ` for ` ∈ {2, . . . ,m} (note that we can assume without loss of generality k̂ ≥ 1
here). This means that (i) implies (ii). Now, when pi ≤ τk̂′−i+1, we have

k̂′−i =
∑
j 6=i

1{pj ≤ τ ′−ik̂′−i
} =

∑
j 6=i

1{pj ≤ τk̂′−i+1} =

m∑
j=1

1{pj ≤ τk̂′−i+1} − 1

which implies k̂′−i + 1 ≤
∑m
j=1 1{pj ≤ τk̂′−i+1} and thus k̂′−i + 1 ≤ k̂. Since, again, k̂′−i ≥ k̂ − 1

always holds, we have k̂′−i + 1 = k̂. Hence, (ii) implies (iii). Now, if k̂′−i + 1 = k̂, we have

1{pi ≤ τk̂} =

m∑
j=1

1{pj ≤ τk̂} −
∑
j 6=i

1{pj ≤ τk̂} = k̂ −
∑
j 6=i

1{pj ≤ τk̂′−i+1}

= k̂ −
∑
j 6=i

1{pj ≤ τ ′−ik̂′−i
} = k̂ − k̂′−i = 1,

by definition of τ ′−i, which gives that (iii) implies (i). Now, to prove the last statement, we first

note that k̂′ ≥ k̂′−i always holds. Furthermore, if pi > τm let us prove k̂′ ≤ k̂′−i. First, k̂′ = m is
impossible because pi is above τm and thus pi cannot be rejected by SU′(τ). Hence, k̂′ ≤ m − 1
and thus τ ′−i

k̂′
is well defined. Now, since pi > τm, we obtain

∑
j 6=i

1{pj ≤ τ ′−ik̂′
} =

∑
j 6=i

1{pj ≤ τ ′k̂′} =

m∑
j=1

1{pj ≤ τ ′k̂′} = k̂′,

which implies k̂′ ≤ k̂′−i by definition of SU′−i(τ).

C.2.2. Proof of Lemma B.2

First note that for any step-down procedure

k̃ = max

{
k ∈ {0, 1, ...,m} : ∀k′ ≤ k,

m∑
i=1

1{pi ≤ τk′} ≥ k′
}
.

Now, we check that k̃′−i + 1 ≥ k̃ always holds. Since
∑
j 6=i 1{pj ≤ τ

′−i
k̃′−i+1

} < k̃′−i + 1, we have

m∑
j=1

1{pj ≤ τk̃′−i+2} ≤ 1 +
∑
j 6=i

1{pj ≤ τ ′−ik̃′−i+1
} < k̃′−i + 2,

which gives k̃ < k̃′−i + 2 by definition of k̃ and thus k̃ ≤ k̃′−i + 1. Next, if pi ≤ τk̃, we have

∑
j 6=i

1{pj ≤ τ ′−ik̃
} =

∑
j 6=i

1{pj ≤ τk̃+1} =

m∑
j=1

1{pj ≤ τk̃+1} − 1 < k̃ + 1− 1,

so that k̃ > k̃′−i and thus k̃ ≥ k̃′−i+1. This proves that (i) implies (iv). Next, if pi > τk̃−i+1, then

m∑
j=1

1{pj ≤ τk̃−i+1} =
∑
j 6=i

1{pj ≤ τk̃−i+1} =
∑
j 6=i

1{pj ≤ τ−ik̃−i+1
} < k̃−i + 1,
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which entails k̃ < k̃−i + 1 and thus k̃ ≤ k̃−i. This proves k̃ 6= k̃′−i + 1. Hence, (iv) implies (iii).

The fact that (iii) implies (ii) is obvious because k̃ ≥ k̃−i always holds. Finally, we merely check

that k̃ is such that

k̃ =

m∑
j=1

1{pj ≤ τk̃} =

m∑
j=1

1{pj ≤ τk̃+1},

which means that the set of p-values rejected at threshold τk̃ is the same as the set of p-values
rejected at threshold τk̃+1. This gives that (ii) implies (i). For the last assertion, it has been proved
in the above reasoning while showing that (iv) implies (iii).

C.3. Table for the simulations
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Table 2
Average power of FDR procedures for N = 25 (see Section 5).

m m3 m1 q [BH] [Heyse] [DBH-SU] [A-DBH-SU] [A-DBH-SD]

800 80 144 0.15 0.0000 0.0004 0.0003 0.0003 0.0004
144 0.25 0.0004 0.0197 0.0177 0.0177 0.0135
144 0.4 0.0803 0.4425 0.4247 0.4247 0.4130
360 0.15 0.0000 0.0007 0.0006 0.0006 0.0007
360 0.25 0.0004 0.0244 0.0209 0.0209 0.0153
360 0.4 0.0803 0.4529 0.4509 0.4509 0.4487
576 0.15 0.0000 0.0009 0.0007 0.0007 0.0008
576 0.25 0.0004 0.0343 0.0259 0.0259 0.0231
576 0.4 0.0803 0.5367 0.4741 0.4741 0.4999

240 112 0.15 0.0000 0.0003 0.0003 0.0003 0.0002
112 0.25 0.0005 0.0276 0.0249 0.0249 0.0157
112 0.4 0.2148 0.5365 0.5012 0.5012 0.4951
280 0.15 0.0000 0.0003 0.0003 0.0003 0.0002
280 0.25 0.0005 0.0315 0.0272 0.0272 0.0175
280 0.4 0.2147 0.5758 0.5536 0.5536 0.5495
448 0.15 0.0000 0.0005 0.0003 0.0003 0.0004
448 0.25 0.0005 0.0372 0.0308 0.0308 0.0207
448 0.4 0.2145 0.5920 0.5741 0.5741 0.5775

640 32 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
32 0.25 0.0010 0.0378 0.0341 0.0341 0.0174
32 0.4 0.4243 0.6174 0.5955 0.6828 0.6621
80 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
80 0.25 0.0010 0.0388 0.0347 0.0347 0.0179
80 0.4 0.4242 0.6282 0.6128 0.6841 0.6638
128 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
128 0.25 0.0010 0.0400 0.0354 0.0354 0.0183
128 0.4 0.4240 0.6353 0.6265 0.6854 0.6656

2000 200 360 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
360 0.25 0.0001 0.0156 0.0142 0.0142 0.0100
360 0.4 0.0730 0.4486 0.4317 0.4317 0.4197
900 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
900 0.25 0.0001 0.0192 0.0166 0.0166 0.0125
900 0.4 0.0730 0.4517 0.4511 0.4511 0.4509
1440 0.15 0.0000 0.0003 0.0002 0.0002 0.0002
1440 0.25 0.0001 0.0286 0.0211 0.0211 0.0165
1440 0.4 0.0730 0.5402 0.4684 0.4684 0.4984

600 280 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
280 0.25 0.0001 0.0239 0.0213 0.0213 0.0115
280 0.4 0.2058 0.5350 0.4988 0.4988 0.4960
700 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
700 0.25 0.0001 0.0290 0.0239 0.0239 0.0132
700 0.4 0.2058 0.5750 0.5590 0.5590 0.5516
1120 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
1120 0.25 0.0001 0.0350 0.0283 0.0283 0.0157
1120 0.4 0.2057 0.5908 0.5739 0.5739 0.5761

1600 80 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
80 0.25 0.0003 0.0379 0.0342 0.0342 0.0126
80 0.4 0.4223 0.6196 0.5928 0.6860 0.6591
200 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
200 0.25 0.0003 0.0387 0.0351 0.0351 0.0131
200 0.4 0.4222 0.6281 0.6152 0.6869 0.6602
320 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
320 0.25 0.0003 0.0396 0.0360 0.0360 0.0137
320 0.4 0.4220 0.6327 0.6278 0.6877 0.6617
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