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Introduction

Two-dimensional porosity-based shallow water models for urban ood modelling have gained popularity over the past decade. With computational times reduced by two to three orders of magnitude compared to rened shallow water models, they appear as a promising option for upscaling the shallow water equations in the urban environment. Originally, these models incorporated only one type of porosity and were formulated in dierential form [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF][START_REF] Hervouët | Modelling urban areas in dam-break oodwave numerical simulations[END_REF]. Most developments so far have focused on this isotropic, Single Porosity (SP) version [START_REF] Benkhaldoun | A non-homogeneous Riemann solver for shallow water equations in porous media[END_REF][START_REF] Cea | Unstructured nite volume discretization of twodimensional depth-averaged shallow water equations with porosity[END_REF][START_REF] Finaud-Guyot | An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF]. The methods proposed to address the anisotropy of the urban medium use several types of porosity instead of a single one. Such models include the Multiple Porosity (MP) model [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] and the Integral Porosity (IP) model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. The salient features of the IP approach are that (i) a dierential formulation for such models is deemed meaningless in that the urban medium is not continuous on the scale at which the porosity model is used, (ii) two types of porosity are distinguished: a storage porosity, that represents the volume fraction available for mass and momentum storage, and a connectivity porosity, that accounts for the connectivity of the urban medium, thus acting on the computation of uxes. This formulation is well-suited to nite volume, shock-capturing numerical techniques.

The latest developments available from the literature include depth-variable IP models [START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF] and the Dual Integral Porosity (DIP) model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Laboratory and numerical experiments have shown the superiority of the IP approach over the SP [START_REF] Kim | Urban ood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity[END_REF]. The DIP model yields improved wave propagation properties over the IP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF].

The IP/DIP approach allows the anisotropy of the urban medium to be characterized very easily via the connectivity porosity. In nite volume discretizations (that are the only family of discretizations proposed so far for such models), the connectivity porosity is dened for each cell interface from the intersection with building contours [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF]. This makes its numerical value strongly dependent on the mesh design, as opposed to the SP [START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF] and MP [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] approaches, that use a domain-based statistical denition for the porosity. In [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF], various meshing strategies are proposed, all leading to dierent values for the connectivity porosities. While these strategies are compared in terms of computational eort, little is known on their inuence on the accuracy of the porosity model apart from the study reported in [START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF] Although the dierential form of the porosity equations is deemed meaningless in the integral approach, [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] show that the dierential expression of the governing equations gives useful and accurate information of the wave propagation properties of the porosity model. However, only the one-dimensional version of the IP/DIP equations has been analysed [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. No full 2D analysis has been provided so far, although the rst steps of such an analysis were made in [START_REF] Lhomme | Modélisation des inondations en milieu urbain. Approches unidimensionnelle, bidimensionnelle et macroscopique[END_REF] for a particular case of the IP model. The purpose of the present paper is to provide such an analysis for both the IP and DIP model and to draw consequences in terms of IP/DIP solution behaviour and accuracy.

The need for a two-dimensional analysis stems from the recently observed unusual sensitivity of the IP and DIP model to the design of the computational mesh (see Subsection 2.2). Such oversensitivity seems never to have been observed before (see e.g. [START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF] for a successful eld scale application of the IP model using dierent mesh resolutions and dierent porosity parametrization methods). It is not observed with the SP and MP models [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF][START_REF] Soares-Frazao | Twodimensional shallow water models with porosity for urban ood modelling[END_REF], that use identical storage and connectivity porosities. This leads to wonder whether the oversensitivity of the IP/DIP model to grid design arises from the dual denition (domain-and boundary-based) of porosity or from specic features of the mesh design. This paper is organised as follows. In Section 2, the oversensitivity of the IP/DIP model to mesh design is illustrated by a simple computational example. Such oversensitivity is explained by a two-dimensional consistency analysis. In Section 3, a two-dimensional characteristic analysis is carried out for the IP and DIP models. It is illustrated with numerical examples in Section 4.

Section 5 provides guidelines for the design of IP/DIP meshes and conclusions.
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Consistency analysis of the IP/DIP models

Overview of the models

The governing equations for the Integral Porosity (IP) [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] and Dual Integral Porosity (DIP) [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] models are obtained by applying mass and momentum balances to a control volume Ω with boundary Γ

∂ t ˆΩ φ Ω hdΩ + ˆΓ φ Γ q Γ .n dΓ = 0 (1a) ∂ t ˆΩ φ Ω qdΩ + ˆΓ φ Γ (q Γ .n) q Γ + g 2 h 2 Γ n dΓ = ˆΩ s Ω dΩ + ˆΩ s Γ dΓ (1b)
where g is the gravitational acceleration, h and h Γ are respectively the water depth over Ω and Γ, n is the outwards normal unit vector to the boundary, q and q Γ are the unit discharge vectors over Ω and Γ, φ Ω and φ Γ are respectively the storage and connectivity porosity, s Ω is the momentum source term arising from the bottom slope and friction onto the bottom, s Γ is the momentum source term arising from energy dissipation due to building drag and the reaction to the pressure force exerted by the building walls onto the water. The detailed expression for s Ω and s Γ can be found in [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. It is not important at this stage because the present study focuses on the wave propagation properties of the model, in situations where the source terms are zero. In what follows, the following assumptions are thus retained: horizontal, frictionless bottom and negligible building drag forces.

In the IP model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF], the following closure is assumed between the domain and boundary variables:

h Γ = h, q Γ = q (2)
The closure introduced in the DIP model is shown in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] to provide a better upscaling of the shallow water equations:

h Γ = h, q Γ = φ Ω φ Γ q (3) 
This closure model is shown in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] to have a strong inuence on the wave propagation properties of the solutions. However, the analysis in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] is restricted to one-dimensional ow congurations.

Oversensitivity to grid design: a simple example

Consider an idealized urban layout made of square house blocks of identical size, regularly spaced along the x-and y-directions (Figure 1). Let a, L x and L y be respectively the block width and the x-and y-spatial periods of the urban layout. Using the IP and DIP models require that a storage and connectivity porosity be dened for this layout. The storage porosity is dened as the fraction of space available to water storage, that is According to [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF], the denition of the connectivity porosity is not unique and depends on the meshing strategy used to solve the IP equations numerically. Figure 2 shows three possible mesh designs. In the rst (Figure 2a), rectangular cells are dened from the centroids of the building blocks. The connectivity porosity is φ 1 = 1 -a Ly along the vertical edges and φ 2 = 1 -a Lx along the horizontal edges. In the second mesh design (Figure 2b), the computational cells are parallelograms with corners located at the centroids of the blocks. The connectivity porosity is φ 1 along the vertical edges and φ 2 along the diagonal edges (assuming L x > L y ). The third mesh design (Figure 2c) is the union of the previous two, which results in right-angled triangular cells whose corners are again the centroids of the house blocks. In this design, the connectivity porosity is φ 1 along the vertical edge and φ 2 along the horizontal edge. Along the hypotenuse, it is φ 2 if L x > L y and φ 1 otherwise.

φ Ω = 1 -a 2 LxLy . a a L x L y
(a) Design 1 (b) Design 2 (c) Design 3

Figure 2: Three possible mesh design strategies for the periodic urban layout in Figure 1.

Mesh designs 1 to 3 are used to simulate the propagation of a wave into a semi-innite building layout using the IP model. The initial and boundary conditions are illustrated in Figure 3. The bottom is at, motion is assumed frictionless. The water is initially at rest, at a depth h = h 0 and a zero velocity at all points. The boundary condition is a zero mass ux across the Western boundary, except over a region of length L, where the constant depth h = h 1 = h 0 is prescribed from t = 0 onwards. A wave is generated and propagates into the domain. The semi-innite domain is simulated by generating a large mesh and stopping the simulation before the wave reaches the mesh boundaries. The governing equations are solved using a nite volume procedure detailed in [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. The uxes are computed using a modied HLLC Riemann solver [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Figure 4 shows the water depth computed at t = 200s using the three mesh designs. While Design 1 leads to the expected symmetrical water depth eld (Figure 4a), the symmetry is broken by Design 2 (Figure 4b). With Design 3, the propagation of the wave in the x-direction is almost stopped (save for a slight front smearing due to the numerical diusion of the Riemann solver)

Boundary type Impervious

h = h 1 h = h 0 , u = 0
and propagation occurs only along the y-direction. This simple experiment shows the extreme sensitivity of the IP model to grid design. This oversensitivity is shown in the next two subsections to arise from consistency issues. into the continuity equation (1a):

∂ t ˆΩ φ Ω hdΩ + ˆΓ φ Γ q.ndΓ = 0 (4) 
A salient feature of the IP model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] is that the connectivity porosity is not isotropic (in contrast with the domain porosity) and therefore is a function of both n and the location on the boundary.

When the equations are solved numerically, the domain Ω is a computational cell, usually triangular or quadrangular. The present subsection aims to investigate the behaviour of the integral formulation as the grid is rened, as in a consistency and numerical convergence analysis. In such an analysis, only the size of the cell changes. Its shape and the distribution of the porosity over the cell edges remain identical.

In the limit of an innitesimal domain Ω, the dierential form of the equation is meaningful and the divergence of φ Γ q is dened as

∇ (φ Γ q) = 1 Ω ˆΓ φ Γ q.ndΓ (5) 
where Ω is the area of the domain. A rst-order Taylor series expansion yields the following rst-order approximation for the divergence of φ Γ q:

∇. (φ Γ q) ≈ 1 Ω ´Γ φ Γ (q G + ∇q v) .ndΓ = 1 Ω q G . ´Γ φ Γ ndΓ + 1 Ω ´Γ φ Γ (∇q v) .ndΓ (6) 
where q G is the point value for q at the centre of mass G of Ω, v is the vector connecting G with the centre M of the innitesimal dΓ (Figure 5) and ∇q is the gradient of the vector eld q: Assume now that the domain is scaled by a factor κ < 1 (in a numerical convergence analysis, κ → 0). The distribution of φ Γ does not change along Γ because it is a function of n alone. Then

∇q = ∂ x q x ∂ y q x ∂ x q y ∂ y q y (7) G n dG M v
ˆΓ φ Γ ndΓ ∝ κ (8a) v ∝ κ ⇒ ˆΓ φ Γ (∇q v) .ndΓ ∝ κ 2 (8b) Ω ∝ κ 2 (8c) 
The rst equality stems from the fact that the size of the integration domain is proportional to κ.

In the second integral, the vector v, that is proportional to κ, is integrated along the boundary, the size of which is also proportional to κ. The size of Ω being proportional to κ 2 , it follows that

1 Ω q G . ˆΓ φ Γ ndΓ ∝ 1 κ (9) 
Therefore the divergence of the mass ux tends to innity as the size of the domain tends to zero.

The existence of continuous solutions implies

q G . ˆΓ φ Γ ndΓ = 0 ∀q ( 10 
)
This condition is satised in one of the following two situations:

(i) The integral ´Γ φ Γ ndΓ is zero. This is true when φ Γ is uniform over Γ. This is for instance the case in the SP model [START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF], in the IP and DIP models when the urban layout is isotropic.

Note that in the DIP model, the porosity in the ux of the continuity equation is isotropic because of the closure model for the unit discharge. However, the boundary porosity in the momentum equation is anisotropic, and problems similar to the IP model are encountered (see computational examples in Section 4). This case is also encountered in the mesh designs 1 and 2. In both designs, φ Γ is not uniform along the cell boundaries, but it takes identical values on opposite edges, that also have the same length and orientation.

(ii) The integral ´Γ φ Γ ndΓ is non-zero. Then the gradient of φ Γ over Ω tends to innity as the size of Ω tends to zero. The existence of a continuous solution implies that q is orthogonal to ´Γ φ Γ ndΓ. This entails an articial polarization of the mass ux in the direction orthogonal to the integral. This conguration occurs with the third mesh design presented in the above computational example. In the example of section 2.1, the vector integral ´Γ φ Γ ndΓ is collinear with the x-axis. This enforces unit discharges vectors oriented in the y-direction.

This explains the strongly polarized h-eld and the scattering in the x-direction.

The above analysis has been carried out only for the mass ux in the IP model. It is also valid for the momentum ux in the IP and in the DIP models. Therefore, both models can be expected to exhibit an articial polarization of the hydrodynamic elds as soon as the condition ( 10) is violated.

Consistency issue 2: mesh-dependent governing equations

The rst and second mesh designs satisfy the constraint [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF]. The consistency of the integral equation is analysed for a computational cell with width and height are respectively dx and dy.

The Northern and Southern edges of the cell are parallel to the x-axis, while the Eastern and Western edges make an angle α with the y-axis (Figure 6). Mesh Design 2 can be retrieved from this design by applying a 90 degree clockwise rotation to Figure 6.

dx x y dy y x x+dx/2 x-dx/2 y-dy/2 y+dy/2 a f 1 f 1 f 2 f 2 Figure 6: Quadrangular cell. For a ux vector f = [f x , f y ]
T , a rst-order Taylor series expansion yields the following limit as

(dx, dy) → (0, 0) 1 Ω ˆΓ φ Γ f .n dΓ -→ (dx,dy)→(0,0) ∂ x (φ 1 f x + (φ 1 -φ 2 ) tan αf y ) + ∂ y (φ 2 f y ) (11) 
In the general case the expression of the divergence of φ Γ f (and with it the governing equations) is explicitly dependent on the orientation of the Eastern and Western edges of the control volume.

It is independent from α only if (φ 1 -φ 2 ) tan α = Const. If this is the case then there exists α 0 , φ 0 1 such that

(φ 1 -φ 2 ) tan α = φ 0 1 -φ 2 tan α 0 (12) 
and therefore

φ 1 = φ 2 + φ 0 1 -φ 2 tan α 0 tan α (13) 
There are two particular cases where this is always true. The rst is φ 0 1 = φ 2 . The second is α 0 = 0. Both cases lead to the isotropic case,

φ 1 = φ 2 . If φ 1 = φ 2 = φ, then one has 1 Ω ˆΓ φ Γ f .n dΓ -→ (dx,dy)→(0,0) ∂ x (φf x ) + ∂ y (φf y ) (14) 
an expression that is independent of the cell edge orientation.

In the case of an anisotropic layout, one has

α ∈ [α min , α max ] ⇔ φ 1 ∈ [0, 1] (15a) 
α min = tan -1 1 - φ 0 1 φ 2 tan α 0 (15b) α max = tan -1 φ 0 1 -φ 2 1 -φ 2 tan α 0 (15c) 
As an obvious consequence, the porosity should not be dened independently from the orientation of the edges of the computational cells. The original approach used in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Kim | Urban ood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF], whereby the boundary porosity is derived directly from building geometry, does in most cases not full the condition (13).

3 Wave propagation properties: characteristic analysis

Characteristic analysis in two dimensions of space

The wave propagation properties are analysed for a mesh design that is free from any polarization issue. The conguration of Figure 6, that contains both Designs 1 and 2, is retained in what follows. There are two main methods to carry out a characteristic analysis [START_REF] Guinot | Wave propagation in Fluids. Models and numerical techniques[END_REF]. Both derive from the non-conservation form of the equations

∂ t u + A x ∂ x u + A y ∂ y u = 0 (16) 
In a rst approach, used in e.g. [START_REF] Daubert | Quelques aspects des écoulements presque horizontaux a deux dimensions en plan et non permanents. Application aux estuaires[END_REF][START_REF] Guinot | Riemann solvers and boundary conditions for two-dimensional shallow water simulations[END_REF] the characteristic (sometimes referred to as bicharacteristic) surfaces in the (x, y, t) space are dened as

t = τ (x, y) (17a) |I -∂ x τ A x -∂ y τ A y | = 0 (17b)
In the second approach, called the secant plane approach, the system is analysed in one dimension of space [START_REF] Guinot | Wave propagation in Fluids. Models and numerical techniques[END_REF]. The equations are rewritten in the coordinate system (x , y ) obtained by rotating the (x, y) coordinate system by an angle θ (Figure 7). The solution is assumed one-dimensional in

x , thus obeying the following governing equation

∂ t u + A θ ∂ x u = 0, A θ = cos θA x + sin θA y (18) 
The eigenvalues λ of A θ are the wave propagation speeds in the direction x , called the secant direction. The characteristic planes dx = λdt are straight lines in the secant planes. The characteristic surfaces are obtained as the envelopes of the characteristic planes by spanning the range

θ ∈ [0, 2π].
Assuming that an eigenvalue λ has been found in the direction x of the secant plane, the general equation for the envelope is obtained from a simple variation analysis as

d t x y = cos θ -sin θ sin θ cos θ λ ∂ θ λ (19) 
The secant plane approach has the interest that the directions of minimum and maximum extension of the characteristic surfaces can be identied very easily. This approach is retained in what follows. 

Analysis of the IP model

Tangent planes. In the absence of source term due to friction, porosity gradient and bottom slope, the source term in the continuity and momentum equations is zero. From equation ( 11), the dierential conservation form for the governing equations for the IP model over a quadrangular mesh as dened in Figure 5 is (see A.1 for a detailed derivation)

∂ t u + ∇.F = 0 (20a) F =    1 hu + 3 hv 2 hv 1 hu 2 + g 2 h 2 + 3 huv 2 huv 1 huv + 3 hv 2 + g 2 h 2 2 hv 2 + g 2 h 2    (20b) 1 = φ 1 φ , 2 = φ 2 φ , 3 = (φ 1 -φ 2 ) tan α φ (20c)
The expression for the matrix A θ follows directly (see Section A.1.3 in the Appendix for the details):

A θ = cos θA x + sin θA y =    0 1 cos θ 5 c 2 -u 2 4 -5 uv 2 4 + 5 v 5 u c 2 -v 2 5 -4 uv 4 v 4 u + 2 5 v    (21a) 4 = 1 cos θ, 5 = 2 sin θ + 3 cos θ (21b)
The eigenvalues of A θ are

λ p = 4 u + 5 v + (p -2) 2 4 + 2 5 1 2 c, p = 1, 2, 3 (22) 
There are three characteristic planes dened by

d t x p = λ p cos θ ( 23a 
)
d t y p = λ p sin θ (23b) 
Observing that 4 (θ + π) = -4 (θ) and 5 (θ

+ π) = -5 (θ), it is obvious that λ 1 (θ + π) = -λ 3 (θ). Consequently, x 1 (θ + π) = x 3 (θ) and y 1 (θ + π) = y 3 (θ).
The rst and third characteristic planes therefore obey the same equation and dene the same characteristic surfaces. This is consistent with the properties of the bicharacteristic form of the two-dimensional shallow water equations [START_REF] Daubert | Quelques aspects des écoulements presque horizontaux a deux dimensions en plan et non permanents. Application aux estuaires[END_REF][START_REF] Guinot | Riemann solvers and boundary conditions for two-dimensional shallow water simulations[END_REF].

Characteristic surfaces. The second eigenvalue (p = 2) yields

λ 2 = ( 1 u + 3 v) cos θ + 2 v sin θ (24a) ∂ θ λ 2 = -( 1 u + 3 v) sin θ + 2 v cos θ (24b) d t x 2 y 2 = 1 u + 3 v 2 v (24c) 
It reduces to a line in the (x, y, t) space.

The rst and third characteristic surfaces form a cone with an elliptic-like base curve. The curve expands from the point (x 2 , y 2 ) at a speed 2 4 + 2 5 1 2 c in the direction that makes an angle θ with the x-axis:

λ 3 = λ 2 + 2 4 + 2 5 1 2 c (25a) ∂ θ λ 3 = ∂ θ λ 2 + ∂ θ 2 4 + 2 5 1 2 c (25b) d t x 3 y 3 = x 2 y 2 + cos θ -sin θ sin θ cos θ 2 4 + 2 5 1 2 c ∂ θ 2 4 + 2 5 1 2 c (25c)
The minimum and maximum extensions from the second characteristic surfaces are found in the directions θ 0 such that 2 4 + 2 5 is minimum/maximum. θ 0 is given by (see the Appendix, Subsec-tion A.1.4):

θ 0 = 1 2 tan -1 2 2 3 2 1 -2 2 + 2 3 + k π 2 (26) 
Particular case: orthogonal principal directions. This corresponds to α = 0, then 3 = 0 and θ 0 = kπ/2 (27a)

θ 0 = kπ ⇒ 2 4 + 2 5 1 2 c = 1 c (27b) 
θ 0 = π 2 + kπ ⇒ 2 4 + 2 5 1 2 c = 2 c (27c)
This is consistent with the wave speeds found in [START_REF] Lhomme | Modélisation des inondations en milieu urbain. Approches unidimensionnelle, bidimensionnelle et macroscopique[END_REF].

Analysis of the DIP model

Tangent planes. The dierential conservation form for the DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] can be written in the form (20a) by dening the ux tensor as (see Appendix A.2 for a proof)

F =    q r 1 1 q 2 h + 6 qr h + 1 g 2 h 2 1 2 qr h 1 1 qr h + 6 r 2 h + 3 g 2 h 2 1 2 r 2 h + 2 g 2 h 2    (28a) 6 = 1 1 - 1 2 tan α (28b) 
The expression for the matrix A θ is then (see Section A.2.3 in the Appendix for the details):

A θ =         0 cos θ sin θ 4 c 2 -7 u 2 -8 uv 2 7 u + 8 v 8 u 5 c 2 -7 uv -8 v 2 7 v 7 u + 2 8 v         (29) 7 = cos θ 1 , 8 = 6 cos θ + sin θ 2 (30) 
So far, no analytical expression has been found for the eigenvalues of the matrix A θ in the general case. Numerical experiments show that, for arbitrary combinations(φ 1 , φ 2 , α, θ), 7 u + 8 v is not an eigenvalue of A θ if (u, v) = (0, 0). Since the trace of the matrix is 3 ( 7 u + 8 v), this means that

λ 1 + λ 3 = 2λ 2 .
This has consequences on the shape of the second bicharacteristic surface, as seen in the next paragraph.

A particular case arises for u = v = 0. This is is the conguration of the test presented in Section 2.1. In this case, det A θ = trA θ = 0 and analytical expressions are available for the eigenvalues of A θ :

λ p = (p -2) 1 cos 2 θ + 2 sin 2 θ + 3 cos θ sin θ 1 2 (31) 
Characteristic surfaces. No general, analytical expression having been found so far for the eigenvalues, the characteristic surfaces are determined by solving the characteristic polynomial numerically (see A.3 in the Appendix for the procedure). It is observed that, in the general case, 2λ 2 = λ 1 + λ 3 (see the above paragraph). Consequently, the rst and third characteristic surfaces do not extend symmetrically from the second one as with the IP model. Besides, numerical experiments indicate that in the general case the second characteristic surface does not reduce to a line as in the IP model (see Section 4).

For the particular case u = v = 0, the analytical solution (58) yields

∂ θ λ p = (p -2) ( 2 -1 ) sin 2θ + 3 cos 2θ 2λ p (32) d t x p y p = (p -2) cos θ -sin θ sin θ cos θ   1 cos 2 θ + 2 sin 2 θ + 3 cos θ sin θ 1 2
( 2-1 ) sin 2θ+ 3 cos 2θ

2( 1 cos 2 θ+ 2 sin 2 θ+ 3 cos θ sin θ)

1 2   (33) 
The directions of minimum and maximum extensions are found for θ 0 such that ∂ θ λ p (θ 0 ) = 0, that is

( 1 -2 ) sin 2θ -3 cos θ = 0 (34a) tan 2θ 0 = 3 1 -2 (34b) 
θ 0 = 1 2 tan -1 3 1 -2 + k π 2 (34c)
This formula is dierent from that of the IP model (26). 

Initial Value Problems

The purpose of the present section is to show that the bicharacteristic analysis presented in Section 3 allows the features of the solution of the IP and DIP equations to be fully characterized. The inuence of the mesh design is illustrated for Initial Value Problems (IVPs) with the following initial conditions

h (x, y, 0) = h 0 for |x| < d, |y| < d h 1 otherwise (35a) q (x, y, 0) = [hu 0 , 0] T ∀ (x, y) (35b) 
The water is initially moving at a uniform speed u 0 . The water depth is piecewise constant, uniformly equal to h 0 , except in a square region of size d where it is equal to h 1 . The IP and DIP equations are solved numerically using mesh Designs 

Isotropic case with water initially at rest

In this case the porosity is isotropic, φ 1 = φ 2 = 2/3 and the water is initially at rest everywhere in the domain. According to the consistency analysis in Section 2, the governing equations are isotropic for all mesh designs. The numerical solutions are therefore expected to be almost isotropic, with a slight anisotropy induced by the numerical diusion arising from second-order truncation errors. The wave speed formulae (25a, 31) yield larger wave speeds for the DIP model than for the IP model.

Figure 8 shows the water depth maps computed at t = 150s for the three mesh designs. The top graphs are the outputs obtained by running the IP model while the bottom maps are obtained from the DIP model. The characteristic surfaces are also plotted in Figures 8a-f. Note that the rst and third surfaces are identical, while the second surface reduces to a point located at the centre of the rst/third surface. The bicharacteristic surface is seen to superimpose well with the contour lines of the numerical results. The slight anisotropy observed in the numerical contours can be explained by numerical diusion. Numerical diusion also explains that the contour lines expand faster than the characteristic surfaces. 

Anisotropic case with water initially at rest

In this case the porosity is anisotropic, with φ 1 = 2/3 and φ 2 = 1/3. The initial ow velocity is set to u 0 = 0. The waves therefore expand symmetrically from the centre (0, 0). Figure 9 represent the water depths computed by the two models for the three mesh designs at t = 150s. The dashed lines in Figs. 9a, 9b, 9d and 9f represent the rst and third bicharacteristics as computed from the theoretical formulae (25a, 25b, 25c) and (31, 33). No bicharacteristic surface is provided for mesh design 3 because the expressions derived in Section 3 are not applicable to the triangular mesh.

As expected from the analysis in Section 3, the rst and third families are identical. The second family again reduces to the point (0, 0) and is not represented in the gures.

As expected from Sections 2 and 3, the inuence of the mesh design on the numerical solution is clearly visible. A non-orthogonal mesh (Designs 2 and 3) contributes to apply a shear distortion to the numerical solution. This was expected from the theoretical bicharacteristic formulae, that match match very precisely the numerical solution, both in terms of extension in the x-and y-directions and in terms of mesh-induced directional bias. This serves as a conrmation that the DIP formulae (31, 33), albeit derived for a particular case, are valid. The ux polarization along the y-axis, that was expected from Subsection 2.3, is particularly visible in Figure 9c (IP model results), with stronger depth variations in the y-direction than in the x-direction. This eect is less apparent in Figure 9f (DIP model results). This can easily be explained by the dierential form of the DIP continuity equation (55). In contrast with the IP continuity equation, the DIP continuity equation is isotropic. Flux polarisation is thus minimized. 

Anisotropic case with initial velocity

In this case the porosity conguration is the same as in the previous subsection. The initial ow velocity is set to u 0 = 1ms -1 . With the 90 degrees clockwise rotation of the coordinate system, this corresponds to a velocity directed to the South. While formulae (24a, 25a) for the IP model remain valid, equation (31) cannot be used for the DIP model and the eigenvalues must be found numerically. The second eigenvalue for the DIP model is not equal to the average of the rst and third one and the second characteristic surface does not reduce to a line.

The numerical solutions at t = 150s for the three mesh designs and the two models are shown in Figure 10. The theoretical characteristic surfaces are superimposed with the numerical elds for mesh designs 1 and 2. As in the previous test case, the eects of the mesh bias on the numerical solutions is clearly visible. This eect can again be explained by the bicharacteristic analysis, with theoretical characteristic surfaces matching very closely the contour lines of the numerical solutions.

A rst striking feature of the DIP solution (as opposed to the IP solution) is its asymmetrical character in the longitudinal direction. A second noticeable feature is that the second characteristic surface does not reduce to a line as in the shallow water and IP model equations. In the case of mesh Design 3, the eects of ux polarization along the N-S direction is again visible, albeit milder in the DIP solution than in the IP solution. 

Anisotropic case: inuence of rectangular mesh orientation

The purpose of this test is to assess the consequences of changing the principal directions of a rectangular mesh on the numerical wave propagation speeds. This test is of practical interest because recently published depth-dependent IP models [START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF] use structured, Cartesian grids. A Cartesian grid is most unlikely to coincide with the principal directions of the street network in all parts of a city. Consequently, it is important to assess the inuence of a Cartesian grid not aligned with the principal directions of the urban layout. The building layout of Subsection 2.2 (Figure 1) is used, with the building size and spacing given in Table 1. The mesh is rectangular and makes an angle β with the x-axis. There are four mesh designs where a rectangular mesh encompassing one x-period yields a homogeneous porosity eld: Design 1 shown on Figure 2, and Designs 4-6

shown on Figure 11. The corresponding angles β and the conveyance porosities along the principal directions of the mesh are given in Table 4. The strongest bias is found for β = π 4 . In this case, the apparent connectivity porosity eld is fully isotropic. 

Mesh design

β φ 1 φ 2 1 0 1 3 2 3 4 π 4 2 3 2 3 5 tan -1 2 2 3 3 4 6 tan -1 2 + π 2 2 3 3 4
Table 3: Parameters for mesh designs 4-6. β is the angle between the x-axis and the rst principal direction of the mesh, φ 1 and φ 2 are respectively the connectivity porosities along the rst and second principal directions of the mesh.

The IVP is the same as that of Subsection 4.3 (water initially at rest). Figure 12 shows the rst This is true for both the IP and IVP model. Overall, however, the DIP model (Figure 12, right) is less sensitive to the angle β than is the IP model (Figure 12, left). It is also worth noting that all four designs lead to the same maximum wave speed along the y-direction. Figure 12: Anisotropic IVP with rectangular meshes. First and third characteristic surfaces at t = 200s. The second characteristic surface is the point (0, 0).

Conclusions

A consistency and two-dimensional characteristic analysis is carried out in Sections 2-3 for the twodimensional IP and DIP models. The analysis deals with idealized situations where the porosity parameters elds are uniform and the mesh is periodic. It focuses on the conservation part of the equations. The momentum source terms accounting for the eects of bottom friction, bottom slope and drag-induced momentum and energy dissipation terms are not considered in the analysis.

They can be expected to reduce the amount of error induced by the consistency issues raised in he present paper. However, in the absence of analytical solutions for the IP/DIP equations with bottom and friction source terms, the inuence of the source terms on consistency error damping is dicult to assess.

As far as the hyperbolic part of the IP and DIP models is concerned, the main conclusions are the following.

(a) The sensitivity of the models to the mesh design is minimum when the connectivity porosity φ Γ is isotropic (that is, identical for all the edges of a given computational cell). This explains why the SP and MP models, that use identical φ Γ and φ Ω , are almost insensitive to the mesh design.

(b) Dening a non-uniform connectivity porosity φ Γ over the cell boundary induces an articial polarization of the mass and/or momentum uxes in the direction orthogonal to the vector ´Γ φ Γ ndΓ. Such adverse eects can be avoided by making the integral ´Γ φ Γ ndΓ zero. This, however, implies that the porosity φ Γ cannot be derived only from the urban geometry as done in all previous applications of integral porosity models [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Kim | Urban ood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. It must be ne-tuned in all the cells so as to full the constraint [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF].

(c) Assuming that the polarization bias (b) has been eliminated by enforcing the condition [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF] in all the cells, another bias arises from cell edge orientation. The consistency and characteristic analyses in Sections 2-3 show that the wave propagation principal directions are functions of the angle between the cell edges.

The analysis is validated in Section 4 by verifying the theoretical characteristic surfaces against numerical solutions of the IP and DIP models. The theoretical analysis of Sections 2-3 allows the behaviour of the numerical solution and the inuence of the discretization bias to be predicted with excellent accuracy. The DIP model is also shown to be signicantly less sensitive to the grid than is the IP model. This is attributed to the fact that the connectivity porosity is involved in all three equations of the IP model, while it is not involved in the continuity equation of the DIP model.

Should mesh design guidelines be provided to the modeller using an integral porosity model, they would be the following.

(d) In regions where the porosity φ Γ is anisotropic, the mesh should be designed in such a way that the orientations of the cell edges are distributed as uniformly as possible over all possible directions of space (as in [START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF]). Doing so allows the condition [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF] to be satised without inducing a strong ux polarization as in mesh Design 3. When the porosity φ Γ is isotropic, preferential directions in the cell edge orientation are acceptable.

(e) If rectangular cells are used over an orthogonal street network, the cell edges should be aligned with the principal directions of the street network. Orienting rectangular cells along dierent directions or shearing the cells in a given direction will alter the magnitude and the principal directions of the wave propagation speeds.

In the eld of hydrological modelling, using the consistency properties and the truncation error of a discretization to reconstruct the inuence of physical parameters has long been customary practice (see e.g. [START_REF] Cunge | On the subject of a ood propagation computation method (Muskingum method)[END_REF] for a well-known example). But doing so implies that the modeller is wellaware of the consistency properties of the model. It also implies that the eects of the truncation error are easily controllable by the modeller. In the example [START_REF] Cunge | On the subject of a ood propagation computation method (Muskingum method)[END_REF], the truncation error acts mostly on second-order space derivatives, which brings marginal modication to the model propagation properties (albeit raising issues in terms of boundary conditions). In the case of the IP and DIP models, the consequences are much stronger. If the condition (10) is fullled, the consistency bias (c) acts on the rst-order space derivatives, thus modifying the properties of the hyperbolic system.

If equation ( 10) is not satised, the consistency bias (b) introduces null-order derivatives in the truncation error, which is the strongest possible bias in a system of partial dierential equations.

From a practical point of view, hydraulic modelling engineers and technicians cannot be expected to run a consistency and bicharacteristic analysis for each cell in the mesh. Besides, removing the consistency bias (b) is a non-local operation: enforcing condition (10) in a given cell can be achieved only by modifying φ Γ over one or several cell interfaces. Since an interface belongs to two cells (with the exception of boundaries), the change in φ Γ will also aect the neighbouring cell. Adjustments to the connectivity porosity are thus liable to propagate from cell to cell. In practical applications, this can be done only using automated procedures. But it is not certain that (i) the resulting, adjusted φ Γ eld will be independent from the starting interface of the adjustments, (ii) the adjusted eld will be physically acceptable to the hydraulic engineer. Complying with recommendations (d-e) thus appears to be the easiest and most reliable way of eliminating the consistency bias.

Although integral porosity models are clearly more accurate than single porosity models, the present study shows that they still have shortcomings. While the DIP model is clearly superior to the IP model in terms of sensitivity to mesh design, it is believed that mesh dependency can be reduced further. This might be achieved by providing a better description of the connectivity porosity eld via appropriate ux closure models. This calls for complementing the building footprint approach, that is a point-based assessment of the connectivity porosity φ Γ , with an approach that better reects the connectivity properties of the urban medium within the cells and not only at the cell interfaces. Such an approach is yet to be proposed.
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Appendix. Proofs and algorithmic details

A.1 IP model governing equations

The dierential form for the governing equations of the IP model is obtained by applying the integral formulae to the quadrangular cell shown in Figure 6.

A.1.1 Continuity equation

The continuity equation is

∂ t ˆΩ φh dΩ + ˆΓ φ Γ q Γ .n dΓ = 0 (36) 
with the closure model q Γ = q. First-order Taylor series expansions with the distribution of φ Γ of Figure 6 give ˆΩ φh dΩ = dxdyφh (37a)

´Γ φ Γ q Γ .n dΓ = ´Γ φ Γ q.n dΓ = dy cos α (φ 1 q cos α + φ 1 r sin α) x+ dx 2 ,y -dy cos α (φ 1 q cos α + φ 1 r sin α) x-dx 2 ,y +dx (φ 2 r) x-dy 2 tan α,y+ dy 2 -dx (φ 2 r) x+ dy 2 tan α,y-dy 2 = dxdy [∂ x (φ 1 q + (φ 1 -φ 2 ) tan αr) + ∂ y (φ 2 r)] (37b) 
hence, after simplifying by dxdyφ:

∂ t h + ∂ x φ 1 φ q + φ 1 -φ 2 φ tan αr + ∂ y φ 2 φ r = 0 (38) 
A.1.2 Momentum equations Vector form. The vector form is

∂ t ˆΩ φhu dΩ + ˆΓ φ Γ (q Γ .n) u Γ + g 2 h 2 n dΓ = 0 (39) 
The rst integral is ˆΩ φhu dΩ = dxdyφhu (40)

while the closure relationship q Γ = q leads to

ˆΓ φ Γ (q Γ .n) u Γ + g 2 h 2 n dΓ = ˆΓ φ Γ (q.n) u + g 2 h 2 n dΓ (41) 
x-momentum ux. Projecting the integral (41) onto the x-axis with q = [q, r] T and n =

[n x , n y ] T gives m x = ´Γ φ Γ (q.n) 

A x =    0 1 3 c 2 -u 2 1 -3 uv 2 1 u + 3 v 3 u c 2 -v 2 3 -1 uv 1 v 2 3 v + 1 u    (46) 
A y =    0 0 2 -2 uv 2 v 2 u 2 c 2 -v 2 0 2 2 v    (47) 
The resulting expression for A θ in equation (21a) follows directly from equation [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. with q = hu. The rst integral is ˆΩ φhu dΩ = dxdyφhu (57) while the closure relationship q Γ = φ φΓ q leads to ˆΓ φ Γ (q Γ .n)

u Γ + g 2 h 2 n dΓ = φ ˆΓ φ φ Γ (q.n) u + g 2 φ Γ φ h 2 n dΓ (58) 
x-momentum ux. Projecting the integral (58) onto the x-axis with q = [q, r] 

Figure 1 :

 1 Figure 1: Periodic, idealized urban layout. Denition sketch. Only one period is shown in each direction of space.

Figure 3 :

 3 Figure 3: Propagation of a wave into a semi-innite domain. Denition sketch for initial and boundary conditions.

Figure 4 :

 4 Figure 4: Propagation of a wave into a semi-innite domain. Simulation results at t = 200s. xand y-coordinates in metres.

2. 3

 3 Consistency issue 1: ux polarization Consider the continuity equation for the IP model, obtained by substituting the closure model (2)

Figure 5 :

 5 Figure 5: Consistency analysis. Denition sketch.

Figure 7 :

 7 Figure 7: Secant plane approach. Intersections of the secant plane, characteristic plane and characteristic surface with the horizontal plane t = Const. The characteristic surface is the envelope of the characteristic planes obtained by varying θ.

Figure 8 :

 8 Figure 8: Isotropic IVP with water at rest. Contour map: water depth computed at t =150s. Dashed line: rst and third characteristic surfaces. x-and y-coordinates in metres.

Figure 9 :

 9 Figure 9: Anisotropic IVP with water at rest. Contour map: water depth computed at t =150s. Dashed line: rst and third bicharacteristic surfaces. x-and y-coordinates in metres.

Figure 10 :

 10 Figure 10: Anisotropic IVP with initial velocity. Contour map: water depth computed at t =150s. Dashed line: characteristic surfaces. x-and y-coordinates in metres.

Figure 11 :

 11 Figure 11: Anisotropic IVP with rectangular meshes. Mesh designs 4 to 6.

  and third characteristic surfaces at t = 200s for Designs 1, 4, 5 and 6. The second characteristic reduces to the point (0, 0). The characteristic surfaces for a given model (IP and DIP) are shown on the same graph for an easier comparison of the four mesh designs. The computed water depth elds are not shown for the sake of clarity. While the characteristic surfaces obtained from Designs 4-6 are close to each other, they depart signicantly, from the solution obtained from Design 1.

A. 1 . 4 2 h 2 n

 1422 Principal directions of the rst and third characteristic surfacesThe directions of minimum/maximum extensions of the two characteristic surfaces are those for which∂ θ (λ 3 -λ 1 ) = 0 (48)This leads to the conditionA.2.2 Momentum equationsVector form. The vector form is∂ t ˆΩ φhu dΩ + ˆΓ φ Γ (q Γ .n) u Γ + g dΓ = 0 (56)

Table 1 :

 1 Test case parameters.

	The parameters of the test case are given in Table 1.

Table 2 :

 2 1, 2 and 3 presented in Subsection 2.2. The parameter values are summarized in Table 2. It is reminded that Figure6must be applied a 90 degree rotation to retrieve Design 2. This rotation is applied to all the computational results in what follows. With this convention, the x-and y-axes point to the South and East respectively. The computational results are plotted in the form of lled contour maps for a simulation time T such that the waves stemming from the IVP do not reach the boundaries of the numerical domain yet. The coordinates (x p , y p ) for the IP and DIP models are plotted for the same time. Parameter sets for the computational examples.

	Symbol	Meaning	Numerical value
	d	Size of the square domain	20 m
	g	Gravitational acceleration	9.81 ms -2
	h 0	Initial water depth in the innite domain	1 m
	h 1	Initial water depth in the square region d × d	1.1 m
	T	Simulated time	150 s
	φ	Domain porosity	7 9

  -φ 2 ) tan α r 2 h + (φ 1 -φ 2 ) tan α g 2 h 2 + dxdy∂ y φ 2 Jacobian matricesThe Jacobian matrices A x and A y are obtained by dierentiating the ux tensor obtained from equations (38, 43, 45) with respect to the conserved variable:
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	hence the x-momentum equation								
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																		(44)
	hence the y-momentum equation								
	∂ t r + ∂ x	φ 1 φ	qr h	+	φ 1 -φ 2 φ	tan α	r 2 h	+	(φ 1 -φ 2 ) tan α φ	g 2	h 2 + ∂ y	φ 2 φ	r 2 h	+	g 2	h 2	= 0 (45)
	A.1.3																

y-momentum ux. Projecting the integral (41) onto the y-axis gives

m y = ´Γ φ Γ (q.n) r h + g 2 h 2 n y dΓ = dy cos α φ 1 qr h cos α + r 2 h sin α + g 2 h 2 sin α

∂ θ 4 +

∂ θ 5 = 0 (49)

A. [START_REF] Cea | Unstructured nite volume discretization of twodimensional depth-averaged shallow water equations with porosity[END_REF] 

DIP model governing equations

The dierential form for the governing equations of the DIP model is obtained by applying the integral formulae to the quadrangular cell shown in Figure 6.

A.2.1 Continuity equation.

The continuity equation is

with the closure model q Γ = φ φΓ q. First-order Taylor series expansions give ˆΩ φh dΩ = dxdyφh (54a)

hence, after simplifying by dxdyφ:

which is the same equation as that of the SP and Dena's models.

A.2.3 Jacobian matrices

The Jacobian matrices A x and A y are obtained by dierentiating the ux tensor obtained from equations (55, 60, 62) with respect to the conserved variable:

A.

Numerical determination of the eigenvalues of A θ

Noticing that the upper left element of the matrix A θ is zero, the eigenvalues λ of the matrix are solutions of the characteristic polynomial 

The roots of equation (64a) are found numerically using Newton's method. The derivative of the characteristic polynomial cancels for

If the characteristic polynomial has three roots, the rst one is necessarily smaller than the smaller of the two λ e values, the second is between these two λ e and the third is necessarily larger than the large of the two λ e . A Newton procedure is used, with the following three initial starting points:

The factor 2 in front of (p -2) ensures that the starting points are signicantly dierent from λ e and a non-zero derivative is obtained for the initial values of λ 1 and λ 3 . The iterations are stopped when the absolute of f (λ) is smaller than 10 -12 .