
HAL Id: hal-01540984
https://hal.science/hal-01540984

Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heritability estimation in high dimensional sparse linear
mixed models

Anna Bonnet, Elisabeth Gassiat, Céline Levy Leduc

To cite this version:
Anna Bonnet, Elisabeth Gassiat, Céline Levy Leduc. Heritability estimation in high dimensional
sparse linear mixed models. Electronic Journal of Statistics , 2015, 9 (2), pp.2099-2129. �10.1214/15-
EJS1069�. �hal-01540984�

https://hal.science/hal-01540984
https://hal.archives-ouvertes.fr


Electronic Journal of Statistics
Vol. 9 (2015) 2099–2129
ISSN: 1935-7524
DOI: 10.1214/15-EJS1069

Heritability estimation in high

dimensional sparse linear mixed models

Anna Bonnet

AgroParisTech – UMR INRA MIA 518
16, Rue Claude Bernard – 75005 Paris
e-mail: anna.bonnet@agroparistech.fr

Elisabeth Gassiat

Laboratoire de Mathématiques d’Orsay
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Abstract: Motivated by applications in genetic fields, we propose to esti-
mate the heritability in high-dimensional sparse linear mixed models. The
heritability determines how the variance is shared between the different
random components of a linear mixed model. The main novelty of our ap-
proach is to consider that the random effects can be sparse, that is may
contain null components, but we do not know either their proportion or
their positions. The estimator that we consider is strongly inspired by the
one proposed by Pirinen, Donnelly and Spencer (2013), and is based on a
maximum likelihood approach. We also study the theoretical properties of
our estimator, namely we establish that our estimator of the heritability is√
n-consistent when both the number of observations n and the number of

random effects N tend to infinity under mild assumptions. We also prove
that our estimator of the heritability satisfies a central limit theorem which
gives as a byproduct a confidence interval for the heritability. Some Monte-
Carlo experiments are also conducted in order to show the finite sample
performances of our estimator.
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1. Introduction

Linear mixed models (LMMs) have been widely used in various fields such as
agriculture, biology, medicine and genetics. In quantitative genetics, LMMs have
been used for estimating the heritability of traits and breeding values as ex-
plained for instance by Lynch and Walsh (1998). In Genome Wide Association
Studies (GWAS), which is the application field that inspired our work, Yang
et al. (2011) suggested the use of linear mixed models to measure genotypes
at a large number of single nucleotide polymorphisms (SNPs) in large samples
of individuals in order to identify genetic variants that explain variations in
phenotypes.

The model that we shall study in this paper is a LMM defined as

Y = Xβ + Zu+ e , (1)

where Y = (Y1, . . . , Yn)
′ is the vector of observations, X is a n × p matrix

of predictors, β is a p × 1 vector containing the unknown linear effects of the
predictors, and u and e correspond to the random effects. Moreover, in (1), Z
is a n×N random matrix which will be further described in Section 2.

We shall assume that the random effects can be sparse, that is only a pro-
portion q of the components of u are non-zero:

ui
i.i.d.∼ (1−q)δ0+qN (0, σ�

u
2) , for all 1 � i � N and e ∼ N

(
0, σ�

e
2IdRn

)
, (2)

where IdRn denotes the n× n identity matrix, q is in (0, 1], and δ0 is the point
mass at 0. Note that this corresponds to a more general situation than the
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usual assumption of (non-sparse) Gaussian random effects which is recovered
when q = 1.

The use of linear mixed models to estimate heritability has been proposed
by Yang et al. (2011) as an alternative to the regression models usually used in
GWAS. The goal is to consider the joint effect of all SNPs on a phenotype, and
the heritability corresponds to the proportion of phenotypic variance explained
by all SNPs.

In the GWAS framework, Z is thus a matrix having a number of rows equal
to the number of individuals in the experiment that is n ≈ 1000 and a number
of columns equal to the number of SNPs taken into account in the experiment,
namely N ≈ 500, 000. This application motivated the framework that we chose
where n and N tend to infinity.

The major difference between the framework of Yang et al. (2011) and ours
is that they consider that the random effects are Gaussian while we consider a
mixture model between a point mass at 0 and a Gaussian distribution. With
this modeling, we assume that all SNPs are not necessarily causal, that is that
all SNPs do not explain a given phenotype.

Our main goal in this paper is to propose an estimator for the heritability in
this possibly sparse framework and to establish its theoretical properties in the
non standard theoretical context where n and N tend to infinity.

In this paper, we prove that using a strategy close to the one proposed by
Pirinen, Donnelly and Spencer (2013), which has been devised in the case q = 1,
provides consistent estimators even in the case where q < 1. Moreover, we prove
that this estimator is

√
n-consistent in the following asymptotic framework:

n → ∞ and N → ∞ such as n/N → a > 0 and satisfies under mild assumptions
a central limit theorem in both cases q = 1 and q < 1. It has to be noticed that
the classical results that exist in linear mixed models are established only in the
case where q = 1, n tends to infinity and N is constant.

The paper is organized as follows. Section 2 provides a detailed description
of the model and the heritability estimator that we propose. Section 3 reviews
existing methods for heritability estimation. Section 4 is dedicated to the theo-
retical properties of our estimator. The numerical results are presented in Sec-
tion 5. They have been obtained thanks to the R package HiLMM that we have
developed and which is available from the Comprehensive R Archive Network
(CRAN). In Section 6, we provide some additional comments on our work as
well as some prospects such as the estimation of the proportion q of non null
components in the random effects. Finally, the proofs are given in Section 7.

2. Model and heritability estimator

2.1. Model

In the sequel, up to considering the projection of Y onto the orthogonal of the
image of X and for notational simplicity, we shall focus on the following model

Y = Zu+ e , (3)
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where Y = (Y1, . . . , Yn)
′ is the vector of observations, u and e correspond to the

random effects, which are defined in (2). Moreover, Z is a n×N random matrix
such that the Zi,j are normalized random variables in the following sense: they
are defined from a matrix W = (Wi,j)1�i�n, 1�j�N by

Zi,j =
Wi,j −W j

sj
, i = 1, . . . , n, j = 1, . . . , N , (4)

where

W j =
1

n

n∑
i=1

Wi,j , s
2
j =

1

n

n∑
i=1

(Wi,j −W j)
2, j = 1, . . . , N . (5)

In (4) and (5) the Wi,j ’s are such that for each j in {1, . . . , N} the (Wi,j)1�i�n

are independent and identically distributed random variables and such that
the columns of W are independent. With this definition the columns of Z are
empirically centered and normalized.

In genetic applications, the matrix W contains all the genetic information
about all the individuals in the study. More precisely, for each j, the (Wi,j)1�i�n

are i.i.d binomial random variables with parameters 2 and pj . Wi,j = 0 (resp.
1, resp. 2) if the genotype of the ith individual at locus j is qq (resp. Qq, resp.
QQ) where pj is the frequency of Q allele at locus j.

In Model (1) with (4), (5), (2), one can observe that

Var(Y|Z) = Nqσ�
u
2R+ σ�

e
2IdRn , where R =

ZZ′

N
and q is defined in (2) .

Inspired by Pirinen, Donnelly and Spencer (2013), Model (1) can be rewritten
by using the following parameters:

σ�2 = Nqσ�
u
2 + σ�

e
2 and η� =

Nqσ�
u
2

Nqσ�
u
2 + σ�

e
2 . (6)

Thus,
Var(Y|Z) = η�σ�2R+ (1− η�)σ�2IdRn .

The parameter η� which belongs to [0, 1] is commonly called the heritability
in the case where q = 1, see for instance Yang et al. (2010), and determines
how the variance is shared between u and e when all the components of u are
non zero. We propose in (6) to extend this definition to the case where u may
contain null components and q is in (0, 1]. The parameter q actually corresponds
to the proportion of non null components in u that is to the proportion of causal
SNPs. Then, the heritability defined by η� in (6) corresponds to the proportion
of phenotypic variance explained by the causal variants.

2.2. Heritability estimator

In the case where q = 1, observe that

Y|Z ∼ N
(
0, η�σ�2R+ (1− η�)σ�2IdRn

)
,

where η� and σ� are defined in (6).
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Let U as the orthogonal matrix (U′U = UU′ = IdRn) such that URU′ =
diag(λ1, . . . , λn) is a diagonal matrix having its diagonal entries equal to λ1, . . . ,

λn. Hence, in the case where q = 1 and conditionally to Z, Ỹ = U′Y is a zero-
mean Gaussian vector having a covariance matrix equal to diag(η�σ�2λ1 + (1−
η�)σ�2, . . . , η�σ�2λn + (1− η�)σ�2), where the λi’s are the eigenvalues of R.

The method proposed by Pirinen, Donnelly and Spencer (2013) consists in
computing the log-likelihood

Ln(σ
2, η) = −n

2
log(σ2)− 1

2

n∑
i=1

log(η(λi − 1) + 1)

− 1

2σ2

n∑
i=1

Ỹi

2

η(λi − 1) + 1
− n

2
log(2π)

and to maximize this function of two variables by iterative optimization tech-
niques. Since in our case we are only interested in estimating η�, we plugged an
estimator of σ�2 that is

σ̂2 =
1

n

n∑
i=1

Ỹi

2

η(λi − 1) + 1

in Ln. Thus, in the case q = 1, the maximum likelihood strategy would lead to
estimate η�, assumed to be in [0, 1− δ] with δ > 0, by η̂ defined as a maximizer
of

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (7)

where the Ỹi’s are the components of the vector Ỹ = U′Y.
We shall establish in Theorem 2, which is proved in Section 7.2, that this

strategy produces
√
n-consistent estimators of η� in both cases: q = 1 and q < 1

and also that this estimator satisfies a central limit theorem which provides as
a by-product confidence intervals for η�.

3. Existing methods for heritability estimation

Several approaches can be used for estimating the heritability in the case where
q = 1 but to the best of our knowledge, no theoretical results concerning the
estimation of the heritability or the estimation of σ�

u, σ
�
e have been established

in the framework where both n and N tend to infinity. This is one of the con-
tributions of our paper. Among these approaches, we can quote the REML
(REstricted Maximum Likelihood) approach, originally proposed by Patterson
and Thompson (1971) and described for instance in Searle, Casella and McCul-
loch (1992), which consists in estimating first σ�

u and σ�
e and then to estimate

η� as the ratio η̂ = Nσ̂u
2/(Nσ̂u

2 + σ̂e
2). However, this type of approach is

based on iterative procedures that require expensive matrix operations. Hence,
several approximations have been proposed such as the AI algorithm (Gilmour,
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Thompson and Cullis (1995)) which is used for instance in the software GCTA
(Genome-wide Complex Trait Analysis) described in Yang et al. (2011). Other
approximations have also been proposed in the EMMA algorithm (Kang et al.
(2008)). For further details on the different approximations that could be used
we refer the reader to Pirinen, Donnelly and Spencer (2013). The latter paper
proposes another methodology for estimating the heritability which consists in
rewriting Model (1) with the parameters (6) and in using an eigenvalue de-
composition of the matrix R. Further details on their methodology are given
hereafter. According to the numerical experiments conducted in Pirinen, Don-
nelly and Spencer (2013) their approach has the lowest computational burden
among the available algorithms.

In the case of sparse high dimensional framework, most of the papers stud-
ied the case of linear models. Among them, we can quote: Meinshausen and
Bühlmann (2010) and Beinrucker, Dogan and Blanchard (2014). The high di-
mensional linear mixed model where u is sparse, that is the case where q < 1,
which is the most realistic case for the applications that we have in view, has
received little attention. It has been studied according two directions: detection
and estimation. Concerning the detection field in this framework, we are only
aware of the work of Arias-Castro, Candès and Plan (2011) in which a test-
ing procedure for detecting a sparse vector in high dimensional linear sparse
regression model is also proposed and compared with the one proposed by In-
gster, Tsybakov and Verzelen (2010). As for the procedures dedicated to the
heritability estimation, there exist, to the best of our knowledge, only three ap-
proaches: the approach of Yang et al. (2010) who propose to approximate the
genetic correlation between every pairs of individuals across the set of causal
SNPs by the genetic correlation across the set of all SNPs, the approach of
Golan and Rosset (2011) who propose a methodology based on MCEM (Monte-
Carlo expectation-maximization) developed by Wei and Tanner (1990) and the
Bayesian approaches of Guan and Stephens (2011) and Zhou, Carbonetto and
Stephens (2013). However, as far as the estimation issue in the high dimensional
linear mixed model is concerned, the authors of these papers did not establish
the theoretical properties of their estimators in the framework where both n
and N tend to infinity.

4. Theoretical results

Observe that another way of writing Model (3) with the parameters defined in
(6) consists in writing

Y =
1√
N

Zt+ σ�
√

1− η�ε , (8)

where ε is a n× 1 Gaussian vector having a covariance matrix equal to identity
and t = (t1, . . . , tN )′ is a random vector such that

ti =
σ�

√
η�

√
q

wiπi ,
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where the wi’s and the πi’s are independent, w = (w1, . . . , wN )′ is a Gaussian
vector with a covariance matrix equal to identity and the πi’s are i.i.d Bernoulli
random variables such that P(π1 = 1) = q.

The estimator η̂ is defined as a maximizer of Ln(η) for η ∈ [0, 1− δ] for some
small δ > 0, Ln being given in (7). We shall study the asymptotic properties of
η̂ as n and N tend to infinity in a comparable way, that is when n/N → a > 0.
To understand the asymptotic behavior of η̂, we shall first prove its consistency,
then use a Taylor expansion of the derivative of Ln around η̂ in the usual way.
The computations as can be seen in (7) involve empirical means of functions

of the eigenvalues λi of R = ZZ′

N . Using Theorem 1.1 of Bai and Zhou (2008),
we shall prove the almost sure convergence of such empirical quantities under a
weak assumption denoted by Assumption 1 as follows.

(A1) Let Z and W be two matrices defined by (4) and (5). Recall that for each j
in {1, . . . , N} the (Wi,j)1�i�n are independent and identically distributed
random variables and such that the columns of W are independent (but
not necessarily identically distributed). Assume that the entries Wi,j of
W are uniformly bounded, and have variance uniformly lower bounded,
that is: there exist WM < ∞ and κ > 0 such that 0 � Wi,j � WM and
σ2
j = Var(Wi,j) � κ, for all j.

The following lemma ensures that the result of Marchenko and Pastur (1968)
which gives the empirical spectral distribution of sample covariance matrices
ZZ′/N holds even when the entries Zi,j of the matrix Z are not i.i.d. random
variables but when Z is obtained by empirical standardization of a matrix W
satisfying Assumption 1.

Lemma 1. Under Assumption 1, as n,N → ∞ such that n/N → a > 0, the
empirical spectral distribution of RN = ZZ′/N : FRN (x) = n−1

∑n
k=1 1{λk�x}

tends almost surely to the Marchenko-Pastur distribution defined as the distri-
bution function of μa where, for any measurable set A,

μa(A) =

{ (
1− 1

a

)
10∈A + νa(A) if a > 1

νa(A) if a � 1

with

dνa(λ) =
1

2π

√
(a+ − λ)(λ− a−)

aλ
1[a−,a+](x)dx, a± = (1±

√
a)2 . (9)

In FRN (x), the λk’s denote the eigenvalues of RN .

Our first main result is the
√
n-consistency of the estimator η̂.

Theorem 1. Let Y = (Y1, . . . , Yn)
′ satisfy Model (8) with η� > 0 and the

entries Wi,j of W satisfy Assumption 1. Then, for all q in (0, 1], as n,N → ∞
such that n/N → a ∈ (0, 1],

√
n(η̂ − η�) = OP (1).
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Such a result is a theoretical cornerstone to legitimate the use of an estimator.
However, statistical inference has to be based on confidence sets. The next step
is thus to find the asymptotic distribution of

√
n(η̂−η�). Define for any η ∈ [0, 1]

and λ � 0

g(η, λ) =
λ− 1

η(λ− 1) + 1
.

Define also

γ2
n =

⎧⎨⎩ 1

n

n∑
i=1

g(η̂, λi)
2 −

(
1

n

n∑
i=1

g(η̂, λi)

)2
⎫⎬⎭

and

γ2(a, η�) =

{∫
g(η, λ)2dμa(λ)−

(∫
g(η, λ)dμa(λ)

)2
}

. (10)

We are now ready to state our second main result about the asymptotic
distribution of

√
n(η̂− η�). For general q, the result only holds when the entries

of Z, that is the random variables Zi,j are i.i.d. standard Gaussian. Indeed,
as may be seen when computing the variances, we need to be able to find the
asymptotic behavior of empirical means of functions of the eigenvalues together
with the eigenvectors of the matrix R = ZZ′/N .

Theorem 2. Let Y = (Y1, . . . , Yn)
′ satisfy Model (8) with η� > 0 and assume

that the random variables Zi,j are i.i.d. N (0, 1). Then for any q ∈ (0, 1], as
n,N → ∞ such that n/N → a > 0,

√
n(η̂ − η�)

converges in distribution to a centered Gaussian random variable with variance

τ2(a, η�, q) =
2

γ2(a, η�)
+ 3

a2η�2

γ4(a, η�)

(
1

q
− 1

)
S(a, η�)

where

S(a, η�) =

[ ∫
λ(λ− 1)

(η�(λ− 1) + 1)2
dμa(λ)

−
∫

λ

(η�(λ− 1) + 1)
dμa(λ)

∫
λ− 1

(η�(λ− 1) + 1)
dμa(λ)

]2
.

In the case where q = 1, the result holds in the general situation described in
Assumption 1, and allows us to propose confidence sets with precise asymptotic
confidence level.

Theorem 3. Let Y = (Y1, . . . , Yn)
′ satisfy Model (8) with q = 1 and with

η� > 0. Assume also that the entries Wi,j of W satisfy Assumption 1 then, as
n,N → ∞ such that n/N → a > 0,

γn

√
n

2
(η̂ − η�)

converges in distribution to N (0, 1).
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Let us now give some additional comments on the previous results. Firstly,
it has to be noticed that none of the limiting variance depends on σ�. Secondly,
Theorem 2 is proved here only in the case where the Zi,j are i.i.d. Gaussian.
This is because we used several times that the matrix of eigenvectors of ZZ′/N
is independent of the eigenvalues, and uniformly distributed on the set of or-
thonormal matrices. We think that the result of Theorem 2 is also valid when
the Zi,j are defined from the Wi,j satisfying Assumption 1, as suggested by the
numerical results obtained in Section 5. To prove it requires new results in an
active research topic of the random matrix theory field. We can observe in the
expression of τ2(a, η�) given in Theorem 2 that the presence of q is counterbal-
anced by the presence of a2. This will be confirmed by the results obtained in
the numerical results given in Section 5. Finally, we can observe that 2/(nγ2

n)
corresponds to the usual inverse of the Fisher information associated to η. This
result is classical in the case where N is fixed and n tends to infinity but did
not exist in the framework where both n and N tend to infinity even if it was
already used in biological applied papers for deriving standard errors and con-
fidence intervals. Theorem 3 proves that this result still holds even in the case
where both n and N tend to infinity.

To the best of our knowledge, the effect of the presence of null components
in the random effects has never been taken into account for computing the
asymptotic variance of an estimator of the heritability. This is the contribution
of Theorem 2. This theorem shows that the asymptotic variance contains an
additional term which increases its value in the case q < 1 with respect to the
case q = 1. It is shown in Section 5 how the computation of the asymptotic vari-
ance can be altered if this additional term is neglected. In practical situations,
computing the standard error given by Theorem 2 requires the knowledge of q
which is in general unknown. However, if an estimation of q is available for any
practical reasons, the result of Theorem 2 can be used for computing confidence
intervals and standard errors, see Section 6 for further details.

5. Numerical experiments

In this section, we first explain how to implement our method and then we
illustrate the theoretical results of Section 4 on finite sample size observations
for both cases: q = 1 and q < 1. We also compare the results obtained with
our approach to those obtained by the GCTA software described in Yang et al.
(2010) and Yang et al. (2011) which is a reference in quantitative genetics.

5.1. Implementation

In order to obtain η̂, we used a Newton-Raphson approach which is based on
the following recursion: starting from an initial value η(0),

η(k+1) = η(k) − L′
n(η

(k))

L′′
n(η

(k))
, k � 1 ,
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Fig 1. Estimation of η̂ obtained in the case a = 0.1 and η� = 0.8 for different values of
initialization: η(0) = 0.1 (dots), η(0) = 0.5 (triangles) and η(0) = 0.9 (crosses). The plain
line displays the estimations obtained with our method to select the best initialization value
and the x-axis is the replication number.

where L′
n and L′′

n denote the first and second derivatives of Ln defined in (7),
respectively. The closed form expression of these quantities are given in (13)
and (25), respectively. In practice, this approach converges after at most 20
iterations and is not very sensitive to the initialization, namely to the value
of η(0). However, in particular cases, the value of the initialization can have
an influence on the estimation of η�. This is the case, for instance, when the
real value η� is close to 1. In these situations, our algorithm can provide an
estimation bigger than 1 and we constrained our method to return a value
equal to 0.99. Figure 1 shows the estimations obtained on 100 replications when
a = 0.1 and η� = 0.8. From this figure, we can see that the estimation of η� does
not depend in general on the initialization, except in some cases. Moreover, the
best choice for η(0) is not constant from one replication to another. In order to
limit the effect of the initialization, our algorithm uses several values for η(0)

and whenever the estimations differ, it keeps the estimation which is the farthest
away from the boundaries.

5.2. Results in model (2) when q = 1

We shall first consider the performance of the estimator η̂ when q = 1 for η� in
{0.3, 0.5, 0.7}, n = 1000, σ�

u = 0.1 and for a in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1},
where a = n/N . We generated 500 data sets according to Model (1) using these
parameters and Z as defined in (4) where theWi,j are binomial random variables
with parameters 2 and pj . In our experiments the pj ’s are uniformly drawn in
[0.1, 0.5]. The corresponding boxplots of η̂ are displayed in Figure 2. We can see
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Fig 2. Boxplots of η̂ for different values of a, for η� = 0.3 (left), η� = 0.5 (middle) and
η� = 0.7 (right). The horizontal line corresponds to the true value of η�. The whiskers of
each boxplot correspond to the first and third quartiles.

Fig 3. Histograms of γn(n/2)1/2 (η̂ − η�) for η� = 0.5 and a = 0.05 (left), a = 0.1 (middle),
a = 0.5 (right) and the p.d.f of a standard Gaussian random variable in plain line.

Fig 4. Values of n−1/2
√

2γ−2
n (“•”) and the empirical standard deviation of (η̂ − η�) (plain

line) for several values of η� (0.3 (left), 0.5 (right)).

from this figure that our approach provides unbiased estimators of η� and that
the smaller the a the larger the empirical variance.

In order to illustrate the central limit theorem given in Theorem 3, we first
display in Figure 3 the histograms of γn(n/2)

1/2 (η̂ − η�) along with the p.d.f of
a standard Gaussian random variable for η� = 0.5 and different values of a. We
can see that the Gaussian p.d.f fits well the data in all the considered cases. We

also display in Figure 4 the values of n−1/2
√

2γ−2
n and the empirical standard
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Fig 5. Boxplots of η̂ for different values of a, using our method (dark gray) and GCTA (light
gray). The whiskers of each boxplot are the first and third quartiles.

deviation of (η̂−η�) averaged over all the experiments. As shown in Theorem 3,
we also observe empirically that both quantities are very close.

In practice, the value of γ−1
n (n/2)−1/2 can be used for deriving confidence

intervals for η�. As we can see from Figure 4, our approach leads to very
accurate confidence intervals for a larger than 0.1 even in finite sample size
cases.

Let us now compare our results with those obtained with the software GCTA.
As we can see from Figure 5 which displays the boxplots of η̂ for different values
of a when η� = 0.7, the results found by our approach and GCTA are very close.
In both cases, we observe that when a is close to 1 the estimations of η� are
very accurate but when a is small the standard error becomes very high.

5.3. Results in model (2) when q < 1

This section is dedicated to the study of the performance of η̂ when q < 1. We
generated 500 data sets according to Model (1) for η� = 0.7, a ∈ {0.05, 0.1, 0.5, 1},
different values of q and Z defined in (4) where the Wi,j are binomial random
variables with parameters 2 and pj . In our experiments the pj ’s are uniformly
drawn in [0.1, 0.5].

Figure 6 displays the boxplots of η̂ for these parameters. We can see from this
figure that for small values of a, the estimators of η� have the same behavior
for q = 1 and q < 1. However, when a = 1 or a = 0.5, we can see from this
figure that the presence of null components strongly alter the performance of
the estimator of η�. Since in typical GWAS experiments, a = 0.01 or even
smaller, the results of Figure 6 could lead to conclude that considering the case
q < 1 is not necessary for such values of the parameter a. However, as already
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Fig 6. Boxplots of η̂ for different values of q, with η� = 0.7 and a = 1 (top left), a = 0.5
(top right), a = 0.1 (bottom left) and a = 0.01 (bottom right). The boxplots are based on 500
replications. The whiskers of each boxplot are the fist and third quartile.

noticed from Figure 2, the variance of η̂ is very large for small values of a,
hence considering the presence of null components and proposing a strategy for
selecting only the non null components of u could be one way to increase a and
thus to diminish the variance of η̂.

In order to illustrate the central limit theorem given in Theorem 2, we first
display in Figure 7 the histograms of τ−1

n n1/2 (η̂ − η�) along with the p.d.f of a
standard Gaussian random variable for η� = 0.7, two values of q: q = 0.01 and
q = 0.1 and a = 0.5 (top) and two values of a: a = 0.2 and a = 0.5 with q = 0.5
(bottom). Here, τn is the empirical version of τ(a, η�, q) where γ is replaced by
γn and S(a, η�) is replaced by its empirical version with the eigenvalues of R.
When a is large (a = 0.5), we can see that the higher q the better the Gaussian
p.d.f fits the histograms.

We also display in Figure 8 the values of n−1/2τn and the empirical standard
deviation of (η̂−η�) averaged over all the experiments for η� = 0.7 and q = 0.5.
As shown in Theorem 2, we observe empirically that both quantities are very
close. We also display in this figure the value of n−1/2τn with q = 1 which boils
down to consider the asymptotic standard deviation found in the non sparse
model. We can see from this figure that neglecting the term depending on q
leads to underestimate the asymptotic variance of η̂ and that this difference is
all the more striking that a is close to 1.
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Fig 7. Histograms of τ−1
n n1/2 (η̂ − η�) for a = 0.5 and q = 0.5 (top left), a = 0.1 and q = 0.1

(top right), and for a = 0.1 and q = 0.01 (bottom left), a = 0.05 and q = 0.1 (bottom right).

Fig 8. Values of n−1/2τn with the real value of q (q = 0.5) (“•”), q = 1 (dotted line) and the
empirical standard deviation of (η̂ − η�) (plain line) for η� = 0.7.

6. Discussion

In the course of this study, we have proposed a methodology for estimating
the heritability in high dimensional linear mixed models. This methodology has
two main features. Firstly, the theoretical performances of our estimator are
established in a non standard theoretical framework where n and N tend to
infinity and where the components of the random effect part can be equal to
zero. Secondly, the computational burden of our approach is very low which
makes its use possible on real data coming from GWAS experiments.
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As a byproduct of the central limit theorem that we establish for η� we
can derive a confidence interval for the heritability. However, the confidence
intervals depend on q which is the proportion of non null components in u and
which is general unknown. For estimating q, several strategies can be considered.
One could, for instance, use a GWAS approach to compute the p-values of the
correlation tests of each SNP with the observations Y and then keep only the
most significant ones. Such a practical approach can be used for providing a
lower bound for q. A refinement of this approach has been proposed by Toro
et al. (2014) who observed, through numerical studies, that for a fixed value
of the heritability, the minimal p-value is all the more low that the number of
causal SNPs is small. Hence, performing a GWAS approach on a given data set
allows them to have an idea of the number of SNPs which are likely to be causal.
One could also propose another practical method based on a variable selection
technique. Such an approach has already been proposed by Fan and Li (2012)
in the context of sparse linear mixed models. However, the framework in which
their theoretical results are derived is different from the one that is considered
in our paper. We are currently working on a paper Bonnet et al. (2015) which
presents a variable selection method which is adapted to our framework and
which could be used for estimating the proportion q of non null components in
the random effects.

Moreover, we did not take into account the linkage disequilibrium issue which
would require to extend our results to the case where the columns of the random
matrix are correlated. This question will be the subject of a future work.

7. Proofs

Let us write the singular value decomposition (SVD) of the n×N matrix Z/
√
N

as
1√
N

Z = U
(√

D 0
)
V′

where U (already introduced in Section 1) is a n × n orthonormal matrix, V
is a N ×N orthonormal matrix and

√
D is a n× n diagonal matrix having its

diagonal entries equal to
√
λi, the λi’s being the eigenvalues of R = ZZ′/N

previously defined. Thus, (8) rewrites as

Ỹ = U′Y =
(√

D 0
)
V′t+ σ�

√
1− η� ε̃ , (11)

where ε̃ = U′ε is a n× 1 centered Gaussian vector having a covariance matrix
equal to identity.

We shall use repeatedly the following lemma which is proved in Section 7.4.

Lemma 2. Let Ỹ be defined by (11) and H be a n× n diagonal matrix, then

Var
(
Ỹ′HỸ|Z

)
= 2σ�4 Tr

[
H2 {(1− η�)IdRn + η�D}2

]
+ 3σ�4η�2

(
1

q
− 1

) ∑
1�i�N

M2
ii ,
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where

M = V

(
DH 0
0 0

)
V′ ,

and

Var
(
Ỹ′HỸ|Z

)
� 2σ�4 Tr

[
H2 {(1− η�)IdRn + η�D}2

]
+ 3σ�4η�2

(
1

q
− 1

)
Tr[D2H2].

Another useful lemma will be the following.

Lemma 3. Under Assumption 1, let h : R+ → R
+ be such that there exist

α > 0 and C such that for all n,

E

(
1

n

n∑
i=1

h(λi)
1+α

)
� C.

Then
1

n

n∑
i=1

h(λi) =

∫
h(λ)dνa(λ) + op(1).

The proof of this lemma follows from the application of Lemma 1 to the
bounded function h1h�M , and the Markov inequality applied to the empirical
mean of h1h>M .

Lemma 4. Under Assumption 1 let n,N → ∞ be such that n/N → a > 0.
Then there exists C such that for all n,

E

[
1

n

n∑
i=1

λ2
i

]
� C.

To prove the lemma, notice that
∑n

i=1 λ
2
i = Tr[ZZ′/N2]. But

E
(
Tr

[
(ZZ′)2

])
=

∑
k �=k′

∑
i,j

E(Zi,kZj,k)E(Zi,k′Zj,k′) +
∑
k

∑
i

E(Z2
i,k)

= nN(N − 1) +N(N − 1)n(n− 1)

(
1

n− 1

)2

+ n2N

where the values of the involved expectations may be found in the proof of
Lemma 1 in Section 7.4. We thus have

E

[
1

n

n∑
i=1

λ2
i

]
� 2 +

n

N

which ends the proof.
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7.1. Proof of Theorem 1

The first step is to prove the consistency of η̂. We shall first prove that Ln(η)
converges uniformly for η ∈ [0, 1− δ] in probability to L(η) given by

L(η) = −2 log σ�− log

∫ [
η�(λ− 1) + 1

η(λ− 1) + 1

]
dμa(λ)−

∫
log (η(λ− 1) + 1) dμa(λ).

Using Lemma 2 with H with diagonal entries 1/(η(λi − 1) + 1), we get that

Var

[
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
|Z

]
� σ�4

n2

n∑
i=1

[
2

(
η�(λi − 1) + 1

η(λi − 1) + 1

)2

+ 3

(
1

q
− 1

)(
η�λi

η(λi − 1) + 1

)2
]

� σ�4

(
2 + 3

(
1

q
− 1

))
1

n2

n∑
i=1

(
λi + 1

δ

)2

since η ∈ [0, 1− δ]. Now, using Lemma 4 we get that

1

n2

n∑
i=1

(
λi + 1

δ

)2

= oP (1)

which leads to

1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
= E

[
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
|Z

]
+ op(1)

= σ�2 1

n

n∑
i=1

η�(λi − 1) + 1

η(λi − 1) + 1
+ oP (1).

Now, using Lemma 3 we easily get that 1
n

∑n
i=1

η�(λi−1)+1
η(λi−1)+1 converges in probabil-

ity to
∫
[η

�(λ−1)+1
η(λ−1)+1 ]dμa(λ) and

1
n

∑n
i=1 log[(η(λi−1)+1)] converges in probability

to
∫
log(η(λ− 1) + 1)dμa(λ) so that Ln(η) = L(η) + oP (1).

In order to prove the uniform convergence of Ln to L in probability on [0, 1−
δ], we shall use the following lemma which is proved in section 7.4.

Lemma 5. Assume that for any η ∈ [0, 1 − δ], Ln(η) converges in probability
to L(η) and that

sup
η∈[0,1−δ]

|L′
n(η)| = OP (1), as n tends to infinity, (12)

then
sup

η∈[0,1−δ]

|Ln(η)− L(η)| = oP (1), as n tends to infinity.
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Let us now prove that supη∈[0,1−δ] |L′
n(η)| = OP (1). Note that

L′
n(η) =

(
1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2

)(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)−1

− 1

n

n∑
i=1

λi − 1

η(λi − 1) + 1
. (13)

A study of η �→
(

1
n

∑n
i=1

Ỹ 2
i (λi−1)

{η(λi−1)+1}2

)(
1
n

∑n
i=1

Ỹ 2
i

η(λi−1)+1

)−1

shows that it is

decreasing and that it takes negative values for η ∈ [0, 1−δ], so that its absolute
value is maximum for η = 1− δ. Thus

sup
η∈[0,1−δ]

|L′
n(η)| �

1

δ

(
1

n

n∑
i=1

Ỹ 2
i |λi − 1|

)(
1

n

n∑
i=1

Ỹ 2
i

)−1

+
1

nδ

n∑
i=1

|λi − 1|

� 2

δ
+

1

δ

(
1

n

n∑
i=1

Ỹ 2
i λi

)(
1

n

n∑
i=1

Ỹ 2
i

)−1

+
1

nδ

n∑
i=1

λi.

By Lemma 2 with H = Id, we get

1

n

n∑
i=1

Ỹ 2
i = E

[
1

n

n∑
i=1

Ỹ 2
i |Z

]
+ op(1) =

σ2�

n

n∑
i=1

[η�(λi − 1) + 1)] + op(1)

= σ2�

∫
(η(λ− 1) + 1)dμa(λ) + op(1),

where the last equality comes from Lemma 3. In the same way, we get by using
Lemma 2 with H having its diagonal entries equal to λi and Lemma 3 that

1

n

n∑
i=1

Ỹ 2
i λi = σ2�

∫
λ(η(λ− 1) + 1)dμa(λ) + op(1) = OP (1).

Finally, we get from Lemma 3 that

1

n

n∑
i=1

λi =

∫
λdμa(λ) + op(1) = OP (1)

which ends the proof of (12). By Lemma 5, we thus have proved that

sup
η∈[0,1−δ]

|Ln(η)− L(η)| = oP (1). (14)

Now, using Jensen’s inequality, we easily get that for all η ∈ [0, 1], L(η) �
L(η�), with equality if and only if η = η�. This together with (14) gives

η̂ = η� + oP (1). (15)
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The next step is to prove that
√
n(η̂ − η�) = OP (1). Let us first note that η̂

satisfies the following equation:

√
n(η̂ − η�) = −

√
nL′

n(η
�)

L′′
n(η̃)

, η̃ ∈ (η̂, η�) . (16)

We first prove the asymptotic convergence of L′′
n(η̃).

Lemma 6. Let Y = (Y1, . . . , Yn)
′ satisfy Model (8) with η� > 0 and the entries

Wi,j of W satisfy Assumption 1. Then, for all q in (0, 1], as n,N → ∞ such
that n/N → a ∈ (0, 1], for any random variable η̃ such that η̃ ∈ (η̂, η�),

L′′
n(η̃) = −σ�2γ2(a, η�) + oP (1).

Lemma 6 is proved in Section 7.4.
Let us now focus on the properties of L′

n(η
�). Using the following notation

Ui =
Ỹi√

η�(λi − 1) + 1
, (17)

we see that
√
nL′

n(η
�) can be rewritten as follows:{

1√
n

n∑
i=1

(
Ui

2 − 1

n

n∑
j=1

U2
j

)
g(η�, λi)

}(
1

n

n∑
i=1

U2
i

)−1

=

{
1√
n

n∑
i=1

[(
Ui

2 − 1

)
+

(
1− 1

n

n∑
j=1

U2
j

)]
g(η�, λi)

}(
1

n

n∑
i=1

U2
i

)−1

=

{
1√
n

n∑
i=1

(
Ui

2 − 1

)
g(η�, λi)

}(
1

n

n∑
i=1

U2
i

)−1

−
{

1√
n

n∑
j=1

(
Uj

2 − 1

)}{
1

n

n∑
i=1

g(η�, λi)

}(
1

n

n∑
i=1

U2
i

)−1

,

where

g(η, λ) =
λ− 1

η(λ− 1) + 1
.

But using Lemma 2 and Lemma 3 we get

Var

[
n−1/2

n∑
j=1

(Uj
2 − 1)|Z

]
= OP (1)

Moreover, by Lemma 3, n−1
∑n

i=1 g(η
�, λi) converges in probability to∫

g(η�, λ)dμa(λ). Thus,

√
nL′

n(η
�) =

1√
n

n∑
i=1

(
Ui

2 − 1
)(

g(η�, λi)−
∫

g(η�, λ)dμa(λ)

)
+ oP (1), as n → ∞ . (18)



2118 A. Bonnet et al.

Using again Lemma 2 and Lemma 3 we obtain

√
nL′

n(η
�) = OP (1).

This, together with Lemma 6 and (16) ends the proof of Theorem 1.

7.2. Proof of Theorem 2

Notice first that all previous results may be used, replacing Assumption 1 by
the assumption that the Zi,j are i.i.d. standard Gaussian. Indeed, in this case,
Lemma 1 reduces to the original result of Marchenko and Pastur (1968), Lemma
3 only involves Lemma 1 and truncation arguments, and the computations lead-
ing to Lemma 4 still hold. Thus, Theorem 1 and Lemma 6 also still hold.

Let us now prove that
√
nL′

n(η
�) converges in distribution to a centered

Gaussian. Define H the diagonal n× n matrix with diagonal entries

Hi =
1

η�(λi − 1) + 1

[
g(η�, λi)−

∫
g(η�, λ)dμa(λ)

]
.

Define

Ln =
1√
n
Ỹ′HỸ.

Then using (18) and Lemma 3 we have

√
nL′

n(η
�) = Ln − E[Ln|Z] + oP (1).

Now using Lemma 2 we get that setting γ2
n = Var [Ln|Z],

γ2
n = 2σ�4 1

n
Tr

[
H2 ((1− η)�IdRn + η�D)

2
]
+ 3σ�4η�2

(
1

q
− 1

)
1

n

N∑
i=1

M2
i,i

= 2σ�4 1

n

n∑
i=1

(
g(η�, λi)−

∫
g(η�, λ)dμa(λ)

)2

+ 3σ�4η�2
(
1

q
− 1

)
1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l.

The first term in this sum converges as n,N → ∞ to 2σ�4γ2(a, η�).
Under the assumption that the Zi,j are i.i.d. standard Gaussian, the matrix

of eigenvectors V is Haar distributed on the orthonormal matrices, and is inde-
pendent of (λi)1�i�n, see Bai and Silverstein (2010) chapter 10. Conditionally
to the eigenvalues (λi)1�i�n, we thus get that

E

⎡⎣ 1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l|D

⎤⎦ =

(
1

N

n∑
k=1

λkHk

)2

(1 + o(1))
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converges to

a2

[∫
λ(λ− 1)

(η�(λ− 1) + 1)2
dμa(λ)−

∫
λ

(η�(λ− 1) + 1)
dμa(λ)

∫
λ− 1

(η�(λ− 1) + 1)
dμa(λ)

]2

and

Var

⎡⎣ 1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l|D

⎤⎦ = oP (1)

so that

γ2
n = 2σ�4γ2(a, η�) + 3σ�4η�2

(
1

q
− 1

)
S(a, η�) + oP (1).

Denote Δ the diagonal N ×N -matrix with diagonal entries Δi =
σ�√η�
√
q πi. Let

us now write

Ln − E(Ln|Z) = Ln − E [Ln|Δ,Z] + E [Ln|Δ,Z]− E [Ln|Z] .

We first have

E [Ln|Δ,Z]− E [Ln|Z] = σ�2η�
1√
n

N∑
i=1

(
π2
i

q
− 1

)
Mi,i

whose variance, conditionally to Z is

s2n,1 = σ�4η�2
(
1

q
− 1

)
1

n

N∑
i=1

M2
i,i.

In the same way as for γ2
n we get that

s2n,1 = σ�4η�2
(
1

q
− 1

)
S(a, η�) + oP (1).

Let

ξi =

(
π2
i

q
− 1

)
Mi,i =

(
π2
i

q
− 1

) n∑
k=1

λk(λk − 1)

(η�(λk − 1) + 1)2
V 2
i,k.

Since η� > 0, the function λ �→ λ(λ−1)
(η�(λ−1)+1)2 is bounded, and

∑n
k=1 V

2
i,k �∑N

k=1 V
2
i,k = 1. Also, the variables (

π2
i

q −1) are uniformly bounded by 1/q. Thus

1

n

n∑
i=1

E
[
ξ2i 1|ξi|�cn|Z

]
= 0

for large enough n. Then, by Lindeberg’s Theorem, conditionally to Z,

1

sn,1
(E [Ln|Δ,Z]− E [Ln|Z])

converges in distribution to N (0, 1).
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Let us now set
s2n,2 = γ2

n − s2n,1

and notice that s2n,2 converges to

2σ�4γ2(a, η�) + 2σ�4η�2
(
1

q
− 1

)
S(a, η�).

We shall prove that, conditionally to Z and Δ, (Ln−E(Ln|Δ,Z))/sn,2 converges
in distribution to N (0, 1), and thus also unconditionally. Write

Ln =
1√
n

(w′ ε′)
B

(
w
ε

)
where B is the (N + n)× (N + n)-matrix

B =

(
Δ 0

0 σ�(1− η�)
1
2 IdRn

)⎛⎜⎜⎝V

(
DH 0
0 0

)
V′ Ṽ

√
DH

H
√
DṼ′ H

⎞⎟⎟⎠(
Δ 0

0 σ�(1− η�)
1
2 IdRn

)
.

Here, Ṽ is the N × n-matrix which consists of the first n columns of V. Let φ
be the characteristic function of (Ln −E(Ln|Δ,Z))/sn,2 conditionally to Z and
Δ. Notice first that if bj , j = 1, . . . , n + N are the eigenvalues of B, we may
write

Ln − E [Ln|Δ,Z] =
1√
n

N+n∑
j=1

bj(e
2
j − 1).

for random variables ej i.i.d. standard Gaussian. Thus

φ (t) =

N+n∏
j=1

[(
1− 2i

tbj
sn,2

√
n

)−1/2

exp

(
−i

tbj
sn,2

√
n

)]

and Taylor expansion leads to

log φ (t) =

N+n∑
j=1

[
−1

2
log

(
1− 2i

tbj
sn,2

√
n

)
− i

tbj
sn,2

√
n

]

= −t2
1

ns2n,2

N+n∑
j=1

b2j +O

⎡⎣ 1

n
√
ns3n,2

N+n∑
j=1

b3j

⎤⎦ .

We shall now prove that 1
ns2n,2

∑N+n
j=1 b2j converges to 1/2. Tedious computations

give

N+n∑
j=1

b2j = Tr(B2)

= Tr(ΔMΔ2MΔ) + σ�4(1− η�2 Tr(H2) + 2σ�2(1− η�) Tr[Δ2ṼDH2Ṽ′].
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Using the distribution of V and its independence on D we get

E

⎡⎣N+n∑
j=1

b2j |D

⎤⎦ = 2σ�4 Tr
[
H2 ((1− η)�IdRn + η�D)

2
]

+ 2σ�4η�2
(
1

q
− 1

)(
1

N

n∑
k=1

λkHk

)2

(1 + o(1))

so that

E

⎡⎣ 1

n

N+n∑
j=1

b2j |D

⎤⎦ = 2σ�4γ2(a, η�) + 2σ�4η�2
(
1

q
− 1

)
S(a, η�) + oP (1).

Moreover, tedious computations again give

Var

⎡⎣ 1

n

N+n∑
j=1

b2j |D

⎤⎦ = oP (1),

and we obtain that

1

ns2n,2

N+n∑
j=1

b2j =
1

2
+ oP (1).

We shall now prove that 1
n
√
ns3n,2

∑N+n
j=1 b3j = oP (1). To do so, it is enough to

prove that maxj |bj | = oP (
√
n). Notice that for any normed vector A = (A1, A2)

in R
N+n where A1 ∈ R

N and A2 ∈ R
n,

max
j

|bj | � A′BA.

Now,

A′BA = A′
1(ΔMΔ)A1 + 2σ�

√
1− η�A′

1(ΔṼ
√
DH)A2 + σ�2(1− η�)A′

2HA2.

First, since η� > 0, all entries ofH andD andHD are uniformly bounded and so
are all entries of Δ. We thus get A′

2HA2 = O(1) and A′
1(ΔṼ

√
DH)A2 = O(1).

Then, using the distribution of V and its independence on D we get

E [A′
1(ΔMΔ)A1|D] = O

(
1

N

n∑
i=1

λiHi

)

and
Var [A′

1(ΔMΔ)A1|D] = oP (1),

so that A′BA = OP (1). We have thus proved that maxj |bj | = OP (1) = oP (
√
n).

Thus φ(t) converges in probability for all t to exp− t2

2 and the convergence
may be strengthened by contradiction to an a.s. convergence, so that condition-
ally to Z and Δ, (Ln − E(Ln|Δ,Z))/sn,2 converges in distribution to N (0, 1).
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Now, conditionally to Z and Δ, (Ln − E(Ln|Δ, Z))/sn,2 converges in dis-
tribution to a Gaussian random variable independent of Δ. Thus conditionally
to Z, Ln − E [Ln|Δ, Z] and E [Ln|Δ, Z]− E [Ln|Z] converge in distribution to
independent Gaussian variables, so that their sum converges in distribution to
a centered Gaussian with variance the sum of the variances, namely the limit
of γ2

n, and Theorem 2 is proved.

7.3. Proof of Theorem 3

Using Lemma 6 and (16), there remains to prove that
√
nL′

n(η
�) converges

in distribution to N (0, 2σ�4γ2(a, η�)) and that γ2
n converges in probability to

γ2(a, η�).
Notice first that when q = 1, (U1, . . . , Un)|Z is a centered Gaussian vector

with a covariance matrix equal to σ�2 times the identity matrix. We shall prove
that conditionally to Z,

√
nL′

n(η
�) converges in distribution to

N (0, 2σ�4γ2(a, η�)) so that the result still holds unconditionally. Using (18), it
is only needed to prove it for 1√

n

∑n
i=1

(
Ui

2 − 1
) (

g(η�, λi)−
∫
g(η�, λ)dμa(λ)

)
.

Now, conditionally to Z, the variance of

n∑
i=1

(
Ui

2 − 1
)(

g(η�, λi)−
∫

g(η�, λ)dμa(λ)

)
is

γ2
n =

2σ�4

n

n∑
i=1

(
g(η�, λi)−

∫
g(η�, λ)dμa(λ)

)2

.

Since η� > 0, g(η�, λ) is a bounded function of λ, and using Lemma 3,

γ2
n = 2σ�4γ2(a, η�)) + oP (1).

Also, setting ξi =
(
Ui

2 − 1
) (

g(η�, λi)−
∫
g(η�, λ)dμa(λ)

)
and C an upper bound

of |g(η�, λ)|, we get that for any c > 0,

1

n

n∑
i=1

E
[
ξ2i 1|ξi|�cn|Z

]
� 4C2σ�4

E

[(
U1

2 − 1
)2

12C|U1
2−1|�cn|Z

]
= 4C2σ�4

E

[(
U1

2 − 1
)2

12C|U1
2−1|�cn

]
= o(1),

where the first equality comes from the fact that the distribution of (U1, . . . ,
Un)|Z does not depend on Z and is thus also the distribution of (U1, . . . , Un).
Then, using Lindeberg’s Theorem, conditionally to Z,

√
nL′

n(η
�) converges in

distribution to N (0, 2σ�4γ2(a, η�)) and thus also unconditionally.
The fact that γ2

n converges in probability to γ2(a, η�) is a straightforward
consequence of Taylor expansion, the fact that g(η�, λ) and its derivative with
respect to η in the neighborhood of η� are bounded functions of λ, and Slutzky’s
Lemma.
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7.4. Proofs of technical lemmas

7.4.1. Proof of Lemma 1

As a byproduct of Theorem 1.1, Corollary 1.1 and Remark 1.1 of Bai and Zhou
(2008), we use the following result to prove Lemma 1.

Theorem (Bai and Zhou (2008)). Let Z be a matrix of size n × N which
columns, denoted by Z1, . . . , ZN , are independent and let us denote Z̄ =
1
N

∑N
k=1 Zk. Let us also recall that R = ZZ′/N and FR is its empirical spec-

tral distribution defined by FR(x) = 1
n

∑n
k=1 1{λk�x}, where λ1, . . . , λn are the

eigenvalues of R. As N → ∞, assume the following:

1. T = (ti,j) is a matrix such that E(Z̄i,jZm,j) = tm,i for all j.
2. 1

Nmax
i �=m

E(Z̄i,jZm,j)
2 → 0 uniformly in j � N .

3. 1
N2

∑
Λ

(
E(Z̄i,jZm,j − tm,i)(Zi′,jZ̄m′,j − ti′,m′)

)2 → 0 uniformly in j � N ,
with Λ = {(i,m, i′,m′) : 1 � i,m, i′,m′ � n}\{(i,m, i′,m′) : i = i′ 	= m =
m′ or i = m′ 	= i′ = m}.

4. n
N → a ∈ (0,+∞).

5. The norm of T is uniformly bounded and FT tends to a degenerate distri-
bution with mass at 1/a.

Then, with probability 1, FR converges to the Marchenko-Pastur distribution
defined in (9).

Observe that for all j = 1, . . . , N ,

n∑
i=1

Zi,j = 0 (19)

and
n∑

i=1

Z2
i,j = n. (20)

Moreover, for each j, the random variables (Zi,j)1�i�n are exchangeable. Thus,
we deduce from (20) that for all i = 1, . . . , n and j = 1, . . . , N , E(Z2

i,j) = 1.
Hence, by (19), we get that

0 =

(
n∑

i=1

Zi,j

)2

=

n∑
i=1

Z2
i,j +

∑
1�i �=m�n

Zi,jZm,j ,

which, by (20), implies that for all j = 1, . . . , N and i 	= m = 1, . . . , n,

E(Zi,jZm,j) = − n

n(n− 1)
= − 1

n− 1
. (21)

Thus, the matrix T = Tn defined in Theorem (Bai and Zhou (2008)) is equal
to T = n/(n − 1)IdRn − Jn/(n − 1) , where Jn is a n × n matrix having all
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its entries equal to 1. Hence the eigenvalues of T are 0 with multiplicity 1 and
n/(n − 1) with multiplicity (n − 1), which gives Condition 5. of Theorem (Bai
and Zhou (2008)).

Let us then check Condition 2. of Theorem (Bai and Zhou (2008)). Observe
that, for i 	= m, E[(Zi,jZm,j − tm,i)

2] = E(Z2
i,jZ

2
m,j) − t2m,i. By (20), for all

j = 1, . . . , N ,

n2 =

(
n∑

i=1

Z2
i,j

)2

=
n∑

i=1

Z4
i,j +

∑
1�i �=m�n

Z2
i,jZ

2
m,j .

Since the (Zi,j)1�i�n are exchangeable for each j = 1, . . . , N , we get that for all
j = 1, . . . , N ,

n = E[Z4
1,j ] + (n− 1)E[Z2

1,jZ
2
2,j ] .

Thus, for all j = 1, . . . , N , E[Z2
1,jZ

2
2,j ] � n/(n− 1), which with the definition of

the tm,i’s gives the result.
Let us now check Condition 3. of Theorem (Bai and Zhou (2008)). Since

the random variables (Zi,j)1�i�n are exchangeable, it is enough to prove that,
uniformly in k,

(i) E[Z4
1,k] = o(

√
n),

(ii) E[Z2
1,kZ

2
2,k]− 1 = o(1),

(iii) E[Z3
1,kZ2,k] = o(1),

(iv)
√
nE[Z2

1,kZ2,kZ3,k] = o(1),
(v) nE[Z1,kZ2,kZ3,kZ4,k] = o(1) , as n → ∞.

Observe that (i) implies (ii). Using (19), by expanding 0=(
∑n

i=1Zi,k)
2(

∑n
i=1Z

2
i,k)

and taking the expectation, we get that (i) and (iii) imply (iv). By expanding
0 = (

∑n
i=1Zi,k)

4, which comes from (19), and by taking the expectation, (i) and
(iii) imply (v). Hence, it is enough to prove (i) and (iii) to conclude the proof
of Lemma 1.

Let us first prove (i). By the definition of Z1,k given in (4), we get that for
all k, Z2

1,k � n. Hence,

Z2
1,k � (W1,k −W k)

2

2σ2
k

1{s2k�2σ2
k} + n1{s2k>2σ2

k} ,

and, by the assumptions on the Wi,k’s and on the σk’s,

E(Z4
1,k) �

W 2
M

2κ2
+ 2n2

P(s2k − σ2
k > σ2

k) .

Theorem A of (Serfling, 1980, p. 201) implies that the second term of the previ-
ous inequality tends to zero as n tends to infinity uniformly in k, which concludes
the proof of (i).

Let us now prove (iii). Using (19), we get Z3
1,k (

∑n
i=1 Zi,k) = 0. By ex-

panding this equation and taking the expectation, we obtain that E(Z4
1,k) +∑n

i=2 E(Z
3
1,kZi,k) = 0. Since the (Zi,k)1�i�n are exchangeable: E(Z3

1,kZ2,k) =

−E(Z4
1,k)/(n− 1) = o(n−1/2), where the last equality comes from (i).
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7.4.2. Proof of Lemma 2

Using (11) and the independence assumptions, we get

Var(Ỹ′HỸ|Z)

= Var

[
v′V

(
DH 0
0 0

)
V′v+2σ�

√
1− η�v′V

(√
D
0

)
Hε̃+σ�2(1− η�)ε̃′Hε̃|Z

]
= Var[v′Mv|Z] + 4σ�2(1− η�)Var

[
v′V

(√
D
0

)
Hε̃|Z

]
+ 2σ�4(1− η�)2 Tr(H2) ,

(22)

where M = V

(
DH 0
0 0

)
V′. Using the independence assumptions, we get that

4σ�2(1− η�)Var

[
v′V

(√
D
0

)
Hε̃|Z

]
= 4σ�4η�(1− η�) Tr(BB′)

= 4σ�4η�(1− η�) Tr(DH2) , (23)

where B = V

(√
D
0

)
H. Moreover, E(v′Mv|Z) = σ�2η� Tr(D2H2) and

E
[
(v′Mv)2|Z

]
=

σ�4η�2

q2

⎡⎣2q2 ∑
1�i �=j�N

M2
ij + q2

∑
1�i �=i′�N

MiiMi′i′ + 3q
∑

1�i�N

M2
ii

⎤⎦
= σ�4η�2

⎡⎣2Tr(M2)− 2
∑

1�i�N

M2
ii +Tr(M)2 −

∑
1�i�N

M2
ii +

3

q

∑
1�i�N

M2
ii

⎤⎦
= σ�4η�2

⎡⎣2Tr(D2H2) + Tr(M)2 + 3

(
1

q
− 1

) ∑
1�i�N

M2
ii

⎤⎦ .

Thus,

Var [v′Mv|Z] = σ�4η�2

⎡⎣2Tr(D2H2) + 3

(
1

q
− 1

) ∑
1�i�N

M2
ii

⎤⎦ . (24)

The proof of the equality in Lemma 2 follows from (22), (23) and (24). The
proof of the inequality in Lemma 2 follows now from∑

1�i�N

M2
ii �

∑
1�i,j�N

M2
ij = Tr[D2H2].
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7.4.3. Proof of Lemma 5

Let ε > 0 and let {η1 < · · · < ηK(ε)} be a grid of [0, 1−δ] such that |ηj−ηj+1| < ε
for all j ∈ {0, . . . ,Kε} then

sup
η∈[0,1−δ]

|Ln(η)− L(η)| � sup
j∈{1,...,Kε}

[
sup

η′∈[ηj ,ηj+1]

|Ln(η
′)− Ln(ηj)|

+|Ln(ηj)− L(ηj)|+ sup
η′∈[ηj ,ηj+1]

|L(ηj)− L(η′)|
]

� ε sup
η∈[0,1−δ]

|L′
n(η)|+ sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)|+ ω(ε),

where ω(ε) is the modulus of continuity of L, which is continuous on the compact
[0, 1− δ] and thus uniformly continuous on this compact. Since

sup
η∈[0,1−δ]

|L′
n(η)| = OP (1)

then, for every β > 0, there exists C such that for all n,

P

(
sup

η∈[0,1−δ]

|L′
n(η)| � C

)
� β.

Let α > 0 and let us consider the ε-grid such that ε � α/3C and ω(ε) � α/3,
thus we get that

P( sup
η∈[0,1−δ]

|Ln(η)− L(η)| � α)

� P( sup
η∈[0,1−δ]

|L′
n(η)| � C) + P( sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)| � α− Cε− ω(ε))

� P( sup
η∈[0,1−δ]

|L′
n(η)| � C) + P( sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)| �

α

3
)

� P( sup
η∈[0,1−δ]

|L′
n(η)| � C) +

Kε∑
j=1

P(|Ln(ηj)− L(ηj)| �
α

3
),

which concludes the proof of Lemma 5 since each term tends to zero as n tends
to infinity.

7.4.4. Proof of Lemma 6

The second derivative of Ln is given by

L′′
n(η) =

(
− 2

n

n∑
i=1

Ỹ 2
i (λi − 1)2

{η(λi − 1) + 1}3

)(
1

n

n∑
i=1

Ỹ 2
i

{η(λi − 1) + 1}

)−1
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+

(
1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2

)2 (
1

n

n∑
i=1

Ỹ 2
i

{η(λi − 1) + 1}

)−2

(25)

+
1

n

n∑
i=1

(λi − 1)2

{η(λi − 1) + 1}2
.

In particular for η = η�, we have

1

n

n∑
i=1

Ỹ 2
i

{η�(λi − 1) + 1} = 1 + oP (1),

and using as previously Lemma 2, Lemma 3 and the fact that all functions of λ
involved in the empirical means are bounded since η� > 0, we get

2

n

n∑
i=1

Ỹ 2
i (λi − 1)2

{η(λi − 1) + 1}3
=

2σ�2

n

n∑
i=1

(λi − 1)2

{η(λi − 1) + 1}2
+ oP (1)

= 2σ�2
∫

(λ− 1)2

{η(λ− 1) + 1}2
dμa(λ) + oP (1)

and

1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2
=

σ�2

n

n∑
i=1

(λi − 1)

{η(λi − 1) + 1} + oP (1)

= σ�2
∫

(λ− 1)

{η(λ− 1) + 1}dμa(λ) + oP (1)

leading to
L′′
n(η) = −σ�2γ2(a, η�) + oP (1).

Using Slutzky’s Lemma and η̂ = η� + oP (1), there just remains to prove that
for small enough α > 0,

sup
|η−η�|�α

|L′′
n(η)− L′′

n(η)| = Op(α).

But this comes easily from

sup
|η−η�|�α

|L′′
n(η)− L′′

n(η)| � α sup
|η−η�|

|L(3)
n (η)|

where L
(3)
n (η) is the third derivative of Ln(η), and a similar handling of empirical

means as before. Indeed, all functions of λ involved are bounded as soon as α
is such that η� � 2α.
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