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Modeling soft granular materials

Saeid Nezamabadi' - Thanh Hai Nguyen!® . Jean-Yves Delenne? -

Farhang Radjail#

Abstract Soft-grain materials such as clays and other col-
loidal pastes share the common feature of being composed
of grains that can undergo large deformations without rup-
ture. For the simulation of such materials, we present two
alternative methods: (1) an implicit formulation of the mate-
rial point method (MPM), in which each grain is discretized
as a collection of material points, and (2) the bonded par-
ticle model (BPM), in which each soft grain is modeled as
an aggregate of rigid particles using the contact dynamics
method. In the MPM, a linear elastic behavior is used for the
grains. In order to allow the aggregates in the BPM to deform
without breaking, we use long-range center-to-center attrac-
tion forces between the primary particles belonging to each
grain together with steric repulsion at their contact points.
We show that these interactions lead to a plastic behavior
of the grains. Using both methods, we analyze the uniaxial
compaction of 2D soft granular packings. This process is
nonlinear and involves both grain rearrangements and large
deformations. High packing fractions beyond the jamming
state are reached as a result of grain shape change for both
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methods. We discuss the stress-strain and volume change
behavior as well as the evolution of the connectivity of the
grains. Similar textures are observed at large deformations
although the BPM requires higher stress than the MPM to
reach the same level of packing fraction.

Keywords Granular materials - Soft matter - Material point
method - Contact dynamics - Discrete element method -
Elasto-plastic behavior

1 Introduction

Many materials are composed of a disordered network of
soft grains. Most food products, metal powders, colloidal
suspensions and clays are soft-grain systems [17,18,20,23].
The interplay between disorder and large deformations of
soft grains leads to novel physical and mechanical proper-
ties that are out of reach within hard-grain models. High
deformability of soft grains under low confining pressure
allows for packing fractions above the random close packing
of hard grains (unless the grains break). Therefore a com-
bination of grain rearrangements and grain shape change
controls the rheological properties such as compressibility
and shear strength, as well as the microstructure of the mate-
rial. The latter can take a wide variety of forms depending
on the grain properties (compressibility, plasticity...), inter-
facial forces (friction, adhesion, repulsion...) between grains
and the properties of the suspending fluid. The constitutive
grains of soft materials are mostly macromolecular or aggre-
gates of a size ranging from 1 nm to 1 mm. Based on both their
composition and architecture, they can be divided into four
groups [7]: colloidal-like grains, network particles, polymer-
colloid systems and surfactant particles. Although all these



particles are soft and elastic, the origin of their elasticity and
deformability depends on their composition and structure.

Efficient numerical strategies based on discrete modeling
have been developed for the simulation of grain assemblies
by assuming that the grains are hard or weakly deformable.
This approach is now a mature and well-established approach
employed in powder technology, soil mechanics and geology.
The discrete element method (DEM) and contact dynamics
(CD) method are the most common discrete methods for hard
grains [32]. In order to allow each grain to deform according
to a continuum constitutive behavior, and also to describe
the contact interactions, it is necessary to treat both frictional
contacts and grain deformations. A promising framework is
provided by meshless models that have already been applied
to problems of solid mechanics involving large deformations.
One of these numerical models is now mostly known as mate-
rial point method (MPM) [5]. This is a mixed method based
on a combination of the Eulerian and Lagrangian descriptions
of the material. It can be also considered as a finite element
method with moving integration points (material points). The
Lagrangian description is provided by discretizing each body
as a collection of material points, and the Eulerian description
is based on a background computational mesh. The material
points are assigned fixed masses during computation so that
the conservation of mass is satisfied implicitly. The infor-
mation carried by the material points is projected onto the
background mesh, where the equations of motion are solved.
The mesh solution is then used to update the material points.
Hence, the momentum changes are interpolated from the grid
to the material points, so that the total momentum is con-
served. The MPM combines the advantages of Eulerian and
Lagrangian methods by avoiding the distortion of Lagrangian
mesh and tracking the boundaries of bodies. This method has
already been applied to granular materials with a few grains
[5,10,28].

An alternative approach is the bonded particle model
(BPM), which consists in modeling each grain as an aggre-
gate composed of hard particles with cohesive interactions
such that a grain can deform as a result of the relative motions
of the particles while staying together as a solid grain. This
“granular discretization” of the grains is a simple approach
as it allows for straightforward application of the DEM for
the simulation of deformable grains. It has been applied for
the simulation of crushable grains by introducing a breaking
threshold between particles [2,6,19,27,29,45,48]. But it has
never been applied for soft deformable grains.

In this paper, we introduce an implicit MPM and a BPM
algorithm for the simulation of soft grains. We apply both
methods to investigate the compaction of a packing of soft
grains. The soft-grain packings may potentially reach high
packing fractions by grain shape change and still deform
elastically or plastically. The compaction, volume change
behavior under shearing and the properties of the resulting

textures above the random close packing state have remained
largely unexplored because of the lack of proper numerical
and experimental tools in the past. We show that both the
MPM and the BPM allow for compaction beyond the ran-
dom close packing fraction. We analyze the evolution of the
packing and the effect of grain shape change. As we shall
see, both methods lead to similar textures but the material
behavior of the grains affects the stress level and its evolu-
tion during compaction.

In the following, we first briefly introduce the numerical
approaches. Then, we focus in Sect. 3 on the behavior of a
single grain subjected to axial strain. In Sect. 4, we analyze
the compaction process of a packing of soft circular grains.
We conclude with a brief summary and perspectives of this
work.

2 Numerical methods

Soft grains have mainly been considered in numerical sim-
ulations only in the Hertz limit where small deformations
(below 5%) of spherical grains at their contact points are
taken into account on an analytical basis. The power-law
force-displacement relation is used in the DEM as a force
law while keeping the reference spherical shape as the ref-
erence geometry for the calculation of local strain variables
[1,32]. In other words, the grains are treated as rigid elements
but interacting through soft contacts. Large deformations of
soft grains (“ultra-soft” grains) can only be achieved by intro-
ducing the internal degrees of freedom of the grains either
within continuum mechanics or by representing the grains as
an agglomerate of interacting discrete particles. We describe
below two algorithms based on these two different represen-
tations that will be applied to the compaction process of a
collection of soft grains.

2.1 Bonded particle model (BPM)

We use the BPM as a generic term for models in which
each grain is an aggregate of primary rigid particles with
cohesive interactions. The rigid particles in an aggregate can
move and rearrange according to the external forces acting
on its boundaries by other aggregates. When the interactions
between primary particles are governed by an irreversible
cohesive law, i.e. when contact adhesion can be lost irre-
versibly, this model can be used to model crushable grains
[21,29,38,47]. In this case, the grains undergo irreversible
rupture and may turn into several fragments when the failure
threshold is reached at several contact points between the par-
ticles. To allow for large deformations of the grains without
irreversible loss of interactions between primary particles, it
is therefore necessary to replace contact adhesion (which is
always short-ranged) by a long-range center-to-center attrac-
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Fig. 1 Lennard-Jones attraction force law between primary particles
for two values of the exponent y; see Eq. (1)

tion force, as in colloidal systems, together with a short-range
repulsion force [15].

Let us consider two rigid disks of radii a; and a;. For the
attraction force acting between primary particles, we choose
the attraction part of a generalized Lennard-Jones (L-J) force
law [14,15]:

E) -V
F,=—Fy (1 + —) (1)
ag

where ay = aj +a» and Fj is the maximum absolute value of
attraction force for the inter-particle distance § = 0. For the
original L-J potential, we have y = 7, but the same attraction
law may be generalized to arbitrary values of y to represent
the potential of the mean force in complex materials such as
cement and clay [14].

For the repulsive part of the interaction , we assume that
the particles are perfectly rigid so that the repulsion force F;
is activated only when the two particles touch, i.e. for a gap
8§ = 0. Hence, the interaction force F = F,+ F, as afunction
of § consists of only attraction at arbitrary distance § > 0 and
takes a value € [—Fjp, +00] at contact (§ = 0). The graph
of this interaction law is displayed in Fig. 1 for y = 2 and
y = 7. For an efficient implementation of this law, a cut-
off is necessary on the inter-particle distance. However, for
y = 7 the attraction force is negligibly small beyond 6 >~ ay,
in which case only the first and second neighbors of each
particle are involved in the interactions with other particles.
This distance is short but long enough to keep the particles
belonging to a grain together during large deformations.

The repulsive part can be modeled by introducing either
a power law as in the original L-J potential or a simple
spring as usual in DEM simulations. But we use a con-
tact dynamics approach, in which unilateral contacts are
treated in the framework of an implicit time-stepping algo-
rithm [26,34]. This approach has the advantage of eluding
the use of stiff repulsive potentials and hence the numeri-
cal treatment of small elastic strains at the contact points.
The CD is a general method for the treatment of frictional

[

i

Fig. 2 A frictional contact between two primary particles belonging
to two different grains with normal and tangential components f,, and
[ of the contact force

unilateral contacts without introducing specific force laws.
The rigid-body equations of motion are integrated by taking
into account the kinematic constraints resulting from contact
interactions. These interactions are characterized by three
parameters: the coefficient of friction and the coefficients
of normal and tangential restitution that control the rate of
dissipation. The implicit time-stepping scheme makes the
method unconditionally stable. For this reason, the time step
can be larger than that in molecular dynamics method. An
iterative algorithm similar to nonlinear Gauss—Seidel method
is used to determine the contact forces and particle veloci-
ties simultaneously at all eligible contacts between particles.
Detailed descriptions of the foundations and algorithmic
features of the CD method can be found in the literature
[16,24,34]. This method has been extensively used for the
simulation of granular materials with rigid grains in 2D and
3D [3,4,8,11,25,29,31,33,35-37,41,42].

Since we are interested here in soft deformable grains,
we set the friction coefficient between the primary parti-
cles to zero. As a result, the particle rotations inside a grain
are immaterial and no energy dissipation occurs inside the
grains by friction. However, the restitution coefficients are
set to zero, thus allowing the energy be dissipated by colli-
sions between the particles. The deformation of each grain
involves both a small reversible part due to the action of
attraction forces and a plastic part arising from rearrange-
ments of primary particles. It is important to remark that,
in the absence of friction between primary particles, the vol-
ume of each grain is nearly constant since the rearrangements
occur without dilatancy [30].

Although no friction is considered between primary par-
ticles inside each grain, we may introduce frictional contacts
between the grains. These contacts occur between two pri-
mary particles belonging to the two grains, as illustrated in
Fig. 2. Hence, we distinguish two contact types between
primary particles: (1) for two touching primary particles
belonging to the same grain, the contact is always frictionless
but cohesive; (2) for two touching primary particles belong-



ing to two different grains, the contact is always non-cohesive
(no attraction force) but can be frictional. We will con-
sider below both frictional and frictionless contacts between
grains.

2.2 Material point method (MPM)

We briefly present here the MPM, as a meshless finite element
method for the simulation of soft grains, coupled with the
CD method for the treatment of frictional contacts between
grains. More details of the method can be found in [28].

Let us consider a domain £2 in RP, D being its dimen-
sion, describing a continuum body with an external boundary
052. The conservation of mass is governed by the following
continuity equation:

p(x, 1)

o7 +V.(px,t)v(x, 1)) =0

in 2, )

where p(X, #) is the material density and v(x, 7) denotes the
velocity at position x and time 7. In the same way, the con-
servation of linear momentum is given by

V.o, t)+b(x,t) = p(x,t)a(x,t) in £2, 3)
where o (X, 7) is the Cauchy stress tensor, b(x, ¢) represents
the body force and a(x, ¢) denotes the acceleration at position
x and time ¢. The continuity Eq. (2) and momentum Eq. (3)
must be supplemented with a constitutive relationship which

is assumed here to be linear, homogeneous, isotropic and
elastic:

o(x,1) =C:ex,1), 4)

where C is the fourth-order elastic tensor and e is the strain
tensor (€ = % (Vu + VuT), u being the displacement field).
Other constitutive laws (including inelastic behaviors such
as plastic deformations) may be used in this context.

In the framework of the MPM, the simulation domain is
divided into N, infinitesimal mass elements. These elements
are represented by material points of constant mass. Hence,
since the material point mass is considered to be fixed, the
mass conservation relation (2) is self-satisfied. Furthermore,
the material points serve as integration points to compute
the FEM integrals. The MPM then discretizes the variables
(stress, strain, density, velocity, acceleration- - - ) through a
Dirac delta function by considering a fixed material point
mass. Hence, for example, the density may be discretized for
an element in the form:

Np

P, 1) =D pp 8(x =X, (1)), (5)

p=1

where p,, and X, (¢) refer to material point density and posi-
tion, respectively, and § is the Dirac delta function. The
material point density is equal to: p,, = m/ V), with material
point mass m,, and material point volume V.

In the same way, the displacement u;, and the strain €,
at material point X, are expressed as a function of nodal
displacement Uyoqe as:

u, = Np Upode and €p = Gp Unode» (6)

where N, denotes interpolation matrix or shape function
matrix at Xy, and G, is the gradient of the shape func-
tion N,. Therefore, in the presence of contact interactions
between bodies, the weak form of the equation of motion (3)
in a discretized form can be written as

M apoqe (1) = FM(1) + F*(r) + FC(1), (7

where apoqe is the nodal acceleration, FC denotes the contact
force (see below) and FX! represents the external applied
force. M is the lumped mass matrix:

Np
M=> m,N,. ®)
p=1

and F'" gives the internal force vector resulting from the
stress divergence:

Np
F'=—->"G,0,V,. )
p=1

Since there are generally more material points than grid
nodes, a weighted squares approach is used to determine
nodal velocities Vpoqe from the material point velocities v,.
Hence, the nodal velocities are obtained by solving the fol-
lowing relation:

Np
Prode = M Viode = Z mp Np Vp. (10
p=1

where Ppode 1s the nodal momentum.

In order to solve the problem Eq. (7), we consider an
implicit MPM approach proposed by Guilkey and Weiss [12].
The nodal solutions are projected onto the material points,
allowing for updating the information carried by these points.

Indealing with a packing of deformable grains, the contact
forces FC between grains need to be calculated by means
of a contact algorithm accounting for the condition of non-
interpenetration of matter as well as the Coulomb friction
law. We used the CD method, which we adapted to the MPM
algorithm. The coupling of MPM and CD has been explained



Fig. 3 Multi-mesh contact algorithm scheme in MPM; see text

in detail in a previous paper [28], but, will be described briefly
here.

Let us consider two deformable grains (o and B); see
Fig. 3. In the context of multi-mesh algorithm, each grain
maps in its proper background mesh. A contact point at the
interface between the two grains may be treated by introduc-
ing a common background mesh with the same type of grids
for the transfer of nodal quantities from proper meshes to the
common mesh. The contact points between the grains « and
are treated at the neighboring nodes belonging to the common
background mesh. Their nodal values involve contributions
from the two grains. At a potential contact node i, a normal
unit vector n;, oriented from grain 8 to grain «, and a tan-
gential unit vector t; are defined [13]. As long as the normal
velocity vy, (v, = (v — vf ) -n;) remains positive, the normal
force f,, isidentically zero. But when v, = 0, a non-negative
(repulsive) normal force f, is mobilized at the contact node.
These conditions define the velocity-Signorini complemen-
tary condition as shown in Fig. 4a [9,16]. On the other hand,

by combining the equations of motion Py . = M*v{_, and
Pfode = M# Vfode at the common node i, we get this linear
relation:
PRI L (11)
n = — - —— 7z Un n
T At ma + mlﬂ T

where m? and mﬁg are the nodal masses of bodies of « and
B, respectively, At denotes the incremental time and k&, is
normal part of an offset force which depends on other contact
forces exerted by the neighboring bodies of o and . The
normal forces at all contact nodes are obtained through an
iterative process by intersecting the above linear relation with
the Signorini graph, as shown in Fig. 4a.

In a similar vein, the Coulomb law of dry friction is a
complementarity relation between the friction force f; and
the tangential velocity v; (v, = (V{ — ij ) - t;) at the contact
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Fig. 4 Contact conditions: a velocity-Signorini complementarity con-
dition as a graph relating the normal relative velocity v, and normal
force f,,; b coulomb friction law as a graph relating the tangential veloc-
ity v, and friction force f;; w is the coefficient of friction. The dashed
lines represent linear relations representing the equations of dynamics

node; see Fig. 4b. Like the Signorini graph, the Coulomb law
is a complementarity relation in the sense that it can not be
reduced to a single-valued function. The equations of motion
at the common node i yield this linear relation:

fo=—c = v ki, (12)
i

which is intersected with the Coulomb graph to calculate the
friction force f; simultaneously at all contact nodes in the
same iterative process used to calculate the normal forces.
k; is tangentiel part of the offset force defined above. The
convergence to the solution both for contact forces and inter-
nal stresses is smooth, and a high precision may be achieved
through the convergence criterion. The compaction process
of a packing of soft grains, discussed in the next section,
provides an illustration of the application of this algorithm
to granular materials.

3 Axial deformation of a single grain

Before analyzing the compaction of an assembly of soft
grains, let us first consider the behavior of a single grain using
the two methods described in Sect. 2. We performed BPM
and MPM simulations of a soft grain of radius R = 5 mm
and compressed between two rigid walls as shown in Fig. 5.
The bottom wall is fixed and the top wall moves downwards
at a constant velocity of 0.2 m/s. In BPM simulations, the
grain is composed of 1750 rigid frictionless particles. The
diameters of the particles vary from 0.16 mm to 0.26 mm.
Their interactions are governed by Eq. (1) with Fy = 100
kN, y = 7 and a cut-off distance § = ag. Note that Fy is
only a scaling factor in the sense that, according to Eq. (1)
and since there is no intrinsic elastic force scale in the model,
all forces should scale with Fj. Hence, its value has no effect
on the behavior of the grains.



Fig. 5 Geometry of a soft grain by BPM (a) and MPM (b) discretiza-
tion; deformed grain at cumulative vertical strain ¢ = 30% for the BPM
(¢) and for the MPM (d). In (c¢), the line thickness between particles is

Two-dimensional MPM simulations in plane strain condi-
tions were performed. The computation domain was meshed
with four-node quadrangular elements, and an initial distribu-
tion of four material points per element was used. Moreover,
the material points were distributed so as to fit best to the
initially circular shapes of the particles as shown in Fig. 5b.
Young’s modulus, Poisson’s ratio and density of the parti-
cles were set to E = 10 MPa, v = 0.45 and p = 990
kg/m3, respectively. We chose a high value of Poisson’s ratio
in order to get nearly constant volumes of the grains as in
BPM grains. The choice of Young’s modulus is indifferent
since it acts only as a scale stress for the applied stress. In
other words, it controls only the value of the applied stress for
which a given level of deformation is reached. In the same
way, the value of the density does not affect the behavior
in the slow deformation regime. The spatial relative resolu-
tion is % = 0.029, where Ar is the mean distance between
material points.

The deformed grains at vertical strain ¢ = 30% are shown
in Fig. 5c, d with force chains in the first case and von Mises
stresses in the second case. The lateral curvatures are almost
similar up to the surface roughness of the BPM grain. Close

proportional to the normal repulsive force. In (d), the color code repre-
sents von Mises stresses of material points varying from lowest values
in blue to largest values in red (color figure online)

inspection of the contact zone with the walls reveals a per-
fect contact line of the BPM grain with the top and bottom
walls, reflecting its plastic behavior, whereas the MPM grain
apparently touches the two walls only over a short segment
at the center. But, in fact all material points belonging to the
boundary elements between the particle and the bottom and
top walls are in the contact line. This observed apparent gap
is thus only a consequence of the background mesh element
thickness.

Figure 6 shows the vertical stress o = %, where L is
the actual largest section of the grain, as a function of axial
strain. The MPM grain shows a linear elastic behavior at low
deformation, as predicted by Hertz analysis for a disk [28]:

T FE
F="_2 Re, 13
d1—2¢ (13)

where ¢ is the cumulative axial strain (¢ = In(1 4+ d/R),
d being the displacement of the center of the grain). Devia-
tion from the linear behavior is observed for ¢ > 0.05. This
range of the Hertz scaling (with an exponent 3/2 in 3D) is
generally used for molecular dynamics simulations of the
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Fig. 6 Vertical stress as a function of cumulative axial strain for a

single grain subjected to diametrical compression by means of BPM
and MPM simulations
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Fig. 7 Vertical stress as a function of cumulative axial strain for three
BPM grains of the same size with a uniform size distribution of their
primary particles but with different ranges of particles diameters: a 2400
particles with diameters in the range [0.1, 0.24] mm, b 1750 particles
with diameters in the range [0.16, 0.26] mm and ¢ 1300 particles with
diameters in the range [0.22, 0.28] mm

elastic behavior of granular materials composed of spherical
particles [22,39,40,44]. The BPM grain is characterized by
a linear response at small deformations of the order of 2%
and a plastic behavior beyond. The plastic threshold stress is
nearly constant and it reflects the internal characteristic stress
oy = Fy/(ap). Its value in our simulations is approximately
0.5 MPa.

It is worth noting that the softness of the BPM grain
depends on the size polydispersity of primary particles. It
is expected that the plastic stress threshold will increase with
size polydispersity. This is what we observe in Fig. 7 for three
different size ploydispersities. In all the three examples, the
primary particles have a uniform distribution of their volumes
but the size ratio between the largest and smallest particles
is varied. We see that grain “softness” slightly increases with
size span.

4 Compaction of a packing of soft grains

In this section, we use both MPM and BPM simulations
to investigate the compaction of a packing of soft grains.
We consider the evolution of different packing parameters
(packing fraction, connectivity) and their differences for the
two methods. Since the accuracy and efficiency of the MPM
algorithm has previously been shown through several con-
tact problems [28], the comparison between the two methods
allows us to demonstrate also the aptitude of the BPM to deal
with soft-grain assemblies.

We consider a packing of 300 grains confined inside a
rectangular box of width L and of initial height /(. The ini-
tial configuration is prepared by means of CD simulations.
In both BPM and MPM simulations, the grain diameters
have a uniform distribution by volume fractions in the range
[1.4,2.4] mm. Moreover, in each BPM grain, the particle
diameters vary from 0.07 to 0.13 mm with a uniform distrib-
ution by particle volumes. The grains are subjected to vertical
compaction by moving the top wall downwards at a constant
velocity. We consider the same parameters as before for the
two methods. Two simulations of compaction performed by
the BPM and the MPM are analyzed below: (1) without fric-
tion and (2) with a coefficient of friction © = 0.5 between
the grains. The coefficient of friction between the grains and
the walls is set to zero.

Figure 8(a—f) displays three snapshots of the compaction
test with © = 0 by BPM (a—c) and MPM (d-f) simulations.
Since the compaction begins with a packing of unjammed
particles, during the initial stage of compaction new contacts
are formed between grains until they get jammed and the
vertical stress begins to increase. For this point, the pack-
ing fraction increases by grain shape change, and at the end
of the compaction nearly the whole space is filled by the
grains. The shapes of the grains gradually change from cir-
cular to nearly polygonal as shown in Fig. 8g—h. Note that the
‘gaps’ observed in MPM simulations between grains reflect
the meshing resolution, which may be increased for a finer
discretization of the contact zone.

The evolution of the packing can be tracked through the
mean coordination number Z and the packing fraction @ of
the packing. Figure 9 shows Z and @ as a function of cumula-
tive vertical strain ¢ = In(1 + Ah/ hg). The packing fraction
@ is a nearly linear function of . As @ = 1 is approached,
the behavior depends on that of individual grains. In MPM,
the behavior is linear elastic and hence, the small remaining
pores at high packing fraction can be filled by grain shape
change only at very high stress level. In contrast, in BPM
simulations the pores can be filled as a result of plastic defor-
mation of the grains at much lower stress level. The process
of pore filling is similar in MPM and BPM as long as the size
of the inter-grain pores is above the size of primary particles.
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Fig. 8 Three snapshots of the compaction of a packing of soft grains
by the BPM (a—c) and the MPM (d-f), and a zoom on the deformed
packing by the BPM (g) and by the MPM (h). Filled circles are material

This limit occurs at a packing fraction of 0.93 in the BPM
simulations.

The coordination number Z increases with ¢ in all cases.
In the BPM simulations, we observe no difference between
frictional and frictionless grains and the coordination number

(f) £=0.45 and @ = 0.99

()

points in the MPM and the primary particles in the BPM. a ¢ = 0 and
®=065,be=0.17and ® =0.8,ce=0and ® =0.65,d £ =0.17 and
@ =08,ec=045and ® =0.99

levels off after >~ 40% of deformation. In the MPM simula-
tions, we observe higher values of Z for frictionless grains.
The jamming occurs ate =~ 0.08 where Z ~ 3and @ ~ 0.75.
From this point, the vertical stress o begins to increase. How-
ever, the packing remains fragile until a packing fraction
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Fig. 9 Mean coordination number Z (a) and packing fraction @ (b) as
a function of cumulative vertical strain ¢ for frictionless and frictional
particle packings by BPM and MPM simulations

@ ~ 0.8 is reached for a stress o that can be considered as
consolidation stress. For this reason, we will use this stress
to scale stresses during the subsequent deformations of the
packing.

The fact that the inter-grain friction has no effect on Z
and @ in BPM simulations is a simple consequence of the
absence of friction between primary particles. Indeed, the
friction force at the contact between two primary particles at
the boundaries of two touching grains can not be mobilized
since those particles can freely rotate without dissipation. In
order to allow the friction to be effective at the inter-grain con-
tacts, it is necessary to introduce rolling resistance between
primary particles belonging to each grain. This resistance
should be large enough to hinder relative rotations of the pri-
mary particles under the action of shear stresses [8,11,43].
Interestingly, as shown in Fig 9, in MPM simulations the
packing fraction is the same in frictional and frictionless
cases at all strain levels whereas Z is higher in the friction-
less case. This effect is observable from the jamming point
at @ ~ 0.75.

Figure 10 shows the vertical stress o, calculated from the
forces acting on the bottom wall and normalized by the con-
solidation stress oy, as a function of the cumulative vertical
strain &’ from the reference state defined by o = o¢. Here, we
observe two very different behaviors in MPM and BPM sim-
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Fig. 10 Vertical stress o normalized by the consolidation stress as a
function of cumulative vertical strain ¢’ from the reference state o for
frictionless and frictional particle packings by BPM and MPM simula-
tions
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Fig. 11 Packing fraction as a function of normalized axial stress for
frictionless and frictional particle packings subjected to uniaxial com-
pression by BPM and MPM simulations. The dotted lines represent
predictions by simple models of compaction introduced in this paper;
see Eqgs. (14) and (16)

ulations. In the MPM simulations, the behavior is a simple
linear stress-strain relation, which clearly reflects the linear
behavior of each grain, as observed in Fig. 6. In contrast, in
the BPM simulations, the vertical stress increases at increas-
ing rate with ¢’. This gradual increase of o is a consequence of
the plastic behavior of BPM grains as seen in Fig. 6. Although
each individual grain can reach its plastic stress threshold in
the absence of other grains and geometrical constraints, the
overall deformation of all grains of the packing depends on
their mutual exclusions and the available pore volume. This
is at the origin of stress divergence at large deformations.
This is also what we observe when the packing fraction @
is plotted as a function of o; see Fig. 11. In MPM simu-
lations, the packing fraction is a linear function of o until
very high levels of packing fraction whereas in BPM simu-
lations a nearly exponential increase of @ is observed. It is
also remarkable that inter-grain friction has almost no effect
on the compaction process for both methods.



The above observations about the evolution of the stress
and packing fraction can be described on a quantitative
basis by considering the deformation mechanisms for each
method. In the BPM, since the grains are composed of rigid
particles that can move and rearrange to fill the pore space
between grains, it may be assumed that the variation d® of
packing fraction is proportional to the available pore space
and stress increment: d® o« (1 — @)do. This assumption
readily leads to an exponential increase of @ as a function of
o:

®=1-(1—-dge w5V, (14)

where o depends on the compressibility of the packing.
Figure 11 shows that an exponential form fits quite well the
BPM data up to a packing fraction ~ 0.98 with o =~ 0.27.
Beyond this limit, the pores between the grains are of nearly
the same size as the pores inside the grains. For this reason,
the evaluation of the packing fraction in this range is subject
to fluctuations and the convention used for the determination
of the interface between grains. In other words, the packing
fraction is defined up to the porosity along all grain-grain
interfaces inside the system.

On the other hand, in the MPM, since a continuum elastic
model is used for the simulation of soft grains, the packing
behaves like an elastic medium with an effective bulk modu-
lus K relating volume increment d'V to stress increment do':

av
K— = —do. (15)
%

Since the texture evolves mainly to the increase of inter-
grain interface, the strains may be assumed to be the same
in grains and pores, so that the Voigt rule of mixtures can
be applied [46]. Hence, the effective bulk modulus increases
proportionally to the packing fraction: K o« @K, where
K, is the grain bulk modulus (in 2D, Kg = E/2(1 —v) ).
Assuming further that the variation of the volume Vj, of grains
is of second order compared to particle shape change, we
obtain a linear relation between @ and o:

o
@:—(——1)+d>0. (16)

00

This linear relation is consistent with our MPM simulations
shown in Fig. 11 with a slope equal to /K, >~ 0.08. Despite
this difference, it is remarkable that the evolution of @ as a
function of o /0y is quite similar in the range @ € [0.8, 0.87].

5 Conclusion

In this paper, we used two methods developed for the com-
paction of a packing of soft grains beyond the random close

packing. The bonded particle model (BPM) is based on the
representation of the grains as aggregates of rigid grains
interacting via a hard-particle repulsive force at their contact
points and an attraction force acting between particle cen-
ters up to a cut-off distance above one particle diameter. The
material point method (MPM) is based on a discretization
of the grains into moving material points. We implemented
an implicit formulation of the MPM interfaced with the con-
tact dynamics (CD) method for the treatment of frictional
contacts. It was shown that, while MPM grains behave elasti-
cally by construction, the BPM grains have a perfectly plastic
behavior.

The uniaxial compaction of a stack of soft grains was sim-
ulated using these two methods and the relationships between
particle shape change and the evolution of packing fraction
and coordination number were analyzed. The compaction
with MPM grains is a linear process whereas the evolution
in BPM simulations is nonlinear. By introducing two simple
models, we showed that their difference can be explained in
terms of their constitutive behaviors. The plastic behavior of
BPM grains is a consequence of their discrete structure and
inter-particle interactions. The plastic behavior can also be
introduced in MPM simulations via the constitutive behav-
ior of the grains. It is thus highly relevant to compare in the
future the compaction of plastic MPM grains to that of BPM
grains.

The BPM with deformable grains, as implemented for
the first time in this paper, considerably extends the scope
of the DEM in application to soft materials. The behavior
of deformable grains can be calibrated or modified by using
constitutive particles of different shapes and size distributions
or by playing with the interactions between particles. For
example, adding elastic interactions between primary parti-
cles leads to an elastic domain in the grain behavior. In the
same way, the plastic behavior can be removed by adding
rolling resistance and sliding friction between particles with
very high values of friction coefficient and rolling resistance
while keeping elastic interactions. Then, the behavior of a
grain becomes purely elastic. If a force threshold is intro-
duced on the attraction force and the friction coefficient is
low, the grain behavior becomes brittle. To some respect,
each grain can be made very similar to MPM grains with
linear elastic behavior as long as the Young modulus is con-
cerned. But the Poisson ratio of a BPM grain (with elastic
interactions) is mainly controlled by the connectivity of the
grains and it is of the order of 1/3 in 2D. These examples
show that it is possible to use the BPM for different behav-
iors. But clearly the MPM is the best method for exact and
straightforward implementation of the material behavior of
grains.

In application to certain materials like clay, it is essential
to account also for the cohesive forces between grains, which
is straightforward to implement. In essence, the contacts



between the particles represent nothing more than very hard
repulsive potentials that occur between molecules. For this
reason, the model can be applied to colloidal entities inter-
acting by an effective attractive potential. The shear behavior
of packings of such grains at high values of packing fraction
can be simulated and analyzed by means of the BPM.
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