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Abstract

The present paper is concerned with the dynamic modeling and design of control laws for a small

non-rigid multi-rotor airship constituted of an oblate-spheroid helium balloon coupled with an

electric-powered hexa-rotor airframe. The vehicle is assumed to operate in windless and low-

speed conditions. A six-degree-of-freedom nonlinear dynamic model is derived for it using the

Newton-Euler approach and considering, among other common efforts, a restoring torque due to

the displacement of the balloon’s center of buoyancy above the vehicle’s center of mass and the

added-mass effect resulting from the air-structure interaction. Using the derived model and as-

suming a time-scale separation between the translational and rotational dynamics, the attitude

and position control laws are designed separately from each other. Both laws are formulated using

feedback linearization combined with control input saturation within appropriate parallelepipedal

sets, which are carefully chosen to respect pre-defined bounds on the control torque, control force

and inclination angle. The effect of temperature and pressure fluctuations is taken into account

through a parametric probabilistic approach, where Maximum Entropy Principle is used to con-

struct a physically consistent stochastic model and Monte Carlo method is used as stochastic

solver to propagate the uncertainties through the system. Extensive simulation results show the

effectiveness of the proposed control system and quantifies the uncertainty of its performance over

a wide range of local temperature and pressure.

Keywords: multi-rotor airship, multi-rotor aerial vehicle, flight control system, uncertainty

quantification.
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1. Introduction

The traditional airships are lighter-than-air (LTA) aircrafts constituted of a streamlined or

elliptical envelop (or hull) filled with a low-density gas (generally, helium), a pair of propellers

installed through the gondola on its bottom part and a tail equipped with rudder and elevator.

They mainly rely on the aerostatic lift, resulting from the difference between the air and inner gas

densities, for opposing the gravity and keep flying, which provides them with better endurance,

payload capacity, and energy consumption characteristics compared to heavier-than-air (HTA)

vehicles (such as airplanes and helicopters) [1].

In the last three decades, thanks to advances (and cost reduction) in sensor technology, em-

bedded computers, and materials, the airships have resurged in academia, mainly in non-rigid

(blimp), small, and unmanned versions [2]. Such interest renewal in turn gives rise to many works

concerned with the dynamic modeling and identification [3, 4] as well as the flight control [5, 6] of

such aerial vehicles.

Despite of the aforementioned advantages of the traditional airships over the HTA vehicles,

they suffer from a weak controllability in the vertical and lateral translational degrees of freedom

(DOF), besides of being more vulnerable to undesirable aerodynamic effects, such as those due

to the drag and the added mass [1]. The interplay between these drawbacks has motivated the

design of a number of small and electric hybrid airships [7, 8, 9, 10] provided with an augmented

maneuverability by an unconventional combination of actuators. In particular, the reference [7]

presents a fin-less ellipsoidal blimp equipped with four vectoring rotors; the reference [8] analyzes

a small streamlined blimp actuated by one vertical and two horizontal fixed rotors; the reference

[9] is concerned with a flying-wing-shaped hull equipped with four vectoring double rotors; and

the reference [10] comes up with a cylindrical blimp with conventional actuators, whose rotor axis

can be controlled to slide along a longitudinal keel.

The present paper investigates the dynamic modeling and flight control of a hexa-rotor airship,

which is a new hybrid aircraft consisting of an oblate-spheroid balloon filled with helium, attached

to a hexa-rotor airframe (see a picture in Figure 1). Their two parts are strapped down by ropes at

six contact points. The balloon is made on polyurethane and has 2.5 m of horizontal diameter and
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1.6 m of height. With a payload of 4.42 kg, the vehicle has a buoyancy ratio of 0.7. In a qualitative

pre-analysis, one can say that, in low speed and windless condition, the hexa-rotor airship has

potentially a better flight duration and payload capacity than a pure hexa-rotor vehicle, since its

aerostatic lift is sized to counteract part of the weight aboard it. On the other hand, compared

to other airships, the one investigated here has a full maneuverability in the position and heading

DOFs, which is a characteristic inherited from conventional multi-rotor vehicles.

Figure 1: The hexa-rotor airship. It is patented according to reference [11].

In particular, the present paper is concerned with the dynamic modeling and design of flight

control laws for the hexa-rotor airship depicted in Figure 1. A nonlinear six-DOF dynamic model

is derived for this vehicle using the Newton-Euler approach, considering its operation in a low-

speed and windless condition. On the basis of this model and considering a time-scale separation

between the translational and rotational dynamics, a hierarchical flight control architecture with

the attitude control loop put inside the position control loop is adopted here. This architecture is

commonly found in the literature of control applied to multi-rotor aerial vehicles (MAV) [12, 13, 14].

Here, on the basis of the derived model, the attitude and position control laws are separately

designed using feedback linearization and considering the saturation of the control vector within

appropriate parallelepipedal sets that ensure the satisfaction of design bounds on the control torque
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and force, as well as on the vehicle’s inclination angle.

The design of position and attitude control laws for the hexa-rotor airship, even if it is intended

to operate indoors and in low speed, must face two paramount dynamic aspects not found in the

MAV control problem. The first one is the restoring torque, which appears as a consequence of

the displacement between the balloon’s center of buoyancy (CB) and the vehicle’s center of mass

(CM) [15]. For a fixed CB-CM displacement, the larger the inclination angle of the vehicle with

respect to the local vertical, the larger the magnitude of the restoring torque. Therefore, for a given

sizing of the rotor set, the attitude controller must respect a maximum bound on the inclination

angle for the control system to maintain its effectiveness to counteract the restoring torque (and

more). The side effect of such inclination constraint is a low lateral acceleration capability. The

second aspect is the added-mass effect [16], which consists in the reaction efforts (torque and

force) of the surrounding air on the vehicle’s body. It turns out that the added-mass effect causes

an additional coupling between the translational and rotational dynamics, besides an apparent

increasing in the vehicle’s mass and inertia. The above two aspects are considered here. Moreover,

an uncertainty quantification analysis is carried out to assess the variation in the closed-loop

performance as a result of the deviation of the operating temperature and pressure with respect to

their nominal values; note that such deviation causes a change in the air and helium densities and,

as a consequence, in the aerostatic lift and restoring torque. From the above justification, we can

assert that the main contributions of this paper are: 1) the dynamic modeling of the hexa-rotor

airship for windless and low-speed conditions; 2) the design of a simple but effective control scheme

for this vehicle, considering the aerostatic efforts; and 3) the uncertainty quantification study for

assessing its closed-loop performance over a specified range of possible operating temperatures and

pressures.

The remaining text is organized in the following manner. Section 2 derives the six-DOF dynamic

model. Section 3 is concerned with the design of the nonlinear attitude and position control laws, as

well as the stability analysis of the corresponding closed-loop dynamics. Sections 4 and 5 evaluates

the overall system numerically. Particularly, Section 4 adopts a nominal scenario, whereas Section

5 carries out a stochastic uncertainty quantification analysis considering a random variation of

both the local temperature and pressure conditions over given ranges. Finally, Section 6 concludes
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Figure 2: Illustration of the hexa-rotor airship and representaiton of the Cartesian coordinate systems.

the paper.

2. Dynamic Modeling

This section derives rotational and translational equations of motion, as well as actuator models

for the hexa-rotor airship, considering the most relevant efforts in low-speed indoor flight scenarios.

We start with preliminary definitions in Subsection 2.1, then we model the rotor dynamics and

control efforts in Subsection 2.2, the restoring torque and aerostatic lift generated by the balloon in

Subsection 2.3, the vehicle’s translational dynamics in Subsection 2.5, and its rotational dynamics

in Subsection 2.4. Finally, the added-mass effects are treated in Subsection 2.6.

2.1. Preliminary Definitions, Notation, and Nomenclature

Define two Cartesian coordinate systems (CCS) as illustrated in Figure 2. The body CCS,

SB , {B; x̂B, ŷB, ẑB} is attached to the vehicle’s body with the origin at the vehicle’s center of

mass B, the x̂B axis is pointing forward, aligned with the bisectrix of the separation angle between
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the rotors 1 and 2, the ẑB axis is pointing upward, normal to the airframe, and the ŷB axis completes

a right-handed coordinate system. The ground CCS, SG , {G; x̂G, ŷG, ẑG} is fixed to the ground

at a known point G, with the ẑG axis pointing upward vertically. For our purposes, SG can be

considered as an inertial frame and will be adopted as such.

Denote the set of real numbers by R and the set of positive and non-negative real numbers by R>0

and R≥0, respectively. Moreover, denote the special orthogonal group by SO(3). Denote arbitrary

sets by uppercase calligraphic letters, e.g., A and B. The Minkowski sum of two sets A and B is

defined by A⊕ B , {a + b : a ∈ A, b ∈ B}. To clarify the vector notation adopted here, consider

two different kinds of vectors: physical (geometric) vectors and algebraic vectors. Physical vectors

are denoted by italic letters with a right arrow superscript, e.g., ~a. The corresponding algebraic

vector resulting from the projection of ~a onto an arbitrary CCS SA is denoted by the same letter,

but in a bold format, with the subscript A, i.e., aA ∈ R3. Matrices are denoted by bold uppercase

letters, e.g., A. Let ~a be an arbitrary physical vector. The relation between its representations aA

and aB is aA = DA/BaB, where DA/B ∈ SO(3) is the attitude matrix of SA w.r.t. SB. The inverse

of DA/B (which coincides with its transpose) is sometimes denoted by DB/A. The Euclidean norm

of aA is denoted by ‖aA‖. Now, let ~a A/B represent a physical quantity of SA relative to SB, e.g.,

~r B/G denotes the relative position of SB w.r.t. SG. Let ei denote an n-dimensional (for some

n) standard unit vector. The ith component of a is denoted by ai and sometimes by eT
i a. Now,

consider two physical vectors ~a and ~b as well as the respective algebraic representations in SA,

aA = [a1 a2 a3]
T and bA, respectively. Denote the SA representation of the vector product ~a ×~b

by the matrix multiplication [aA×]bA, where [aA×] is the following skew-symmetric matrix:

[aA×] ,


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (1)

The text also distinguishes between a variable representing an effective quantity, e.g., a, and

the corresponding command (or desired value). The latter is denoted with the same letter as the

effective quantity, but including an overbar; e.g., ā.
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2.2. Rotor Dynamics and Efforts

The set of six rotors equipping the airframe is responsible for generating the control forces and

torques as described here. The ith rotor individually produces a thrust force and a reaction torque

on the airframe along the ẑB axis with magnitudes denoted by fi and τi, respectively. We describe

these efforts by the following aerodynamic models [17]:

fi = kfω
2
i , (2)

τi = kτω
2
i , (3)

i = 1, ..., 4, where kf is the thrust force coefficient, kτ is the reaction torque coefficient, and ωi is

the rotation speed of the ith rotor. The rotor dynamics can be modeled by the following first-order

linear model:

ω̇i = − 1

τω
ωi +

kω
τω
ω̄i, (4)

where ω̄i ∈ [0, ω̄max] is the rotation speed command of the ith rotor, kω is the speed coefficient,

and τω is the rotor time constant. The rotation upper bound ω̄max is assumed to be known.

Consider that all the six thrusts fi point upward. Moreover, consider that the reaction torque

τ1 is positive, τ2 is negative, τ3 is positive, and so on. Therefore, one can show that the magnitude

F c of the resulting control force and the SB representation Tc
B of the resulting control torque are

given by

 F c

Tc
B

 = Γf, (5)

where f , [f1 f2 . . . f6]
T and
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Figure 3: The restoring torque.
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√

3/2 l
√

3/2 0

k −k k −k k −k


∈ R4×6, (6)

with l denoting the length of each vehicle’s arm, and k , kτ/kf .

2.3. Aerostatic Lift and Restoring Torque

This subsection models two crucial efforts generated by the balloon. One is an aerostatic lift

force ~F b and the other one is a restoring torque ~T b. The force ~F b is explained by the Archimedes’

Principle, which says that the buoyancy force always points upwards parallel to the local vertical

and its magnitude is equal to the weight of the air volume displaced by the balloon. Therefore,

Fb
G = V gρaire3, (7)
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where V is the volume of the balloon (and of the gas as well), g is the gravitational acceleration,

and ρair is the air density. Denote the magnitude of ~F b by F b , V gρair.

On the other hand, the restoring torque ~T b is an effort acting about the vehicle’s CM, which

appears as a consequence of the displacement d between the balloon’s CB and the vehicle’s CM.

Figure 3 illustrates the balloon-airframe connection. Assume that this connection is rigid. In

this case, the CB, which is placed at point H, is fixed w.r.t. SB. From the illustration, one can

immediately write

~T b = (dẑB)× ~F b. (8)

By representing equation (8) in SB, we finally have

Tb
B = d[e3×]DB/Ge3F

b, (9)

where DB/G ∈ SO(3) is the attitude matrix of SB w.r.t. SG.

2.4. Translational Motion

By invoking the Second Newton’s Law considering all the vectors represented in SG, one can

immediately write 5 (
mt +mh

)
r̈
B/G
G = Fg

G + Fb
G + Fc

G + Fd
G, (10)

where mt is the total mass of the vehicle without lifting gas and including the payload, mh ,

ρheliumV is the helium mass, with ρhelium representing the helium density, r
B/G
G ∈ R

3 is the SG
representation of the position of the vehicle’s center of mass B w.r.t. G, Fg

G is the SG representation

of the gravitational force, Fb
G is the SG representation of the aerostatic lift force, Fc

G is the SG
representation of the control force, and Fd

G is the SG representation of the (unknown) disturbance

force. The force Fb
G is given by equation (7), while Fg

G and Fc
G are modeled by

Fg
G = −

(
mt +mh

)
ge3, (11)

Fc
G = F c

(
DB/G

)T
e3. (12)

9



By replacing equations (11)-(12) into (10), one can obtain

r̈
B/G
G =

F c

mt +mh
nG +

(
V gρair
mt +mh

− g
)

e3 +
1

mt +mh
Fd

G, (13)

where nG ∈ R3 is the transpose of the third line of DB/G, which corresponds to the SG represen-

tation of the unit (geometric) vector ẑB.

2.5. Rotational Motion

The kinematic equation of the rotational motion of SB w.r.t. SG is given in SO(3) by

Ḋ
B/G

= −
[
Ω

B/G
B ×

]
DB/G, (14)

where Ω
B/G
B ∈ R3 is the SB representation of the vehicle’s angular velocity w.r.t. SG.

Assume that the vehicle has a rigid structure and consider SG as an inertial frame. Therefore,

the Euler’s Law gives

ḢB +
[
Ω

B/G
B ×

]
HB = Tc

B + Tb
B + Td

B, (15)

where HB is the SB representation of the total angular momentum of the vehicle, Tc
B is the

SB representation of the control torque (see equation (5)), Td
B is the SB representation of the

(unknown) disturbance torque, and Tb
B is the SB representation of the balloon restoring torque

(see equation (9)).

Considering the rotation of both the body and the propellers and noting that the latter rotates

much faster, the total angular momentum HB can be written as

HB = JΩ
B/G
B + Jr

6∑
i=1

(−1)iωie3, (16)

where J ∈ R3×3 is the inertia matrix of the vehicle and Jr ∈ R is the moment of inertia of each

rotor about ẑB.

Therefore, by replacing equation (16) into equation (15), one can obtain the dynamic equation

of the rotational motion of SB w.r.t. SG:
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Ω̇
B/G

B = J−1

[(
JΩ

B/G
B + Jr

6∑
i=1

(−1)iωie3

)
×

]
Ω

B/G
B − J−1Jr

6∑
i=1

(−1)iω̇ie3 +

J−1Tb
B + J−1Tc

B + J−1Td
B. (17)

2.6. Added Mass

The added-mass (also called virtual or apparent-mass) forces and torques are aerodynamic

reaction efforts from a surrounding fluid on a body which tries to accelerate or decelerate inside

it; note that the displaced mass of fluid is accelerated or decelerated together with the body

interacting with it (see, e.g., [18, 19]). This effect is only relevant if the mass of the displaced

fluid is significant compared to the body’s mass, which is generally the case for conventional or

hybrid airships [20, 9, 16]. It is also worth noting that it appears even in low-speed and windless

conditions.

From the Kirchhoff equation (for a body moving in an ideal fluid) one can show that the

added-mass force and torque are, respectively, given by [18]

 Fa
B

Ta
B

 = −Ma

 v̇
B/G
B

Ω̇
B/G

B

−


[
Ω

B/G
B ×

] (
M11v

B/G
B + M12Ω

B/G
B

)
[
v
B/G
B ×

] (
M11v

B/G
B + M12Ω

B/G
B

)
+
[
Ω

B/G
B ×

] (
M21v

B/G
B + M22Ω

B/G
B

)
 , (18)

where

Ma ,

 M11 M12

M21 M22

 ∈ R6×6, (19)

is the added mass in SB, Mij ∈ R3×3, ∀i, j ∈ {1, 2}.

By writing the added-mass force as well as the vehicle’s linear velocity in SG, equation (18)
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yields

Fa
G = −DG/BM11D

B/Gv̇
B/G
G −DG/BM12Ω̇

B/G

B + DG/BM11

[
Ω

B/G
B ×

]
DB/Gv

B/G
G

−DG/B
[
Ω

B/G
B ×

] (
M11D

B/Gv
B/G
G + M12Ω

B/G
B

)
, (20)

Ta
B = −M21D

B/Gv̇
B/G
G −M22Ω̇

B/G

B + M21

[
Ω

B/G
B ×

]
DB/Gv

B/G
G

−
[(

DB/Gv
B/G
G

)
×
] (

M11D
B/Gv

B/G
G + M12Ω

B/G
B

)
−
[
Ω

B/G
B ×

] (
M21D

B/Gv
B/G
G + M22Ω

B/G
B

)
. (21)

Before computing Ma for the oblate-spheroid balloon under consideration, it is convenient to

obtain the added mass M̌
a
, diag(M̌11, M̌22) with respect to a CCS which is parallel to SB and

has its origin at CB, using the procedure of [21], resulting in

M̌11 =


m̌ 0 0

0 m̌ 0

0 0 m̌3

 , and M̌22 =


J̌ 0 0

0 J̌ 0

0 0 0

 , (22)

where

12



m̌ ,
4π

3
a2bρair

α0

2− α0

, (23)

m̌3 ,
4π

3
a2bρair

β0
2− β0

, (24)

J̌ ,
4π

15
a2bρair

(
a2 + b2

) β0 − α0

2
, (25)

α0 ,

√
1− e2
e3

(
sin−1 e− e

√
1− e2

)
, (26)

β0 ,
2
√

1− e2
e3

(
e√

1− e2
− sin−1 e

)
, (27)

e ,

√
a2 − b2
a2

. (28)

Finally, to obtain Ma (in SB), one can use the coordinate transformation (see [22], p.27)

Ma = UTM̌
a
U (29)

with

U ,

 I3 −d[e3×]

03×3 I3

 . (30)

Therefore, to account for the added mass, the new external inputs represented by Fa
G and Ta

B

have to be considered in equations (13) and (17), respectively.

3. Flight Control System

A hierarchical control strategy is adopted here, as illustrated in Figure 4. In this strategy, the

flight control is realized by two nested control loops, where the inner loop is responsible for the

attitude control, while the outer loop performs position control. The position controller receives

an external position command r̄
B/G
G ∈ R

3 as well as feedbacks of the vehicle position r
B/G
G and

velocity v
B/G
G . On the other hand, it produces the SG representation of the thrust command

vector F̄
c
G , F̄ cn̄G ∈ R

3, where F̄ c ∈ R is the total thrust magnitude command and n̄G ∈ R
3

(a unit vector) can be seen as a two-DOF attitude command that, together with the external
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Figure 4: Architecture of the hexa-rotor airship control system.

heading command ψ̄ ∈ R, composes the three-DOF command input D̄
B/G ∈ SO(3) of the attitude

controller. The latter also receives feedback of the vehicle’s attitude DB/G and angular velocity

Ω
B/G
B , and computes the torque command T̄

c
B ∈ R

3. The control allocation block is responsible

for generating the individual thrust commands f̄i ∈ R≥0, i = 1, ..., 6, from T̄
c
B and F̄ c.

This architecture is based on the assumption that there is a time-scale separation between the

(slower) closed-loop translational and (faster) rotational vehicle dynamics [12]. This assumption is

ensured in practice by tuning the attitude control loop to converge much faster than the position

control loop. Under such assumptions, when designing the position control law, one can assume

that the actual attitude DB/G converges to the corresponding command D̄
B/G

instantaneously, i.e.,

DB/G ≡ D̄
B/G

. On the other hand, when designing the attitude control law, the attitude command

D̄
B/G

is assumed to be constant, or equivalently, the angular velocity command Ω̄
B/G
B ∈ R

3 is

assumed to be zero. On the basis of these conditions, the position and attitude control laws can

be designed separately.

3.1. Position Controller

First, the design model is obtained from equation (13), by assuming that: 1) the disturbance

force Fd
G is negligible, 2) the actual control force magnitude F c is identical to the corresponding
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command F̄ c, and 3) DB/G = D̄
B/G

(time-scale separation). The resulting design model is

r̈
B/G
G =

1

mt +mh
F̄
c
G +

(
V gρair
mt +mh

− g
)

e3. (31)

Suppose that F̄
c
G is bounded within a parallelepipedal set from Fmin , [Fmin

1 Fmin
2 Fmin

3 ]T ∈ R3

to Fmax , [Fmax
1 Fmax

2 Fmax
3 ]T ∈ R3. The position controller proposed here is the saturated law

F̄
c
G = σ[Fmin,Fmax](γ

p), (32)

where γp ≡ [γp1 γ
p
2 γ

p
3 ]T ∈ R3 is given by

γp ,
((
mt +mh

)
g − V gρair

)
e3 +

(
mt +mh

)
K1

(
r̄
B/G
G − r

B/G
G

)
−
(
mt +mh

)
K2ṙ

B/G
G , (33)

with the matrices K1,K2 ∈ R3×3 representing the controller gains (assumed to be diagonal), and

σ[Fmin,Fmax](γ
p) ,


σ[Fmin

1 ,Fmax
1 ](γ

p
1)

σ[Fmin
2 ,Fmax

2 ](γ
p
2)

σ[Fmin
3 ,Fmax

3 ](γ
p
3)

 , (34)

σ[Fmax
l ,Fmax

l ](γ
p
l ) ,


Fmin
l , γpl < Fmin

l

γpl , γpl ∈ [Fmin
l , Fmax

l ]

Fmax
l , γpl > Fmax

l

, l = 1, 2, 3. (35)

Note that the proposed controller (32)-(33) is such that, if no saturation is active, it cancels

the second term on the right-hand side of equation (33), remaining a double-integrator closed-

loop dynamics controlled by the proportional-derivative actions appearing in the last two terms

of equation (33). In saturation-free conditions, it is straightforward to show asymptotic stability

of the proposed translational control loop using linear time-invariant control methods. Subsection

3.5 presents a stability analysis considering the saturation.

By constraining the control input F̄
c
G to keep inside a parallelepipedal set, one can deal with
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Figure 5: Constraint set of the position control input. (a) Perspective view showing the control force command
inside the parallelepipedal set. (b) Superior view showing the bounds Fmax

1 = Fmax
1 = Fmax

12 . (c) Lateral view
showing the maximum inclination angle ϕmax.

bounds on its magnitude F̄ c as well as on its inclination angle w.r.t. the local vertical. To illustrate

it, define a reference CCS SR , {B; x̂R, ŷR, ẑR} with origin at B and axes parallel to the SG ones,

as depicted in Figure 5. From the geometry of the constraint set, one can see that Fmin
1 = −Fmax

1 ,

Fmin
2 = −Fmax

2 , and Fmax
1 = Fmax

2 = Fmax
12 = Fmin

3 tanϕmax, where ϕmax is the maximum allowed

inclination angle of F̄
c
G w.r.t. ẑR.

3.2. Attitude Controller

Here the design model is obtained from equation (17) by: 1) neglecting the disturbance torque

Td
B; 2) replacing the actual control torque Tc

B by the corresponding command T̄
c
B; 3) considering

that the rotor dynamics are so fast that one can assume ωi = ω̄i, ∀i; and 4) assuming that ω̇i ≈ 0,

∀i. The resulting model is

Ω̇
B/G

B = J−1

[(
JΩ

B/G
B + Jr

6∑
i=1

(−1)iω̄ie3

)
×

]
Ω

B/G
B + dF bJ−1[e3×]DB/Ge3 + J−1T̄

c
B. (36)

Suppose that the torque command T̄
c
B must be bounded from −Tmax ∈ R

3 to Tmax ,

[Tmax
1 Tmax

2 Tmax
3 ]T. The attitude controller proposed here is the saturated law

T̄
c
B = σ[−Tmax,Tmax](γ

a), (37)
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where

γa , −dF b[e3×]DB/Ge3 +
[
Ω

B/G
B ×

]
JΩ

B/G
B + Jr

[
Ω

B/G
B ×

]
e3

6∑
i=1

(−1)iω̄i

− JK3ε− JK4Ω
B/G
B , (38)

with ε ∈ R
3 containing the Euler angles (in the 1-2-3 sequence) corresponding to the attitude

control error D̃ = DB/G
(
D̄

B/G
)T

, K3,K4 ∈ R3×3 are controller (diagonal-matrix) gains, and the

saturation function σ[−Tmax,Tmax](.) is as defined in equations (34)-(35).

One can note that the proposed attitude control law (37)-(38) is such that, if no saturation

is active, it cancels the first three terms on the right-hand side of equation (38), remaining a

feedback-linearized closed-loop dynamic model controlled by the proportional-derivative actions

appearing in the last two terms of (38). Subsection 3.5 presents a stability analysis.

3.3. Attitude Command Generation

In order to generate the three-DOF attitude command D̄
B/R

, note that, by definition, its third

line is the transpose of n̄G. Then, consider the formula to convert from Euler angles (in the 1-2-3

sequence) to the attitude matrix (see [23], p. 52):

D̄
B/R

=


∗ ∗ ∗

∗ ∗ ∗

sθ̄ −cθ̄ sφ̄ cθ̄ cφ̄

 , (39)

where s and c stands for sin and cos, respectively, and compute φ̄ and θ̄ from

φ̄ = −atan eT
2 n̄G/e

T
3 n̄G, (40)

θ̄ = asin eT
1 n̄G. (41)
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Finally, considering the external heading command ψ̄, one can compute

D̄
B/R

=


cψ̄ cθ̄ cψ̄ sθ̄ sφ̄+ sψ̄ cφ̄ −cψ̄ sθ̄ cφ̄+ sψ̄ sφ̄

−sψ cθ̄ −sψ̄ sθ̄ sφ̄+ cψ̄ cφ̄ sψ̄ sθ̄ cφ̄+ cψ̄ sφ̄

sθ̄ −cθ̄ sφ̄ cθ̄ cφ̄

 . (42)

3.4. Control Allocation

Consider equation (5) again; it relates the effective resultant efforts F c and Tc
B with the six

individual rotor forces (stored in f). We can consider that the respective effort commands are

interrelated in the same way, i.e.,  F̄ c

T̄
c
B

 = Γf̄, (43)

where f̄ ,
[
f̄1 f̄2 . . . f̄6

]T
.

The control allocation pursued here is to find a solution f̄ to the system of linear equations

(43). Since this is an undetermined system (with infinitely many solutions), we choose here the

one that minimizes ‖f̄‖2, considering (43) as a set of equality constraints. The explicit solution to

such a problem is well known; by using Lagrange multipliers, it can be found to be

f̄ = ΓT
(
ΓΓT

)−1

 F̄ c

T̄
c
B

 . (44)

The above control allocation can be seen as an energy-efficient solution, since it minimizes the

squared norm of f̄. Moreover, considering that the commands F̄ c and T̄
c
B belong to the admissible

set of the above optimization problem (meaning that the problem has at least one solution), the

resulting control allocation is exact, i.e., it satisfies equation (43).

3.5. Stability Analysis

Still considering the time-scale separation assumption, this subsection presents stability proofs

for both the position and attitude control loops.
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3.5.1. Position control

Denote the admissible-force set by

F ,
{
F ∈ R3 : Fmin ≤ F ≤ Fmax

}
(45)

and define the tracking error r̃ , r
B/G
G − r̄

B/G
G , the viable set

Lp ,
{(

r̃, ˙̃r
)
∈ R6 : γp ∈ F

}
, (46)

as well as the maximal 0-centered Euclidean ball inside Lp

L∗
p , max

λ
Bλ s.t. Bλ ⊆ Lp, (47)

where Bλ , {x ∈ R6 : ‖x‖ ≤ λ}.

The following theorem gives a stability result for the closed-loop system (31)-(33).

Theorem 1. Consider the closed-loop system (31)-(33). Assume that the position command r̄
B/G
G

is such that ¨̄r
B/G
G (t) = 0, ∀t ∈ R≥0. In this context, if the initial state (r

B/G
G (0), ṙ

B/G
G (0)) ∈

L∗
p ⊕ (r̄

B/G
G (0), ˙̄r

B/G
G (0)), then r

B/G
G converges exponentially to r̄

B/G
G and (r

B/G
G (t), ṙ

B/G
G (t)) ∈ L∗

p ⊕

(r̄
B/G
G (t), ˙̄r

B/G
G (t)),∀t ∈ R>0.

Proof. Under the condition that γp ∈ F or, equivalently, (r̃, ˙̃r) ∈ Lp, the closed-loop transla-

tional dynamics represented by equations (31)-(33) can be re-modeled in terms of r̃ and its time

derivatives, resulting in

¨̃r + K2
˙̃r + K1r̃ = −¨̄r

B/G
G . (48)

Since, by assumption, ¨̄r
B/G
G (t) = 0,∀t ∈ R≥0 and the gain matrices K3 and K4 are positive-definite

and diagonal, from the linear control theory, one see that the state (r̃, ˙̃r) = (03×1,03×1) of system

(48), without considering the control saturation, is globally exponentially stable. This implies

that, for any λ ∈ R>0, if (r̃(0), ˙̃r(0)) ∈ Bλ, then (r̃(t), ˙̃r(t)) ∈ Bλ,∀t ∈ R>0, which means that Bλ is

an invariant set of system (48).

In particular, consider the ball L∗
p defined in (47). Since, by construction, L∗

p ⊆ Lp, it holds that
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γp ∈ F , from the above argumentation, one can see that L∗
p is an invariant set of system (31)-(33),

which, in this case, behaves as (48) (with ¨̄r
B/G
G (t) = 0, ∀t ∈ R≥0). Therefore, if (r̃(0), ˙̃r(0)) ∈ L∗

p,

then (r̃(t), ˙̃r(t)) ∈ L∗
p,∀t ∈ R>0 and r̃ converges to 03×1 exponentially. From the definition of r̃, this

is equivalent to say that (r
B/G
G (t), ṙ

B/G
G (t)) ∈ L∗

p ⊕ (r̄
B/G
G (t), ˙̄r

B/G
G (t)), ∀t ∈ R≥0 and r

B/G
G converges

to r̄
B/G
G exponentially, thus completing the proof. �

3.5.2. Attitude Control

Denote the admissible-torque set

T ,
{
T ∈ R3 : −Tmax ≤ T ≤ Tmax

}
(49)

and define the corresponding viable set

La ,
{(
ε,Ω

B/G
B

)
∈ R6 : γa ∈ T

}
, (50)

as well as the maximal 0-centered Euclidean ball inside La

L∗
a , max

λ
Bλ s.t. Bλ ⊆ La. (51)

From the assumption that D̄
B/G

(t) is constant (time-scale separation), it follows that Ω̄
B/G
B (t) =

0. In this case, the attitude error kinematics can be described by (see [23], p. 73)

ε̇ = A(ε)Ω
B/G
B , (52)

where

A(ε) ,


cε3/cε2 −sε3/cε2 0

sε3 cε3 0

−cε3 sε2/cε2 sε3 sε2/cε2 1

 , (53)

with εi, i = 1, 2, 3, denoting the components of ε.

In this section, we assume that ε has small components. Such small-angle approximation is
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reasonable, since ε represents an attitude error rather than the total attitude itself and, from the

time-scale separation assumption, DB/G is supposed to rapidly converge to D̄
B/G

(which means

that ε rapidly converges to zero). In this case, equation (52) can be approximated by

ε̇ = Ω
B/G
B . (54)

The following theorem gives a stability result for the closed-loop system (52), (37)-(38).

Theorem 2. Consider the closed-loop system (52), (37)-(38). Assume that D̄
B/G

(t) is constant at

any t ∈ R≥0 (time-scale separation) and that ε is so small that its kinematics can be described by

(54). In this context, if the initial state (ε(0),Ω
B/G
B (0)) ∈ L∗

a, then DB/G converges exponentially

to D̄
B/G

and (ε(t),Ω
B/G
B (t)) ∈ L∗

a,∀t ∈ R>0.

Proof. Under the condition that γa ∈ T or, equivalently, (ε,Ω
B/G
B ) ∈ La, and considering the small-

angle kinematics described by (54), the closed-loop rotational dynamics represented by equations

(54),(37)-(38) can be re-modeled in terms of ε and its time derivatives, resulting in

ε̈+ K4ε̇+ K3ε = 0. (55)

Since the gain matrices K3 and K4 are positive-definite and diagonal, from the linear control

theory, one see that the state (ε, ε̇) = (03×1,03×1) of system (55), without considering the control

saturation, is globally exponentially stable. This implies that, for any λ ∈ R>0, if (ε(0), ε̇(0)) ∈ Bλ,

then (ε(t), ε̇(t)) ∈ Bλ,∀t ∈ R>0, which means that Bλ is an invariant set of system (55).

In particular, consider the ball L∗
a defined in (51). Since, by construction, L∗

a ⊆ La, it holds

that γa ∈ T , from the above argumentation and assumptions, one can see that L∗
a is an invariant

set of system (54), (37)-(38), which, in this case, behaves as (55). Therefore, if (ε(0), ε̇(0)) ∈ L∗
a,

then (ε(t), ε̇(t)) ∈ L∗
a,∀t ∈ R>0 and ε converges to 03×1 exponentially. From the definition of

ε and considering (54), this is equivalent to say that (DB/G; Ω
B/G
B ) converges to (D̄

B/G
; 03×1)

exponentially, thus completing the proof. �
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4. Nominal Simulation

As a first step to evaluate the proposed method, this section presents a numerical simulation

of the the proposed flight control system in nominal conditions.

It is worth noting at this point that both the aerostatic lift ~F b and the restoring torque ~T b

depend on the value of ρair and ρhelium. These densities in turn depend on the local temperature

and pressure, as expressed by the Ideal Gas Law:

ρq =
p

RqT
, (56)

where “q” can be replaced by either “air” or “helium”, p is the local pressure in Pa, T is the local

temperature in K, and Rq is the specific gas constant (Rair = 286.9 J/Kg/K and Rhelium = 2077

J/Kg/K). In particular, in this section, the surrounding air and contained gas are suposed to have

the same temperature and pressure; their values are 20oC and 101325 Pa, respectively. Moreover,

the air is assumed to be dry. Under such conditions, the air and helium densities are ρair ≈ 1.204

kg/m3 and ρhelium ≈ 0.1664 kg/m3. These values are used here to simulate the ground truth as

well as to compute the control laws.

Subsection 4.1 describes the simulation and shows the adopted nominal parameters, while

Subsection 4.2 presents and analyzes the simulation results.

4.1. Plant and Controller Parameters

For simulating the overall closed-loop flight control system represented in Figure 4, we use

the models formulated in Section 2 as well as the control laws and control allocation proposed in

Section 3. The simulator is implemented in MATLAB, using the forth order Runge-Kutta solver,

with an integration step of 0.001 s. Table 1 shows the nominal values of the hexa-rotor airship

parameters. On the other hand, Table 2 presents the adopted controller parameters. The controller

gains are tuned by trial and error, taking into account their proportional or derivative effect and

considering the time-scale separation assumption as well.

In this paper, for obtaining simulation data that are consistent with a typical operation of

MAVs, the proposed flight control system is commanded to follow a waypoint-based position
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Table 1: Physical parameters of the hexa-rotor airship.

Description Symbol Value
Force coefficient kf 1.2838× 10−5 N/(rad/s)2

Torque coefficient kτ 3.0811× 10−7 Nm/(rad/s)2

Maximum rotor speed ω̄max 906.66 rad/s
Motor speed coefficient kω 1
Motor time constant τω 0.01 s
Arm length l 1 m
Volume of the balloon V 5.3 m3

CB-CM displacement d 0.85 m
Semi-major axis a 1.25 m
Semi-minor axis b 0.8 m
Total inertia matrix J diag(2.0633, 2.0651, 1.9556) kgm2

Moment of inertia of the rotors Jr 0.001 kgm2

Total empty mass mt 9.392 Kg

Table 2: Parameters of the attitude and position control laws.

Description Symbol Value
Proportional gain of the position controller K1 diag(0.5, 0.2, 0.7)
Derivative gain of the position controller K2 diag(2, 1, 3)
Proportional gain of the attitude controller K3 diag(20, 50, 1)
Derivative gain of the attitude controller K4 diag(10, 20, 1)
Maximum torque command Tmax [ 16.3 14.1 0.58 ]T Nm
Minimum force command Fmin [ −5.8 −5.8 2.7 ]T N
Maximum force command Fmax [ 5.8 5.8 54.6 ]T N
Maximum inclination angle ϕmax 12 degrees

trajectory. In this trajectory, the waypoints are connected by straight lines with length of 5 m and

a constant desired velocity of v̄ = 0.5 m/s. Moreover, the heading angle command ψ̄ is set to zero.

4.2. Nominal Simulation Results

Figures 6–8 are the results of the nominal simulation using the parameters of Tables 1–2. Figure

6 shows the effective position and the corresponding position command. In the ramp parts of the

component trajectories, one can verify a steady-state error of about 2 m. After finishing the ramps,

there are no overshoots and the accommodation times (within 5 cm of the final value) are between

10 s and 14 s. In the flat parts of the trajectory, the steady-state errors are zero. The large errors

during the ramps and the long accommodation times reflect the vehicle’s inherent low acceleration
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capability, which can be attributed to both the restricted inclination bound ϕmax and the large

inertia parameters.

 

Figure 6: Nominal performance of the position control. It shows the controlled position components together with
the respective command.

Figure 7 shows the effective and commanded attitude along the time using Euler angles in the

1-2-3 sequence. The attitude pitch and roll commands deviate from zero at the waypoints and the

corresponding effective angles follow them with an apparently fast but attenuated response. In the

yaw angle, one can see a very small and short transient starting at 20 s; it is due to the gyroscopic

coupling of the rotational dynamics, which becomes apparent when there exist a simultaneous

motion in roll and pitch.

   

Figure 7: Nominal performance of the attitude control. It shows the controlled attitude variables together with the
respective command.

Finally, Figure 8 presents the force magnitude command F̄ c computed by the position controller

and Figure 9 shows the components of the torque command T̄
c
B generated by the attitude controller.
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There are transients at the instants the vehicle is commanded to ascend or to stop ascending, after

which, F̄ c converges and stays around 42.1 N. This force value is equivalent to the total weight of

the vehicle, payload, and helium, minus the aerostatic lift. The force command F̄ c keeps far from

its maximum bound, even during the ascending acceleration. On the other hand, the components

of the torque command T̄
c
B deviate from zero at the waypoints, but stay inside their bounds ±Tmax

with a large margin.

 

Figure 8: Force magnitude command provided by the position controller in the nominal simulation.

 

Figure 9: Torque command provided by the attitude controller in the nominal simulation.
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5. Uncertainty Quantification

The present section conducts an uncertainty quantification analysis of the flight control system

under consideration using a parametric probabilistic approach [24, 25]. In this analysis, ambient

the temperature and pressure are modeled as independent random variables and, based on such

probabilistic models, for each flight realization, one new outcome is generated for both variables.

For simulating the plant, the surrounding air and contained helium are assumed to have the same

(varying) temperature and pressure. On the other hand, in the implementation of the control laws,

their densities are maintained constant (and equal the respective nominal values; see Section 4).

5.1. Probabilistic Model

Let (Θ,�,P) be a probability space, where Θ is the sample space, � is a σ-algebra over Θ, and

P : � → [0, 1] a probability measure. In this stochastic framework, the local temperature T l and

pressure P l are modeled by (independent) random variables X : �→ R and Y : �→ R, respectively.

We assume that the joint probability distribution of these random variables, PXY(dx dy), admit

a probability density function (PDF) (x, y) 7→ pXY(x, y), with respect to dx dy. Similarly, the

marginal distributions PX(dx) and PY(dy) are assumed as having marginal PDFs x 7→ pX(x), with

respect to dx, and y 7→ pY(y), with respect to dy.

The maximum entropy principle [26] is adopted here as a way to specify the aforementioned

distributions. This approach provides the least biased distributions in a scenario with little (or

no) experimental information on a particular random variable [24]. In the present investigation,

the random local temperature X and local pressure Y are both completely unknown beforehand.

However, one should better specify for them resonable operational ranges, from which it is possible

to immediately define the underlying supports. In this way, we assume from now on that X and Y

take values in known positive finite intervals [x1, x2] ⊂ (0,+∞) and [y1, y2] ⊂ (0,+∞), respectively.

Therefore, the maximum entropy principle is formulated here as the maximization of the Shannon

entropy

S(pXY) = −
∫ ∫

R2

ln pXY(x, y) pXY(x, y) dx dy , (57)
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subject to the normalization constraint (which brings information about the supports)

∫ y2

y1

∫ x2

x1

pXY(x, y) dx dy = 1. (58)

By using the Lagrange multiplier method, one can solve the above optimization problem to

obtain the following PDF

pXY(x, y) = pX(x)× pY(y), (59)

with

pX(x) = 1[x1,x2](x)
1

x2 − x1
and pY(y) = 1[y1,y2](y)

1

y2 − y1
, (60)

where 1X(x) denotes the indicator function of the set X. Note that the above marginal PDFs

correspond to uniform distributions on the intervals [x1, x2] and [y1, y2], respectively. Informally,

the above result makes all sense, because since the minimum and maximum values are the only

known informaion about the random parameters, the most reasonable choice for their distributions

is the one that assigns equal weight to all their possible values.

Due to the randomness of X and Y, the air density ρair and the helium density ρhelium are

also random variables [see equation (56)]. Further, since the aerostatic lift [see equation (7)] and

the restoring torque [see equation (9)] depend on ρair and ρhelium, then the translational (14) and

rotational (17) dynamic models are rather differential equations with random parameters and,

consequently, their variables are stochastic processes. In particular, we choose here the minimum

temperature x1 = 0o C, the maximum temperature x2 = 40o C, the minimum pressure y1 = 0.7739

atm (at 2000 m and 0oC), and the maximum pressure y2 = 1 atm.

5.2. Propagation of Uncertainties

To compute the propagation of uncertainties of the random parameters X and Y through the

control system dynamics, we employ the Monte Carlo (MC) method [27]. It consists in a stochastic

solver that, based on ns realizations of the random parameters X and Y, generates ns different real-

izations of the nominal closed-loop dynamics and computes the sample statistics of the respective

system responses. These statistics are then used to approximate the solution (or response) of the

original stochastic system.
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Figure 10: Convergence metrics for choosing the number of Monte Carlo realizations.

In order to guarantee the convergence of the MC solution to the true stochastic behavior of

the system, a sufficient number ns of realizations must be considered. The reference [28] shows

that such a convergence occurs in the mean-square sense if the following metrics converge in the

point-wise sense:

δp =

(
1

ns

ns∑
n=1

∫ tf

t=0

(
||rB/GG (t, n)||2

)
dt

)1/2

, (61)

δa =

(
1

ns

ns∑
n=1

∫ tf

t=0

(
||αB/G(t, n)||2

)
dt

)1/2

, (62)

where n denotes an arbitrary MC realization, t denotes the continuous time, tf is the final simula-

tion instant, r
B/G
G (t, n) is the nth realization of the vehicle’s position at instant t, and αB/G(t, n)

is the nth realization of the vehicle’s attitude (in Euler angles 1-2-3) at instant t. Figure 10 shows

a plot of the position (61) and attitude (62) convergence metrics versus ns. One can see that after

50 realizations, both metrics show to converge. Therefore, in the problem under consideration, we

consider ns = 100, which is sufficient for the convergence of the MC solution.

Figure 11 shows the position statistics (mean and confidence region). One can see that, as a

consequence of the randomness in the temperature and pressure conditions, there is a very small

variation in the r1 and r2 performance (less the 5 cm), and a considerable variation in the r3

performance (about 70 cm). Figure 12 shows the statistics (mean and confidence region) of the

attitude. The largest variations, which are very small (less than 0.3 degree), occur during the
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transients.

 

Figure 11: Position statistics (mean and confidence region) estimated by Monte Carlo method.

 

Figure 12: Attitude control error statistics (mean and confidence region) estimated by Monte Carlo method.

Figures 13 and 14 show the statistics (mean and confidence region) of the force magnitude

command and torque command, respectively. One can observe a small random variation in the

torque command components. On the other hand, there is a large variation in the force magnitude

command; this is a direct consequence of the aerostatic lift variation (see Figure 15), which is

proportional to the variation of the air density (see equation (7)). The extreme values of both

commands keep inside their bounds with a good margin.

Figure 13: Torque command statistics (mean and confidence region) estimated by Monte Carlo method.

Figure 14: Force magnitude command statistics of the Monte Carlo simulation.
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Figure 15: Aerostatic lift statistics of the Monte Carlo simulation.

6. Concluding Remarks

The paper proposed a flight control system for a new micro aerial vehicle (MAV) resulting

from the combination of a hexa-rotor airframe with a balloon filled with helium. This MAV is a

straightforward attempt to extend the flight duration and load capacity of conventional multi-rotor

vehicles by means of an aerostatic lift. On one hand, such a combination results in a very simple

vehicle. On the other hand, even for indoor flight, its control system must be carefully designed

to overcome the effects of a restoring torque (which does not occur in conventional multi-rotor

vehicles), while being robust to variations in the local temperature and pressure operation con-

ditions. The proposed flight control system is evaluated on the basis of both deterministic and

stochastic simulations. In particular, the deterministic simulation shows that in nominal condi-

tions, it is possible to control the vehicle’s position to follow a desired waypoint-based trajectory

with reference speed of 0.5 m/s. The obtained performance is sufficient accurate and fast for many

MAV applications. On the other hand, in the stochastic simulation, the local temperature and

pressure are modeled by uniformly-distributed random variables and the resulting performance

is rigorously evaluated by Monte Carlo (MC) simulation. The variability verified in the position

control performance can be considered small enough to dispense a special design of the control

laws in order to suppress it. However, the variability shown in the attitude control error motivates

a special robust control method for a better performance of the system in a stochastic sense.
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