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Non-isothermal compositional two-phase Darcy
flow: formulation and outflow boundary
condition

L. Beaude, K. Brenner, S. Lopez, R. Masson, F. Smai

Abstract This article deals with the modelling and formulation of compositional
gas liquid Darcy flow. Our model includes an advanced boundary condition at the
interface between the porous medium and the atmosphere accounting for convective
mass and energy transfer, liquid evaporation, and liquid outflow. The formulation is
based on a fixed set of unknowns whatever the set of present phases. The thermody-
namical equilibrium is expressed as complementary constraints. The model and its
formulation are applied to the simulation of the Bouillante high energy geothermal
field in Guadeloupe characterized by a high temperature closed to the surface.

Key words: Non-isothermal compositional two-phase Darcy flow model, geother-
mal energy, boundary conditions for the interaction ground-atmosphere, finite vol-
ume scheme

1 Non-isothermal compositional two-phase Darcy flow model

We consider a non-isothermal compositional liquid gas Darcy flow model with
P = {g, l} denoting the set of gas and liquid phases. The set of components is
denoted by C including typically a water component which can vaporize in the gas
phase and a set of gaseous components which can dissolve in the liquid phase. The
thermodynamical properties of each phase α ∈P depend on its pressure Pα , the
temperature T and its molar fractions Cα = (Cα

i )i∈C .
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For each phase α ∈ P , we denote by ζ α(Pα ,T,Cα) its molar density, by
ρα(Pα ,T,Cα) its mass density, by µα(Pα ,T,Cα) its dynamic viscosity, by eα(Pα ,T,Cα)
its molar internal energy and by hα(Pα ,T,Cα) its molar enthalpy. Thermody-
namical equilibrium between the gas and liquid phases will be assumed for each
component and governed by the fugacity functions denoted by f α(Pα ,T,Cα) =
( f α

i (Pα ,T,Cα))i∈C .
The rock porosity is denoted by φ(x) and the rock permeability tensor by K(x)

where x denotes the spatial coordinates. The hydrodynamical Darcy laws are char-
acterized by the relative permeabilities kα

r (S
α), function of the phase saturation Sα

for each phase α ∈P , and by the capillary pressure Pc(Sg) = Pg−Pl .
Our formulation of the model is based on the fixed set of unknowns defined by

X =
(

Pα ,T,Sα ,Cα ,α ∈P
)
. (1)

Let ni(X) be the number of moles of the component i ∈ C per unit pore volume
defined as

ni(X) = ∑
α∈P

ζ
α

Sα Cα
i , i ∈ C .

We introduce the rock energy per unit rock volume defined by Er(Pα ,T ) and the
fluid energy per unit pore volume defined by

E(X) = ∑
α∈P

ζ
α Sα eα .

Let us denote by g the gravitational acceleration vector. The Darcy velocity of
the phase α ∈P is then given by

Vα =− kα
r

µα
K(x)

(
∇Pα −ρ

α g
)
.

The total molar flux of the component i ∈ C is denoted by qi and the energy flux
by qe, with

qi = ∑
α∈P

Cα
i ζ

α Vα , qe = ∑
α∈P

hα
ζ

α Vα −λ∇T, (2)

where λ stands for the thermal conductivity of the fluid and rock mixture.
The model accounts for the molar conservation of each component i∈C together

with the energy conservation

φ(x)∂tni +div(qi) = 0, i ∈ C ,

φ(x)∂tE +(1−φ(x))∂tEr +div(qe) = 0. (3)

It is complemented by the following capillary relation between the two phase
pressures and the pore volume balance



Non-isothermal compositional Darcy flow 3{
Pc(Sg) = Pg−Pl ,

∑
α∈P

Sα = 1. (4)

Due to change of phase reactions assumed to be at equilibrium, phases can ap-
pear or disappear. In our formulation the molar fractions Cα of an absent phase
α are extended by the ones at equilibrium with the present phase. It results that
the thermodynamical equilibrium can be expressed as the following complementary
constraints for each phase α ∈P combined with the equality of the gas and liquid
fugacities of each component [5]

Sα(1− ∑
i∈C

Cα
i ) = 0, α ∈P,

Sα ≥ 0, 1− ∑
i∈C

Cα
i ≥ 0,

f g
i (P

g,T,Cg) = f l
i (P

l ,T,Cl), i ∈ C .

(5)

Note that our formulation of the model leads to a fix set of unknowns and equa-
tions which is independent of the set of present phases and expresses the thermo-
dynamical equilibrium as complementary constraints. This will allow the use of
non-smooth Newton methods to solve the non-linear systems at each time step of
the simulation as specified in the numerical section.

2 Boundary condition at the interface between the porous
medium and the atmosphere

The fluid and energy transport in high energy geothermal systems is deeply gov-
erned by the conditions set at the boundary of the computational domain. In par-
ticular, it is well known that the modelling of the interaction between the porous
medium model and the atmosphere plays an important role [6]. In this section we
propose a boundary condition model taking into account the convective molar and
energy transfer and the vaporization of the liquid phase in the atmosphere as well as
a liquid outflow condition.

The convective molar and energy boundary layers induced by the turbulent gas
flow in the atmosphere are expressed using two boundary layer thicknesses denoted
by δm for the molar convective transfer and by δT for the energy convective transfer.
Let us also introduce the additional unknown qg,atm accounting for the gas molar
flow rate at the interface on the atmosphere side oriented outward from the porous
medium domain. The liquid phase is assumed to vaporize instantaneously when
leaving the porous medium as long as the atmosphere is not saturated with water
vapour. As soon as the atmosphere is vapour saturated at the interface, a liquid mo-
lar flow rate ql,atm is allowed to exit the porous medium. The prescribed far field at-
mospheric conditions are defined by the gas molar fractions Cg,atm

∞ , the temperature
T atm

∞ and the gas pressure Patm. The model assumes the continuity of the gas phase
characterized by the continuity of the gas pressure Pg = Patm, of the temperature T
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and of the gas molar fractions Cg at the interface. Let us recall that Pl is the liquid
pressure and Cl the liquid molar fractions at the interface on the porous medium
side. We introduce the liquid molar fractions Cl,atm = (Cl,atm

i )i∈C at the interface on
the atmosphere side by the one at thermodynamical equilibrium with the gas phase.
It is obtained by the equation f l(Patm,T,Cl,atm) = f g(Pg,T,Cg). Note that, due to
the jump of the capillary pressure which vanishes on the atmosphere side, Cl,atm

does not match in general with Cl which satisfies f l(Pl ,T,Cl) = f g(Pg,T,Cg).
Let us denote by (u)+ (resp. (u)−) the positive part (the negative part) of the

variable u such that (u)+ = max(0,u) (resp.(u)− = max(0,−u)).
At the interface, on the atmosphere side, the component gas molar normal flux

qg,atm
i , i ∈ C and the gas energy normal flux qg,atm

e are defined by

qg,atm
i = (qg,atm)+Cg

i − (qg,atm)−Cg,atm
i,∞ + ζ gDg

δm

(
Cg

i −Cg,atm
i,∞

)
, i ∈ C ,

qg,atm
e = (qg,atm)+hg(Pg,T,Cg)− (qg,atm)−hg,atm

∞ + λ g

δT
(T −T atm

∞ ),

where Dg is the gas molecular diffusion coefficient, λ g is the gas thermal conduc-
tivity and hg,atm

∞ = hg(Patm,T atm
∞ ,Cg,atm

∞ ) is the far field atmospheric gas enthalpy.
The model prescribes the continuity at the interface of the molar and energy

normal fluxes: {
qi ·n = qg,atm

i +Cl,atm
i ql,atm, i ∈ C ,

qe ·n = qg,atm
e +hl(Pg,T,Cl,atm)ql,atm,

(6)

where the unit normal vector n at the interface is oriented outward from the porous
medium domain.

The liquid molar overflow rate ql,atm is determined by the following complemen-
tary constraints accounting for the thermodynamical equilibrium between the liquid
and gas phases at the interface in the atmosphere:

(1− ∑
i∈C

Cl,atm
i )ql,atm = 0,

1− ∑
i∈C

Cl,atm
i ≥ 0, ql,atm ≥ 0.

(7)

It remains to eliminate the liquid molar fractions Cl,atm from equations (6) and (7).
Following [4], let us consider for f ∈ RC the function Cl( f ,Pl ,T ) ∈ RC defined as
the unique solution of the equation f l(Pl ,T,Cl) = f .
From f g(Pg,T,Cg) = f l(Pg,T,Cl,atm) = f l(Pl ,T,Cl) it results that

Cl,atm = Cl( f l(Pl ,T,Cl),Pg,T ).

On the one hand, if Sl > 0, it follows that
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1−∑
i∈C

Cl,atm
i = ∑

i∈C

(
Cl

i −Cl,atm
i

)
= ∑

i∈C

(
Cl

i( f l(Pl ,T,Cl),Pl ,T )−Cl
i( f l(Pl ,T,Cl),Pg,T )

)
.

(8)

Following [5], we can assume that the function ∑
i∈C

Cl
i( f ,P,T ) is strictly decreas-

ing with respect to P, it results that the complementary constraints (7) is equivalent
to {

(Pg−Pl)ql,atm = 0,
Pg−Pl ≥ 0, ql,atm ≥ 0.

(9)

On the other hand, if Sl = 0 then one has Pg−Pl = Pc(1)> 0 and ∑
i∈C

Cl,atm
i < 1.

It results that both conditions (9) and (7) imply that ql,atm = 0. Finally, let us remark
that (9) and Cl = Cl( f l(Pl ,T,Cl),Pl ,T ) imply that Cl,atm can be replaced by Cl in
the normal flux continuity equations (6).

In order to account for a non zero entry pressure for the capillary function Pc(Sg),
let us choose Pc as primary unknown rather than Sg and denote by Sg(Pc) the inverse
of the monotone graph extension of the capillary pressure. As detailed in [2], a
switch of variable between Sg and Pc could also be used in order to account for non
invertible capillary functions.

To conclude, our evaporation - overflow boundary condition model is defined at
the interface by the set of unknowns XΓ = (qg,atm,ql,atm,T,Pα ,Sα ,Cα ,α ∈P) and
the set of equations:

qi ·n = (qg,atm)+Cg
i − (qg,atm)−Cg,atm

i,∞ + ζ gDg

δm

(
Cg

i −Cg,atm
i,∞

)
+Cl

i q
l,atm, i ∈ C

qe ·n = (qg,atm)+hg(Pg,T,Cg)− (qg,atm)−hg,atm
∞ + λ g

δT
(T −T atm

∞ )

+hl(Pl ,T,Cl)ql,atm,
Pg = Patm,
Sg = Sg(Pg−Pl),
Sl +Sg = 1,
∑

i∈C
Cg

i = 1,

Sl(1− ∑
i∈C

Cl
i ) = 0, Sl ≥ 0, 1− ∑

i∈C
Cl

i ≥ 0,

f g
i (P

g,T,Cg) = f l
i (P

l ,T,Cl), i ∈ C
(Pg−Pl)ql,atm = 0, Pg−Pl ≥ 0, ql,atm ≥ 0.

3 Numerical tests

The system of equations is discretized using a fully implicit Euler scheme in time
and a finite volume discretization in space with a Two Point Flux Approximation
(TPFA) [3]. The mobility terms of each phase are upwinded with respect to the sign
of the phase Darcy flux. The non linear system is solved at each time step by a semi-
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smooth Newton algorithm (Newton-Min) adapted to complementary constraints [1].
In order to reduce the size of the linear systems to #C +1 equations and unknowns
in each degrees of freedom (the cells and boundary faces), the set of unknowns is
splitted into #C + 1 primary unknowns and remaining secondary unknowns. This
splitting is done for each degree of freedom in such a way that the Jacobian of the
local closure laws with respect to the secondary unknowns is non singular. Note that
the non linear convergence criterion is prescribed on the maximum of the relative
norms of the energy balance equation residual and of each component mole balance
equation residual. This relative norm is defined as the ratio of the residual l1-norm
by the initial residual l1-norm.

Table 1 Choices of the primary unknowns depending on the complementary constraints.

Evaporation - overflow boundary Interior cell and other boundaries

ql,atm < Pg−Pl
qg,atm,Pc,(Cl

i )i=1,#C−1
1− ∑

i∈C
Cg

i < Sg
Pg,Sg,(Cl

i )i=1,#C−1
1− ∑

i∈C
Cl

i < Sl 1− ∑
i∈C

Cl
i < Sl

Pg−Pl < ql,atm
qg,atm,ql,atm,T,(Cl

i )i=1,#C−2
Sg < 1− ∑

i∈C
Cg

i Pg,T,(Cl
i )i=1,#C−1

1− ∑
i∈C

Cl
i < Sl 1− ∑

i∈C
Cl

i < Sl

ql,atm < Pg−Pl
qg,atm,T,(Cg

i )i=1,#C−1
1− ∑

i∈C
Cg

i < Sg
Pg,T,(Cg

i )i=1,#C−1
Sl < 1− ∑

i∈C
Cl

i Sl < 1− ∑
i∈C

Cl
i

The impact of the boundary condition is studied over a 2D dimensional test case
representing a simplified domain of the Bouillante geothermal reservoir. A Voronoi
mesh satisfying the admissibility condition of TPFA schemes at both inner and
boundary faces is used [3]. We consider an homogeneous porous medium of poros-
ity φ(x) = 0.35 and isotropic permeability K(x) = K ∗ I with K = 1D. The relative
permeabilities are defined as kα

r (S
α) = (Sα)2 for each phase α ∈P . The capillary

pressure function is given by the Corey law Pc(Sg) = −b ln(1− Sg) for Sg ∈ [0,s1]
and by Pc(Sg) =−b ln(1− s1)+

b
1−s1

(Sg− s1) for Sg ∈ (s1,1] with b = 2 105 Pa and
s1 = 0.99. The capillary pressure is regularized to allow the disappearance of the
liquid phase. The liquid and gas phases are a mixture of two components, the water
denoted by w and the air denoted by a.

The gas thermodynamical laws are defined by the perfect gas molar density ζ g =
Pg

RT , with R = 8.314 J.K−1.mol−1 and the viscosity µg = (0.361T − 10.2) 10−7

Pa.s. The liquid molar density and viscosity as well as the liquid and gas enthalpies
are taken from [7]. The vapour pressure Psat(T ) is given by the Clausius-Clapeyron
equation and the Henry constant of the air component is set to Ha = 108 Pa. The
molar internal energy of each phase is considered to be equal to its enthalpy. Finally,
the fugacities are defined by
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f g
i =Cg

i Pg, i = a,w,
f l
a =Cl

aHa,

f l
w =Cl

wPsat(T )exp
(
− Psat (T )−Pl

1000RT/0.018

)
.

The simulation is run over 400 years, with an initial time step of 5 days and a
maximum time step of 700 days. The mesh contains approximatively 3000 cells
and is refined at the neighbourhood of the top boundary with a volume ratio of 29
between the smallest and the largest cells of the mesh.

Fig. 1 Illustration of the 2D domain and the boundary conditions of the test case.

The convective molar and energy transfer layer thicknesses are fixed to δm =
δT = 10−1 m. The far field atmospheric conditions are set to Cg,atm

a,∞ = 0.98, Cg,atm
w,∞ =

0.02, T atm
∞ = 300 K and Patm = 1 atm.

The solution obtained using our evaporation - overflow boundary condition is
compared with the solution obtained using a Dirichlet boundary condition prescrib-
ing directly the gas saturation Sg = 1, molar fractions Cg

a = 1, Cg
w = 0, pressure

Pg = 1 atm and temperature T = 300 K.

Fig. 2 Temperature at final time with the Evaporation - Overflow boundary condition (on the left)
and with Dirichlet boundary condition (on the right).

We observe in figures 2 and 3 that the evaporation - overflow condition favours
the exit of the hot liquid flux in the sea (located between x= 0 m and x= 5000 m) and
provides a better match with what happens in the Bouillante geothermal field. This
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Fig. 3 Plots of the liquid pressure at the top boundary and of the temperature at the top cell at final
time with the Evaporation - Overflow and Dirichlet boundary conditions.

can be explained by the lower liquid pressure Pl = Patm−Pc(1) provided at the top
boundary by the gas Dirichlet condition than the one provided by the evaporation -
overflow condition with in particular Pl = Pg between say x = 5000 m and x = 6800
m as a result of the overflow condition.

Table 2 exhibits the good numerical behaviour of both test cases in terms of
non linear and linear convergences. Note that the linear systems are solved using a
GMRes iterative solver preconditioned by CPR-AMG.

Table 2 Numerical behaviour for both boundary conditions comparing the number of time steps
N∆ t , the number of time step chops Nchop, the total number of Newton iterations NNewton, the
number of GMRes iterations by Newton iteration NGMRes and the CPU time.

N∆ t Nchop NNewton NGMRes CPU time (s)

Dirichlet boundary condition 333 7 1835 22.3 436

Evaporation - Overflow boundary condition 344 3 2072 21.1 404
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