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Abstract: We consider the problem of testing simultaneously many null hypotheses when
the test statistics have a discrete distribution. We present new modifications of the Benjamini-
Hochberg procedure that incorporate the discrete structure of the data in an appropriate
way. These new procedures are theoretically proved to control the false discovery rate (FDR)
for any fixed number of null hypotheses. A strong point of our FDR controlling methodol-
ogy is that it allows to incorporate at once the discreteness and the quantity of signal of
the data (so called “π0-adaptation”). Finally, the power advantage of the new methods is
demonstrated by using both numerical experiments and real data sets.
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1. Introduction

Multiple testing procedures are now routinely used to find significant items in massive and complex
data. An important focus has been given to method controlling the false discovery rate (FDR)
because this scalable type I error rate “survives” to high dimension. Since the original procedure
of Benjamini and Hochberg (1995), much efforts have been undertaken to design FDR controlling
procedures that adapt to various underlying structures of the data, as the quantity of signal, the
signal strength and the dependencies, among others.

In this work, we deal with adaptation to the discreteness structure, which is faced in various
applications where data are collected under the form of counts, as clinical trials, genome-wide
association studies (GWAS) or next generation sequencing (NGS). A well known fact is that using
discrete test statistics can generate a severe power loss, already at the stage of the single tests. A
consequence is that using “blindly” the BH procedure with discrete p-values will control the FDR
in a too conservative manner.

In the literature, building multiple testing procedures that take into account the discreteness
of the test statistics has a long history, that can be traced back to Tukey and Mantel (1980):
some null hypotheses can be a priori excluded from the study, because the corresponding tests are
unable to produce sufficiently small p-values. This results in a multiplicity reduction that should
increase the power. While this idea has been exploited in Tarone (1990) and Westfall and Wolfinger
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(1997) for family-wise error rate, an attempt has been made for FDR later in Gilbert (2005). More
recently, Heyse (2011) has proposed a more powerful solution, relying on the following averaged
cumulative distribution function (c.d.f.):

F (t) =
1

m

m∑
i=1

Fi(t), t ∈ [0, 1], (1)

where each Fi corresponds to the c.d.f. of the i-th test p-value. To illustrate the potential benefit
of using F , Figure 1 displays this function for the pharmacovigilance data from Heller and Gur
(2011) (see section 5 for more details). The critical values of the Heyse procedure can be obtained
by inverting F at the values αk/m, 1 ≤ k ≤ m. Thus, the smaller the F -values, the larger the
critical values. Here, Heyse critical values improve the BH critical values roughly by a factor 3,
thereby yielding a potentially strong rejection enhancement. Furthermore, since the functions Fi’s
are known, so is F . Hence, the user has a good prior idea of the improvements reachable by
this discrete approach. Unfortunately, the down-side of the Heyse procedure is that it does not
rigorously control the FDR in general, as shown by1 Heller and Gur (2011) (simulations) and
Döhler (2016) (formal proof).

Meanwhile, solutions of other natures have been explored by modifying directly the p-values,
either by randomization (see Habiger (2015) and references therein), or by shrinking them to
build so-called midP-values (see Heller and Gur (2011) and references therein). Other work use
the discreteness to provide a better estimate of the FDR, see, e.g., Pounds and Cheng (2006), or
to make groups and p-value weighting, see Chen and Doerge (2015b).

Overall, although many new procedures have been produced in literature, only few of them are
proved to achieve a rigorous FDR control under standard conditions, especially in the finite sample
case. To the best of our knowledge, we can only refer to the discretized version of the procedure
of Benjamini and Liu (1999) introduced by Heller and Gur (2011) and to the asymptotic work of
Ferreira (2007). The aim of this paper is to fill the gap by proposing new procedures that achieve
both theoretical validity and good practical performances.

In this paper, we introduce procedures relying on the following modifications of F function:

F SU(t) =
1

m

m∑
i=1

Fi (t)

1− Fi (τm)
; F SD(t) =

1

m

m∑
i=1

Fi (t)

1− Fi (t)
, t ∈ [0, 1],

(an appropriate choice of τm is given in section 3.2). Figure 1 displays these functions and show they
are very close to the original F for small values of t (in a more general manner, note that F (t) ≤
F SD(t) ≤ F (t)/(1 − t) a soon as Fi(t) ≤ t for all i). The main advantages of these modifications
is that the corresponding procedures actually provide proven FDR control at the desired level
under standard conditions. Furthermore, we show that they have “adaptive” counterparts that
are uniform improvements maintaining the FDR control, see Sections 3 and 4. Here, “adaptive”
means that the derived critical values can be designed in a way that “implicitly estimate” the
overall proportion of true null hypotheses. To explore in detail the performance of these procedures,
practical experiments are done in Sections 5 and 6 with true and simulated data.

2. Preliminaries

2.1. General model

Let us observe a random variable X, defined on a probabilistic space and valued in an observation
space (X ,X). We consider a set P of possible distributions for the distribution of X and we
denote the true one by P . We assume that m null hypotheses H0,i, 1 ≤ i ≤ m, are available

1suggestion sd: examples given in Heller and Gur (2011) and Döhler (2016) .
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Fig 1. Plots of variants of F for the pharmacovigilance data. The grey line corresponds to the uniform case, the
discrete variants are represented by blue (for F ), green (for FSD) and red (for FSU) lines.

for P and we denote the corresponding set of true null hypotheses by H0(P ) = {1 ≤ i ≤ m :
H0,i is satisfied by P}. We also denote by m0(P ) = |H0(P )| the number of true nulls.

We assume that the user has at hand a set of p-values to test each null, that is, a set of random
variables {pi(X), 1 ≤ i ≤ m}, valued in [0, 1]. Throughout the paper, we also make the important
(but classical) assumption that the p-values pi(X), 1 ≤ i ≤ m, are mutually independent.

Now, we denote F = {Fi, 1 ≤ i ≤ m}, where for each i ∈ {1, . . . ,m}, the function

Fi(t) = sup
P∈P : i∈H0(P )

PX∼P (pi(X) ≤ t), t ∈ [0, 1], 1 ≤ i ≤ m

is assumed to be known. Note that we necessarily have Fi(·) non decreasing, Fi(t) ∈ [0, 1], Fi(1) = 1
and we add the technical condition Fi(0) = 0. Loosely, each Fi corresponds to the cumulative
distribution of pi under the null. Above, we have put a supremum to cover the case where the
null hypothesis is composite: in that situation, each Fi is adjusted according to the least favorable
configuration within the null H0,i.

Here are some conditions on F that will be useful to compare some of the studied procedures
(these conditions are not assumed in our results unless explicitly mentioned):

Fi(t) ≤ t, t ∈ [0, 1], 1 ≤ i ≤ m, (2)

Fi(t) = t, t ∈ [0, 1], 1 ≤ i ≤ m (3)

Condition (2) ensures that the p-values have marginals stochastically lower-bounded by a uniform
variable under the null. This is the classical setting which is used in most of the work dealing
with FDR controlling theory, see, e.g., Benjamini and Hochberg (1995). Condition (3) is more
restrictive : whenever each null hypothesis is a singleton, it implies that the p-values have uniform
marginals under the null.

2.2. Discrete and continuous modelling

In this paper, we will assume that we are in one of the two following situations :
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• Continuous case: for all i ∈ {1, . . . ,m}, Fi is continuous. In that case, we let Ai = [0, 1],
1 ≤ i ≤ m and A = ∪mi=1Ai = [0, 1].

• Discrete case: each p-value pi (both under the null and alternative) takes values in some finite
set Ai = {ai,k, 0 ≤ k ≤ Ki}, where Ki ≥ 0 and (ai,k)0≤k≤Ki

∈ [0, 1]Ki+1 is an increasing
sequence (with ai,0 = 0, ai,Ki

= 1). We denote A = ∪mi=1Ai the overall p-value support.

The continuous setting typically comes for situations where the p-values are calibrated from test
statistics having a continuous distribution under the null. In this situation, (3) is often satisfied.
The discrete setting typically arises in situations where the p-values are calibrated from test
statistics having a finitely supported distribution under the null. In this situation, (3) is typically
violated and we relax it under the weaker form:

Fi(t) = t, t ∈ Ai, 1 ≤ i ≤ m. (4)

In the discrete framework, let us underline that while (4) will typically hold, the equality Fi(t) = t,
t ∈ A will fail in general because A contains points of Aj for j 6= i. For the function F defined
by (1), this entails that F (t) will be smaller than t in general (see Figure 1), which is exactly the
property that we want to exploit in this paper.

To illustrate the above framework, we provide below two simple examples (for more advanced
examples, see for instance Chen and Doerge (2015b)).

Example 2.1 (Gaussian testing). Observe X = (Xi)1≤i≤m with independent coordinates and
marginals Xi ∼ N (µi, 1), µi ∈ R is the parameter of interest, 1 ≤ i ≤ m. In that situation, a
possible hypothesis testing problem is to consider the nulls H0,i : “µi ≤ 0” against H1,i : “µi > 0”.
Then pi(X) = 1 − Φ(Xi), 1 ≤ i ≤ m, is a family of p-values satisfying (3) (where Φ denotes the
c.d.f. of a standard Gaussian variable).

Example 2.2 (Binomial testing). Observe X = (Xi)1≤i≤m with independent coordinates and
marginals Xi ∼ B(ni, θi), where ni ≥ 1 is known and θi ∈ (0, 1) is the parameter of interest,
1 ≤ i ≤ m. In that situation, a possible hypothesis testing problem is to consider the nulls H0,i :
“θi ≤ 1/2” against H1,i : “θi > 1/2”. Then pi(X) = Ti(Xi), 1 ≤ i ≤ m, define a family of p-values
where Ti(x) = 2−ni

∑x
j=0

(
ni

j

)
is the upper-tail distribution function of a binomial distribution

of parameters (ni, 1/2). The support of the p-values under the null and alternative is covered by

letting Ki = ni + 1 and ai,k = 2−ni
∑k−1
j=0

(
ni

j

)
, 1 ≤ k ≤ Ki. We merely check in that case that (3)

is violated while (2) and (4) hold.

2.3. Step-wise procedures

First define a critical value sequence as any nondecreasing sequence τ = (τk)1≤k≤m ∈ [0, 1]m (with
τ0 = 0 by convention).

The step-up procedure of critical value sequence τ , denoted by SU(τ), rejects the i-th hypothesis
if pi ≤ τk̂, with

k̂ = max{k ∈ {0, 1, ...,m} : p(k) ≤ τk},

where p(1) ≤ p(2) ≤ ... ≤ p(m) denote the ordered p-values (with the convention p(0) = 0).
The step-down procedure of critical value sequence τ , denoted by SD(t), rejects the i-th hy-

pothesis if pi ≤ τk̃, with

k̃ = max{k ∈ {0, 1, ...,m} : ∀k′ ≤ k, p(k′) ≤ τk′}.

It is straightforward to check that, for the same set of critical values, the step-up version rejects
always more hypotheses than the step-down version. More comments and illustrations on step-wise
procedures can be found in Blanchard et al. (2014) and Dickhaus (2014), among others.
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2.4. False discovery rate

We measure the quantity of false positives of a step-up (resp. step-down) procedure by using the
false discovery rate (FDR), introduced and popularized by Benjamini and Hochberg (1995), which
is defined as the averaged proportion of errors among the rejected hypotheses. More formally, for
some procedure R rejecting the i-th hypothesis if pi ≤ t̂(X) (for some threshold t̂(X)),

FDR(R,P ) = E

[∑
i∈H0(P ) 1{pi ≤ t̂(X)}

1 ∨
∑m
i=1 1{pi ≤ t̂(X)}

]
, P ∈ P. (5)

The aim of this work is to propose procedures that control the FDR at a prescribed level α and
that incorporate the knowledge of the Fi’s in a way that increases the number of discoveries.

3. Methods

3.1. Existing methods

Here are some existing procedures, that we use as benchmarks in our analysis.

- [BH]: the seminal procedure proposed in Benjamini and Hochberg (1995), corresponding to
the step-up procedure SU(τ), with critical values τk = αk/m, 1 ≤ k ≤ m;

- [BR-λ]: an adaptive version of BH procedure that was proposed in Blanchard and Roquain
(2009), corresponding to the step-up procedure SU(τ), with critical values

τk =

(
(1− λ)

αk

m− k + 1

)
∧ λ, 1 ≤ k ≤ m; (6)

- [GBS]: an adaptive version of BH procedure that has been proposed in Gavrilov et al. (2009),
corresponding to the step-down procedure SD(τ), with critical values

τk =
αk

m− (1− α)k + 1
, 1 ≤ k ≤ m; (7)

- [Heyse]: the step-up procedure SU(τ) using critical values given by

τk = max{t ∈ A : F (t) ≤ αk/m}, 1 ≤ k ≤ m; (8)

where F is defined by (1). This procedure was proposed in Heyse (2011).

The rationale behind the critical values of [BR-λ] and [GBS] is that they are intended to mimic
the oracle critical values τk = αk/m0(P ), 1 ≤ k ≤ m, which are less conservative than those of
[BH] when m0(P )/m is not close to 1, see, e.g., Benjamini et al. (2006); Blanchard and Roquain
(2009) for more details on adaptive procedures.

Let us now comment [Heyse]. First, in the continuous setting where (2) holds, F (t) ≤ t, t ∈ [0, 1],
and thus the critical values given by (8) satisfy τk ≥ αk/m, 1 ≤ k ≤ m, which means that [Heyse] is
always less conservative (or equal) than [BH]. When (3) additionally holds, F (t) = t, t ∈ [0, 1], and
the two critical value sequences are the same. Second, in the discrete setting where (2) holds, A is
finite and τk is not provided anymore to be above αk/m. However, [Heyse] is also less conservative
(or equal) than [BH] in this case, as stated in the following result (proved in Section A).

Lemma 3.1. Consider the model of Section 2.1 assuming (2), both in the continuous and discrete
setting described in Section 2.2. Then the set of nulls rejected by [Heyse] is larger than the one of
[BH] (almost surely). Furthermore, under (4), these two rejection sets are equal (almost surely) if
Fi = Fj for all i 6= j.
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The equality case of Lemma 3.1 was provided in Proposition 2.3 of Heller and Gur (2011), who
presented it as a limitation of Heyse procedure in the discrete case. However, we advocate that
the condition Fi = Fj for all i 6= j is a somehow extreme configuration which is rarely met in
practice (in the discrete case). More typically, the Fi’s have an heterogeneous structure implying
that F (t) is smaller than t (see Figure 1). This entails that [Heyse] can substantially improve [BH]
(see Figure 2).

Here, our point is that, while [Heyse] incorporates the knowledge of the Fi’s in an appropriate
way (see also Remark 3.2 below), it is not correctly well calibrated for a rigorous FDR control: as
shown in Heller and Gur (2011); Döhler (2016), it fails to control the FDR in general. We propose
suitable modifications of [Heyse] in the next sections.

Remark 3.2 (Empirical Bayes point of view on the Heyse procedure). We note here that [Heyse]
corresponds to a suitable empirical Bayes procedure. Let us consider the “binomial example” of
Section 2.2, but assume now that the counts n1, . . . , nm are observed from a sample N1, . . . , Nm
i.i.d. of a priori distribution ν. Unconditionally, the p-values pi, i ∈ H0, are thus i.i.d. with
c.d.f. F̄0 =

∑
n≥0 ν({n})F0,n, where F0,n is the c.d.f. jumping at each xk,n = 2−n

∑k−1
j=0

(
n
j

)
with F0,n(xk,n) = xk,n, 1 ≤ k ≤ n + 1. This suggests to choose the step-up procedure with
critical values τk = max{t : F̄0(t) ≤ αk/m}. Following an empirical Bayes approach, the prior
ν can be estimated by ν̂({n}) = m−1

∑m
i=1 1{Ni=n}, which gives rise to the estimator of F̄0

given by ˆ̄F0 =
∑
n≥0 ν̂({n})F0,n = m−1

∑m
i=1 F0,Ni

, which is equal to F given by (1). Hence, the
corresponding (empirical Bayes) step-up procedure reduces to [Heyse].

3.2. Two new methods

We now present two procedures that aim at correcting [Heyse] :

- [DBH-SU]: the step-up procedure SU(τ) using the critical values defined in the following
way

τm = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ α

}

τk = max

{
t ∈ A : t ≤ τm,

1

m

m∑
i=1

Fi (t)

1− Fi (τm)
≤ αk/m

}
, 1 ≤ k ≤ m− 1. (9)

- [DBH-SD]: the step-down procedure SD(τ) using the critical values defined in the following
way :

τk = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ αk/m

}
, 1 ≤ k ≤ m. (10)

[DBH-SU] can be seen as a correction of [Heyse]: the correction term in the critical values
(9) lies in the additional denominator 1− Fi (τm). A consequence is that [DBH-SU] can be more
conservative than [BH]. However, the amplitude of this phenomenon is always light, as the next
lemma shows (proved in Section A).

Lemma 3.3. Under the conditions of Lemma 3.1, the set of nulls rejected by [DBH-SU] is larger
than the one of [BH] taken at level α/(1 + α) (almost surely).

At this point, it is useful to ask whether we can build a procedure that incorporate the Fi’s while
being a uniform improvement of [BH]. We have found a solution (under some mild conditions),
called [RBH], but the improvement brought by the Fi’s information is less substantial than for
[DBH-SU], so we have chosen to not report [RBH] in the main stream of the paper. We refer the
reader to Appendix B.1 for more details.

Now, we briefly discuss [DBH-SD]. The following result can be established:
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Lemma 3.4. Under the conditions of Lemma 3.1, the set of nulls rejected by [DBH-SD] is (almost
surely) larger than the one of the step-down procedure with critical values (αk/m)/(1 + αk/m),
1 ≤ k ≤ m.

Finally note that [DBH-SD] uses critical values always larger than those of [DBH-SU], but uses
a step-down algorithm instead of a step-up algorithm. Hence, [DBH-SD] and [DBH-SU] are not
comparable in general.

3.3. Adaptive versions

In this section, we define adaptive versions of [DBH-SU] and [DBH-SD] in the following way:

- [A-DBH-SU]: the step-up procedure SU(τ) using the critical values defined in the following
way

τm = max

{
t ∈ A : m−1

m∑
i=1

Fi (t)

1− Fi (t)
≤ α

}

τk = max

{
t ∈ A : t ≤ τm,

(
F (t)

1− F (τm)

)
(1)

+ · · ·+
(

F (t)

1− F (τm)

)
(m−k+1)

≤ αk

}
, 1 ≤ k ≤ m− 1,

(11)

where each
(

F (t)
1−F (τm)

)
(j)

denotes the j-th largest elements of the set
{

Fi(t)
1−Fi(τm) , 1 ≤ i ≤ m

}
.

- [A-DBH-SD]: the step-down procedure SD(τ) using the critical values defined in the follow-
ing way :

τk = max

{
t ∈ A :

(
F (t)

1− F (t)

)
(1)

+ · · ·+
(

F (t)

1− F (t)

)
(m−k+1)

≤ αk

}
, 1 ≤ k ≤ m, (12)

where each
(

F (t)
1−F (t)

)
(j)

denotes the j-th largest elements of the set
{

Fi(t)
1−Fi(t)

, 1 ≤ i ≤ m
}

.

Note that the critical values of [A-DBH-SU] and [A-DBH-SD] are clearly larger than or equal
to those of their non-adaptive counterparts [DBH-SU] and [DBH-SD], respectively. This means
that using adaptive versions is always less conservative. The only cost is computational: deriving
(11) and (12) can be time-consuming because the ordering should be done for each value of t.

Additionally, the following result holds (proved in Section A).

Lemma 3.5. Under the conditions of Lemma 3.1, the following holds:

(i) the set of nulls rejected by [A-DBH-SU] is larger than the one of [BR-λ] (almost surely),
where λ is taken equal to the largest critical values of [A-DBH-SU] (or [DBH-SU]);

(ii) the set of nulls rejected by [A-DBH-SD] is larger than the one of [GBS] (almost surely);

The above lemma ensures that the user can incorporate the knowledge of the Fi’s in adaptive
procedures with a ”no loss” guarantee with respect to [BR] and [GBS]. This is a somehow striking
fact, coming loosely from a “fortunate marriage” between the proof technics of discreteness theory
and adaptation theory.

4. FDR controlling results

In this section, we provide results showing that the new proposed methods appropriately control
the FDR. The proofs are all deferred to Appendix C.
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Theorem 4.1 (Step-up). In the model of section 2.1, consider any critical values τk, 1 ≤ k ≤ m,
satisfying

min

 m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max
1≤k≤m

max
X⊂{1,...,m}
|X|=m−k+1

(
1

k

∑
i∈X

Fi (τk)

1− Fi (τm)

) ≤ α,
Then, we have for all P ∈ P, FDR(SU(τ), P ) ≤ α.

Theorem 4.1 generalizes the original result of Benjamini and Hochberg (1995) and Theorem 9
of Blanchard and Roquain (2009) (for the choice λ = α/(1 + α)).

Theorem 4.2 (Step-down). In the model of section 2.1, consider any critical values τk, 1 ≤ k ≤
m, satisfying

max
1≤k≤m

max
X⊂{1,...,m}
|X|=m−k+1

(
1

k

∑
i∈X

Fi (τk)

1− Fi (τk)

)
≤ α.

Then, we have for all P ∈ P, FDR(SD(τ), P ) ≤ α.

Theorem 4.2 extends Theorem 1.1 of Gavrilov et al. (2009). Also, our proof is much simpler
than the original proof of Gavrilov et al. (2009), see Appendix C.2.

Corollary 4.3. In the model of section 2.1, the procedures [DBH-SU]; [DBH-SD]; [A-DBH-SU];
[A-DBH-SD] all control the FDR at level α.

5. Empirical data

To illustrate the performance of FDR-controlling procedures for discrete data, we analyse two
benchmark data sets which have also been used in previous publications. In what follows, our
main goal is to compare the performance of the new procedures [DBH-SU], [A-DBH-SU] and
[A-DBH-SD] to the classical [BH] procedure. As a further benchmark we also include [Heyse] in
the analysis. All analyses were performed using the R language for statistical computing (R Core
Team, 2016).

5.1. Pharmacovigilance data

This data set is derived from a database for reporting, investigating and monitoring adverse
drug reactions due to the Medicines and Healthcare products Regulatory Agency in the United
Kingdom. It contains the number of reported cases of amnesia as well as the total number of
adverse events reported for each of the m = 2446 drugs in the database. For more details we refer
to Heller and Gur (2011) and to the accompanying R-package ’discreteMTP’ (Heller et al., 2012),
which also contains the data. Heller and Gur (2011) investigate the association between reports
of amnesia and suspected drugs by performing for each drug a Fisher’s exact test (one-sided) for
testing association between the drug and amnesia while adjusting for multiplicity by using several
(discrete) FDR procedures.

5.2. Next generation sequencing data

We also revisit the next generation sequencing (NGS) count data analysed by Chen and Doerge
(2015b), to which we also refer for more details. More specifically, we reanalyse the methylation
data set for cytosines of Arabidopsis in Lister et al. (2008) which is part of the R-package ’fdrDis-
creteNull’ (Chen and Doerge, 2015a). This data set contains the counts for a biological entity under
two different biological conditions or treatments. Following Chen and Doerge (2015b), m = 7421
genes whose treatment-wise total counts are positive but row-total counts are no greater than 100
are analysed using the exact binomial test, see Chen and Doerge (2015b).
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/New procedures for discrete tests 9

5.3. Results

Table 1 summarizes the number of discoveries for the pharmacovigilance and NGS data when
using the respective FDR procedures at level α = 0.05.

Table 1
Number of rejections (discoveries) for the pharmacovigilance and Arabidopsis methylation data.

Data set [BH] [DBH-SU] [Heyse] [A-DBH-SU] [A-DBH-SD]

Pharmacovigilance 24 27 27 27 27
Arabidopsis methylation 2097 2358 2379 2446 2453

Compared to the classical FDR controlling procedures, the new procedures are able to detect
three additional candidates linking amnesia and drugs in the pharmacovigilance data. Note also
that for this data, they reject the same number of hypotheses as [Heyse], even though [Heyse] is
not correctly calibrated for FDR control. For the Arabidopsis data, the new procedures improve
considerably on [BH]. Moreover, there is a clear separation between the adaptive and non-adaptive
procedures.

Figure 2 illustrates graphically the data and the critical constants of the involved multiple
testing procedures. In particular, the benefit of taking discreteness into account becomes more
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Fig 2. Critical constants and sorted p-values (represented by black dots) for the pharmacovigilance (left panel) and
Arabidopsis methylation data (right panel). The [BH], [GBS], [DBH-SU], [A-DBH-SU], [A-DBH-SD] and [Heyse]
critical constants are represented respectively by blue, red, green, purple, orange and grey solid lines.

apparent: for the pharmacovigilance data, the discrete critical values are considerably (by a fac-
tor of 2.5 − 3.5) larger than their respective classical counterparts. This leads to more powerful
procedures. For the NGS data, we can observe quite clearly that the [DBH-SU] critical constants
are dominated by the [A-DBH-SU] constants, as explained in section 3. This leads to roughly 100
additional rejections. Again, the discrete critical values are considerably larger than their respec-
tive classical counterparts. In 3.2 we mentioned that the correction factor 1− Fi(τm), introduced
for guaranteeing FDR control of [DBH-SU], may lead to a procedure which is more conservative
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than [BH]. However, Figure 2 shows that – at least for the data sets considered here – this risk is
by far compensated by the benefit of taking discreteness adequately into account.

6. Simulation study

We now investigate the power of the procedures from the previous section in a simulation study
similar to those described in Gilbert (2005), Heller and Gur (2011) and Döhler (2016). Again, we
focus on comparing the performance of the new discrete procedures to [BH].

6.1. Simulated Scenarios

We simulate a two-sample problem in which a vector of m independent binary responses (“adverse
events”) is observed for each subject in two groups, where each group consists of N = 25 subjects.
Then, the goal is to simultaneously test the m null hypotheses H0i : “p1i = p2i”, i = 1, . . . ,m,
where p1i and p2i are the success probabilities for the ith binary response in group 1 and 2,
respectively. We take m = 800, 2000 where m = m1 +m2 +m3 and data are generated so that the
response is Bernoulli(0.01) at m1 positions for both groups, Bernoulli(0.10) at m2 positions for
both groups and Bernoulli(0.10) at m3 positions for group 1 and Bernoulli(q) at m3 positions for
group 2 where q = 0.15, 0.25, 0.4 represents weak, moderate and strong effects respectively. The
null hypothesis is true for the m1 and m2 positions while the alternative hypothesis is true for the
m3 positions. We also take different configurations for the proportion of false null hypotheses, m3

is set to be 10%, 30% and 80% of the value of m, which represents small, intermediate and large
proportion of effects (the proportion of true nulls π0 is 0.9, 0.7, 0.2, respectively). Then, m1 is set
to be 20%, 50% and 80% of the number of true nulls (that is, m−m3) and m2 is taken accordingly
as m−m1 −m3.

For each of the 54 possible parameter configurations specified by m,m3,m1 and q, 10000 Monte
Carlo trials are performed, that is, 10000 data sets are generated and for each data set, an un-
adjusted two-sided p-value from Fisher’s exact test is computed for each of the m positions, and
the multiple testing procedures mentioned above are applied at level α = 0.05. The power of each
procedure was estimated as the fraction of the m3 false null hypotheses that were rejected, aver-
aged over the 10000 simulations. For random number generation the R-function rbinom was used.
The two-sided p-values from Fisher’s exact test were computed using the R-function fisher.test.

6.2. Results

Table 2 displays the (average) power of the five procedures under investigation. For weak and
moderate effects, i.e. q = 0.15 and q = 0.25, none of the procedure possesses relevant power. For
strong effects, the results are summarized in Figure 3. (Since the power of the discrete procedures
is slightly increasing in m1 for fixed m3 and q, we present – in order to avoid over-optimism – the
configuration with smallest m1).

The results are consistent with the findings of the previous section: The new discrete procedures
are considerably more powerful than their classical counterparts and perform roughly similarly for
small and intermediate proportions of alternatives. When the proportion of alternatives is large,
the benefit of using adaptive procedures – especially the [A-DBH-SU] procedure – is clearly visible
in Figure 3.

Loosely, this experiment supports the fact the new proposed procedures have power performance
of the “same order” as [Heyse]. Their advantage is thus that they have an additional theoretical
guarantee.
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Table 2
Average power of FDR procedures for N = 25 (see text).

m m3 m1 q [BH] [Heyse] [DBH-SU] [A-DBH-SU] [A-DBH-SD]

800 80 144 0.15 0.0000 0.0004 0.0003 0.0003 0.0004
144 0.25 0.0004 0.0197 0.0177 0.0177 0.0135
144 0.4 0.0803 0.4425 0.4247 0.4247 0.4130
360 0.15 0.0000 0.0007 0.0006 0.0006 0.0007
360 0.25 0.0004 0.0244 0.0209 0.0209 0.0153
360 0.4 0.0803 0.4529 0.4509 0.4509 0.4487
576 0.15 0.0000 0.0009 0.0007 0.0007 0.0008
576 0.25 0.0004 0.0343 0.0259 0.0259 0.0231
576 0.4 0.0803 0.5367 0.4741 0.4741 0.4999

240 112 0.15 0.0000 0.0003 0.0003 0.0003 0.0002
112 0.25 0.0005 0.0276 0.0249 0.0249 0.0157
112 0.4 0.2148 0.5365 0.5012 0.5012 0.4951
280 0.15 0.0000 0.0003 0.0003 0.0003 0.0002
280 0.25 0.0005 0.0315 0.0272 0.0272 0.0175
280 0.4 0.2147 0.5758 0.5536 0.5536 0.5495
448 0.15 0.0000 0.0005 0.0003 0.0003 0.0004
448 0.25 0.0005 0.0372 0.0308 0.0308 0.0207
448 0.4 0.2145 0.5920 0.5741 0.5741 0.5775

640 32 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
32 0.25 0.0010 0.0378 0.0341 0.0341 0.0174
32 0.4 0.4243 0.6174 0.5955 0.6828 0.6621
80 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
80 0.25 0.0010 0.0388 0.0347 0.0347 0.0179
80 0.4 0.4242 0.6282 0.6128 0.6841 0.6638
128 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
128 0.25 0.0010 0.0400 0.0354 0.0354 0.0183
128 0.4 0.4240 0.6353 0.6265 0.6854 0.6656

2000 200 360 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
360 0.25 0.0001 0.0156 0.0142 0.0142 0.0100
360 0.4 0.0730 0.4486 0.4317 0.4317 0.4197
900 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
900 0.25 0.0001 0.0192 0.0166 0.0166 0.0125
900 0.4 0.0730 0.4517 0.4511 0.4511 0.4509
1440 0.15 0.0000 0.0003 0.0002 0.0002 0.0002
1440 0.25 0.0001 0.0286 0.0211 0.0211 0.0165
1440 0.4 0.0730 0.5402 0.4684 0.4684 0.4984

600 280 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
280 0.25 0.0001 0.0239 0.0213 0.0213 0.0115
280 0.4 0.2058 0.5350 0.4988 0.4988 0.4960
700 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
700 0.25 0.0001 0.0290 0.0239 0.0239 0.0132
700 0.4 0.2058 0.5750 0.5590 0.5590 0.5516
1120 0.15 0.0000 0.0002 0.0002 0.0002 0.0002
1120 0.25 0.0001 0.0350 0.0283 0.0283 0.0157
1120 0.4 0.2057 0.5908 0.5739 0.5739 0.5761

1600 80 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
80 0.25 0.0003 0.0379 0.0342 0.0342 0.0126
80 0.4 0.4223 0.6196 0.5928 0.6860 0.6591
200 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
200 0.25 0.0003 0.0387 0.0351 0.0351 0.0131
200 0.4 0.4222 0.6281 0.6152 0.6869 0.6602
320 0.15 0.0000 0.0001 0.0001 0.0001 0.0000
320 0.25 0.0003 0.0396 0.0360 0.0360 0.0137
320 0.4 0.4220 0.6327 0.6278 0.6877 0.6617
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Fig 3. Average power for the [BH] and discrete procedures in the simulation study. The left panel presents results
for m = 800, the right panel for m = 2000.
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Appendix A: Proofs for lemmas comparing procedures

The lemmas presented here rely on the fact that, there is almost surely no p-value in [0, 1]\A (both
in the continuous and discrete cases). All symbols “=” or “⊂” are intended to be valid almost
surely in this section.

A result which will be extensively used in the proofs of this section is the following one : for
p-values valued in the set A, then the step-up procedure with critical values τk, 1 ≤ k ≤ m, has
the same rejection set as the step-up procedure with critical values ξk = max {t ∈ A : t ≤ τk},
1 ≤ k ≤ m. This fact comes from the simple following observation : for all k,

{1 ≤ i ≤ m : pi ≤ τk} = {1 ≤ i ≤ m : pi ∈ A, pi ≤ τk}
= {1 ≤ i ≤ m : pi ∈ A, pi ≤ ξk} = {1 ≤ i ≤ m : pi ≤ ξk}.

The ξk’s are called the “effective” critical values of SD(τ) or SU(τ) in the sequel.

A.1. Proof of Lemma 3.1

The effective critical values of the BH procedure are given by ξk = max {t ∈ A : t ≤ αk/m},
1 ≤ k ≤ m. If (2) holds, then F (t) ≤ t and each ξk is clearly smaller than the k-th critical values
of [Heyse]. This implies that the rejection set of [Heyse] is larger than the one of [BH]. Conversely,
under (4) and if Fi = Fj = F for all i 6= j, we always have F (t) = Fi(t) = t for t ∈ A. This implies
that the ξk’s are the critical values of [Heyse] and shows the reversed inclusion.

A.2. Proof of Lemma 3.3

Let τk, 1 ≤ k ≤ m, be the critical values of [DBH-SU]. Let ξk = max
{
t ∈ A : t ≤ α

1+α
k
m

}
be the

effective critical values of the [BH] procedure at level α/(1 +α). Now, for all t ∈ [0, 1], we have by
(2),

F SU(t) =
1

m

m∑
i=1

Fi(t)

1− Fi(τm)
≤ t

m

m∑
i=1

1

1− Fi(τm)
= t · (1 + F SU(τm)) ≤ t · (1 + α), (13)

where the last inequality follows from the definition of τm. Thus we have F SU(ξm) ≤ α, which in
turn implies ξm ≤ τm. Additionally, the bound (13) yields for 1 ≤ k < m

τk = max
{
t ∈ A : t ≤ τm, F SU(t) ≤ αk/m

}
≥ max {t ∈ A : t ≤ τm, t(1 + α) ≤ αk/m}
= max {t ∈ A : t(1 + α) ≤ αk/m}
= ξk,

where we used that ξm ≤ τm. The result follows.
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A.3. Proof of Lemma 3.4

The proof is analogue to the proof of Lemma 3.3 and is left to the reader.

A.4. Proof of Lemma 3.5

Let us first focus on the case (i) and denote by τk, 1 ≤ k ≤ m, the critical values of [A-DBH-SU].
From (2), we have for 1 ≤ k ≤ m− 1,

τk ≥ max {t ∈ A : t ≤ τm, t ≤ αk(1− τm)/(m− k + 1)}

= max

{
t ∈ A : t ≤

(
(1− τm)

αk

m− k + 1

)
∧ τm

}
,

which correspond to the effective critical values of [BR-λ] with λ = τm. Now consider the case
(ii) and denote again by τk, 1 ≤ k ≤ m, the critical values of [A-DBH-SD]. From (2), we have for
1 ≤ k ≤ m,

τk ≥ max {t ∈ A : (m− k + 1)t/(1− t) ≤ αk} = max {t ∈ A : t ≤ αk/(m− k(1− α) + 1)}

which correspond to the effective critical values of [GBS]. This implies the result.

Appendix B: Additional materials

B.1. Procedure [RBH]

The procedure [RBH] is defined as the step-up procedure using the critical values τk = λαk/m,
1 ≤ k ≤ m, where λα = max{λ ∈ [0, 1] : Ψ(λα) ≤ α} for

Ψ(λ) = min

(
λ, max

1≤k≤m

(
1

k

m∑
i=1

Fi (λk/m)

1− Fi (λ)

))
.

The following result is straightforward from Theorem 4.1.

Corollary B.1. In the model of section 2.1 with the additional assumption (2), we have ∀P ∈ P,
FDR(RBH, P ) ≤ α.

Moreover, if α is such that the equality Ψ(λα) = α holds true, then λα ≥ Ψ(λα) = α and [RBH]
always dominates [BH] in terms of critical values and thus also of rejection set.

B.2. Lemma for step-up procedures

It is straightforward to check that

k̂ = max

{
k ∈ {0, 1, ...,m} :

m∑
i=1

1{pi ≤ τk} ≥ k

}
,

which is sometimes more handy, because this definition avoids to rely explicitly on the order
statistics of the p-values.

Let us introduce the following modifications of SU(τ) :

• SU′(τ) = SU(τ ′) the step-up withm critical values defined by (τ ′1, . . . , τ
′
m) = (τ2, . . . , τm, τm);

• for some given index i ∈ {1, . . . ,m}, SU′−i(τ) = SU(τ ′−i) the step-up with m − 1 critical
values defined by (τ ′−i1 , . . . , τ ′−im−1) = (τ2, . . . , τm) and restricted to the p-values of the set
{pj , j 6= i}.
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The following lemma holds

Lemma B.2. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i) pi ≤ τk̂; (ii)

pi ≤ τk̂′−i+1; (iii) k̂′−i + 1 = k̂, where k̂′−i denotes the number of rejected hypotheses of the

procedure SU′−i(τ). Moreover, we have {pi > τm} ⊂ {k̂′ = k̂′−i}, where k̂′ denotes the number of
rejected hypotheses of the procedure SU′(τ).

Proof. It is not difficult to check that k̂′−i ≥ k̂ − 1 always holds: this comes from the inequality

k̂ − 1 =

m∑
j=1

1{pj ≤ τk̂} − 1 ≤
∑
j 6=i

1{pj ≤ τk̂} =
∑
j 6=i

1{pj ≤ τ ′−ik̂−1
},

because τ ′−i`−1 = τ` for ` ∈ {2, . . . ,m} (note that we can assume without loss of generality k̂ ≥ 1
here). This means that (i) implies (ii). Now, when pi ≤ τk̂′−i+1, we have

k̂′−i =
∑
j 6=i

1{pj ≤ τ ′−ik̂′−i
} =

∑
j 6=i

1{pj ≤ τk̂′−i+1} =

m∑
j=1

1{pj ≤ τk̂′−i+1} − 1

which implies k̂′−i + 1 ≤
∑m
j=1 1{pj ≤ τk̂′−i+1} and thus k̂′−i + 1 ≤ k̂. Since, again, k̂′−i ≥ k̂ − 1

always holds, we have k̂′−i + 1 = k̂. Hence, (ii) implies (iii). Now, if k̂′−i + 1 = k̂, we have

1{pi ≤ τk̂} =

m∑
j=1

1{pj ≤ τk̂} −
∑
j 6=i

1{pj ≤ τk̂} = k̂ −
∑
j 6=i

1{pj ≤ τk̂′−i+1}

= k̂ −
∑
j 6=i

1{pj ≤ τ ′−ik̂′−i
} = k̂ − k̂′−i = 1,

by definition of τ ′−i, which gives that (iii) implies (i). Now, to prove the last statement, we first

note that k̂′ ≥ k̂′−i always holds. Furthermore, if pi > τm let us prove k̂′ ≤ k̂′−i. First, k̂′ = m is
impossible because pi is above τm and thus pi cannot be rejected by SU′(τ). Hence, k̂′ ≤ m − 1
and thus τ ′−i

k̂′
is well defined. Now, since pi > τm, we obtain

∑
j 6=i

1{pj ≤ τ ′−ik̂′
} =

∑
j 6=i

1{pj ≤ τ ′k̂′} =

m∑
j=1

1{pj ≤ τ ′k̂′} = k̂′,

which implies k̂′ ≤ k̂′−i by definition of SU′−i(τ).

B.3. Lemma for step-down procedures

It is straightforward to check that

k̃ = max

{
k ∈ {0, 1, ...,m} : ∀k′ ≤ k,

m∑
i=1

1{pi ≤ τk′} ≥ k′
}
.

Let us introduce the following modifications of SD(τ) :

• for some given index i ∈ {1, . . . ,m}, SD−i(τ) = SD(τ−i) the step-down procedure withm−1
critical values defined by (τ−i1 , . . . , τ−im−1) = (τ1, . . . , τm−1) and restricted to the p-values of
the set {pj , j 6= i}.

• for some given index i ∈ {1, . . . ,m}, SD′−i(τ) = SD(τ ′−i) the step-down procedure with
m−1 critical values defined by (τ ′−i1 , . . . , τ ′−im−1) = (τ2, . . . , τm) and restricted to the p-values
of the set {pj , j 6= i}.

The following lemma holds
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Lemma B.3. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i) pi ≤ τk̃; (ii)

pi ≤ τk̃+1; (iii) pi ≤ τk̃−i+1; (iv) k̃′−i + 1 = k̃, where k̃−i is the number of rejections of SD−i(τ)

and k̃′−i is the number of rejections of SD′−i(τ). Moreover, we have {pi > τk̃−i+1} ⊂ {k̃ = k̃−i}.

Proof. First, we check that k̃′−i + 1 ≥ k̃ always holds. Since
∑
j 6=i 1{pj ≤ τ

′−i
k̃′−i+1

} < k̃′−i + 1, we

have
m∑
j=1

1{pj ≤ τk̃′−i+2} ≤ 1 +
∑
j 6=i

1{pj ≤ τ ′−ik̃′−i+1
} < k̃′−i + 2,

which gives k̃ < k̃′−i + 2 by definition of k̃ and thus k̃ ≤ k̃′−i + 1. Now, if pi ≤ τk̃, we have

∑
j 6=i

1{pj ≤ τ ′−ik̃
} =

∑
j 6=i

1{pj ≤ τk̃+1} =

m∑
j=1

1{pj ≤ τk̃+1} − 1 < k̃ + 1− 1,

so that k̃ > k̃′−i and thus k̃ ≥ k̃′−i+1. This proves that (i) implies (iv). Next, if pi > τk̃−i+1, then

m∑
j=1

1{pj ≤ τk̃−i+1} =
∑
j 6=i

1{pj ≤ τk̃−i+1} =
∑
j 6=i

1{pj ≤ τ−ik̃−i+1
} < k̃−i + 1,

which entails k̃ < k̃−i + 1 and thus k̃ ≤ k̃−i. This proves k̃ 6= k̃′−i + 1. Hence, (iv) implies (iii).

The fact that (iii) implies (ii) is obvious because k̃ ≥ k̃−i always holds. Finally, we merely check

that k̃ is such that

k̃ =

m∑
j=1

1{pj ≤ τk̃} =

m∑
j=1

1{pj ≤ τk̃+1},

which means that the set of p-values rejected at threshold τk̃ is the same as the set of p-values
rejected at threshold τk̃+1. This gives that (ii) implies (i). For the last assertion, it has been proved
in the above reasoning while showing that (iv) implies (iii).

Appendix C: Proofs of controlling results

C.1. Proof of Theorem 4.1

By using Lemma B.2 (ii) and (iii) and independence, we easily obtain

FDR(SU(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̂}

k̂

)
=
∑
i∈H0

E

(
1{pi ≤ τk̂′−i+1}

k̂′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
,

where the last expectation is taken only with respect to (pj , j 6= i). Now, on the one hand,

∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤

m∑
i=1

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤

m∑
i=1

max
1≤k≤m

Fi(τk)

k
.

Next, on the other hand, by using again the independence,

∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
k̂′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̂′−i+1

)
1− Fi (τm)

1{pi > τm}
k̂′−i + 1

)

=
∑
i∈H0

E

(
Fi
(
τk̂′+1

)
1− Fi (τm)

1{pi > τm}
k̂′ + 1

1{k̂′ + 1 ≤ m}

)
,
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where the latter equality comes from the last assertion of Lemma B.2. Now, since τk̂′+1 ≤ τm, we
have that the last display is smaller or equal to

E

(
m∑
i=1

Fi
(
τk̂′+1

)
1− Fi (τm)

1{pi > τk̂′+1}
k̂′ + 1

1{k̂′ + 1 ≤ m}

)

≤ max
0≤k≤m−1

max
X⊂{1,...,m},|X|=m−k

∑
i∈X

Fi (τk+1)

1− Fi (τm)

1

k + 1
,

by taking the maximum over all the possible realizations of the set X = {1 ≤ i ≤ m : pi >
τk̂′+1} = {1 ≤ i ≤ m : pi > τ ′k̂′} which is the index set corresponding to the non-rejected null

hypotheses of SU(τ ′) (the latter being by definition of cardinality m − k̂′). This concludes the
proof.

C.2. Proof of Theorem 4.2

It is similar to the step-up case, but relies now on Lemma B.3 (iii) and (iv) (and still independence):

FDR(SD(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̃}

k̃

)
=
∑
i∈H0

E

(
1{pi ≤ τk̃−i+1}

k̃′−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
k̃−i + 1

)
.

By using independence and the last assertion of Lemma B.3, we obtain

∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
k̃−i + 1

)
≤
∑
i∈H0

E

(
Fi
(
τk̃−i+1

)
1− Fi

(
τk̃−i+1

) 1{pi > τk̃−i+1}
k̃−i + 1

)

≤ E

(
m∑
i=1

Fi
(
τk̃+1

)
1− Fi

(
τk̃+1

) 1{pi > τk̃+1}
k̃ + 1

1{k̃ + 1 ≤ m}

)

≤ E

(
max

0≤k≤m−1
max

X⊂{1,...,m},|X|=m−k

∑
i∈X

Fi (τk+1)

1− Fi (τk+1)

1

k + 1

)
,

because {1 ≤ i ≤ m : pi > τk̃+1} is equal to {1 ≤ i ≤ m : pi > τk̃}, which is the set of non-rejected

hypotheses of SD(τ). Since SD(τ) rejects exactly k̃ hypotheses, the proof is completed.
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