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STATIONARY SOLUTIONS FOR THE 2D

KERR-NONLINEAR DIRAC EQUATION

WILLIAM BORRELLI

Abstract. In this paper we prove the existence of an exponentially
localized stationary solution for a two-dimensional cubic Dirac equa-
tion. It appears as an effective equation in the description of non-
linear waves for some Condensed Matter (Bose-Einstein condensates)
and Nonlinear Optics (optical fibers) systems. The nonlinearity is of
Kerr-type, that is of the form |ψ|2ψ and thus not Lorenz-invariant.
We solve compactness issues related to the critical Sobolev embedding

H
1
2 (R2,C2) ↪→ L4(R2,C4) thanks to a particular radial ansatz. Our

proof is then based on elementary dynamical systems arguments.
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1. Introduction

The Dirac equation has been widely used to build relativistic models of
particles(see the survey paper [10]).

Recently, it made its appearance in Condensed Matter Physics. New two-
dimensional materials possessing Dirac fermions as low-energy excitations
have been discovered, the most famous being the graphene [1] (2010 Nobel
Prize in Physics awarded to A.Geim and K. Novoselov). Those Dirac mate-
rials, possess unique electronic properties which are consequence of the Dirac
spectrum. They range from superfluid phases of 3He, high-temperature d-
wave superconductors, graphene to topological insulators (see [24, 15, 5]
and references therein). Particular symmetries control the appearance of
Dirac points. Time-reversal symmetry in topological insulators and sublat-
tice symmetry in graphene [5] are some examples. In the paper [14] the
authors rigorously proved existence and stability of Dirac cones for honey-
comb Schrödinger operators, under fairly general assumptions.

The possibility of finding three-dimensional materials exhibiting a Dirac
spectrum has also recently gained attention in the Physics community [24].
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2 W. BORRELLI

In contrast to the case of many metals and doped semi-conductors, where
nearly free quasi-particles obeying the Schrödinger equation with an effective
mass represent a very accurate approximation for low energy-excitations, for
Dirac materials an accurate description is provided by the Dirac hamiltonian

H = −ivF (~σ · ∇) +mv2Fσ3

where the speed of light is replaced by the Fermi velocity vF and m is an
effective mass.

If m = 0 the dispersion relation is linear (i.e. a cone), in contrast with
the parabolic dispersion of metals or semiconductors. This case includes
graphene monolayers [5].

The case of a non-vanishing mass term (m 6= 0) corresponds to a gap
at the Fermi level. It describes, for instance, a monolayer of boron-nitride
or graphene bilayers ([15]). It has been experimentally proved that placing
boron-nitride in contact with graphene leads to the appearance of a non-zero
mass, thus creating an energy gap.

Furthermore, using arguments from [13] and [4] a multiscale expansion
shows that applying a suitable electric field (formally) opens a gap in the
effective Dirac hamiltonian for the graphene, in the case of wavefunctions
spectrally concentrated around a Dirac point. In the recent paper [4] the
authors showed the existence of a gap for honeycomb Schrödinger operators
in the strong-binding regime, when an electric potential that breaks the
PT -symmetry (parity+time-inversion) is applied.

An important model in nonlinear optics and in the description of macro-
scopic quantum phenomena (see [21],[20]) is the cubic Schrödinger / Gross-
Pitaevskii equation:

i∂tΨ = (−∆ + V ) Ψ + g|Ψ|2Ψ (1)

where g is a parameter that measures the scattering length and the cubic
term is a mean field interaction or a Kerr-nonlinear term due to a variable
refractive index, according to the model.

The above equation appears, for instance, in the description of Bose-
Einstein condensates.

If V is a honeycomb potential, the low-energy effective operator around
a Dirac point is the Dirac operator (see [5]) :

(−∆ + V ) 7−→ D := −ic (~σ · ∇) (2)

Note that it acts on two-components spinors

ψ =

(
ψ1

ψ2

)
∈ C2

since the honeycomb lattice is a superposition of two triangular Bravais
lattices. In this case the spinor encodes the isospin of the sublattices, rather
than the proper spin of the electron (see [5]).

As remarked above, applying a suitable electric potential or placing the
material on a substrate results in an additional mass term. Thus the effective
equation reads as

i∂tΨ = (D +mσ3) Ψ + g|Ψ|2Ψ (3)
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Our aim is to prove the existence of stationary solutions to (3) in the focusing
case, g = −1. Setting

Ψ(x, t) = e−iωtψ(x)

with 0 < ω < m, the equation rewrites as

(D +mσ3 − ω)ψ − |ψ|2ψ = 0 (4)

The main result of this paper is the following

Theorem 1. Equation (4) admits a smooth localized solution, with expo-
nential decay at infinity.

Remark 2. The result presented here is at odds with the case of the pseudo-
relativistic operator √

−∆ +m2 > 0

Indeed, a simple Pohozaev-type argument shows that there is no smooth ex-
ponentially localized solution to the following equation(√

−∆ +m2
)
ψ − ωψ = |ψ|2ψ on R2 (5)

with 0 < ω < m.
Thus the existence of solutions is related to the presence of the negative

part of the spectrum of the Dirac operator (see next section).

Remark 3. In this case the zero-energy corresponds to the Fermi level.
Then there is no interpretation of the Dirac spectrum in terms of parti-
cles/antiparticles. Rather, the positive part of the spectrum corresponds to
massive conduction electrons, while the negative one to valence electrons.

Acknowledgment. The author wishes to thank Éric Séré for his support.

2. Preliminaries

The Dirac operator is a first order differential operator formally defined
in 2D (in the standard representation) as

Dm = D +mc2σ3 := −ic~(~σ · ∇) +mc2σ3 (6)

where c denotes the speed of light, m is the electron mass, ~ is the reduced
Planck constant, ~σ · ∇ := σ1∂1 + σ2∂2 and the σk are the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
(7)

In this paper we shall work with a system of physical units such that c = 1
and ~ = 1.

It is well known (see [23]) that Dm is a self-adjoint operator on L2(R2,C2),

with domain H1(R2,C2) and form-domain H
1
2 (R2,C2).

Moreover, in Fourier domain p = (p1, p2) the Dirac operator becomes the
multiplication operator by the matrix

D̂m(p) =

(
m p1 − ip2

p1 + ip2 m

)
so the spectrum is given by
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Spec(Dm) = (−∞,−m] ∪ [m,+∞) (8)

where the gap is due to the mass term.
In this paper we focus on the following equation

(D +mσ3 − ω)ψ − |ψ|2ψ = 0 on R2, with 0 < ω < m (9)

whose weak solutions correspond to critical points of the following functional

L(ψ) :=
1

2

ˆ
〈(D +mσ3 − ω)ψ,ψ〉 − 1

4

ˆ
|ψ|4 (10)

defined for ψ ∈ H
1
2 (R2,C2).

The above functional is strongly indefinite, that is, it is unbounded both
from above and below, even modulo finite dimensional subspaces. This is due
to the unboundedness of Spec(D). Several techniques have been introduced
to deal with such situations (see for instance [22]).

Moreover, the main difficulty in our case is given by the lack of compact-

ness of the Sobolev embedding H
1
2 (R2,C2) ↪→ L4(R2,C2). This implies the

failure of some compactness properties used to prove linking results (see [22]
and references therein), due to the invariance by translations and scaling.

In what follows we will only give a sketch of the compactness analysis for
the above functional, referring to the mentioned papers for more details.

As we will see in the next section, equation (9) is compatible with a
particular ansatz, leading us to work in the closed subspace

E =

{
ψ ∈ H

1
2 (R2,C2) : ψ(r, ϑ) =

(
v(r)

iu(r)eiϑ

)
, u, v : (0,+∞)→ R

}
(11)

where (r, ϑ) are the polar coordinates of x ∈ R2.
Restricting the problem to the subspace E breaks the invariance by trans-

lations, and thus to recover compactness one has to deal with the invariance
by scaling only. The latter causes the so-called bubbling phenomenon, that
is, energy concentration associated to the appearance of blow-up profiles. In
[16] Isobe analyzed the behavior of a generic Palais-Smale sequence for the
critical Dirac equation on compact spin manifolds. The same can be done
in our case.

Given a Palais-Smale sequence (ψn) ⊆ H
1
2 it easy to see that it is bounded,

and thus we may suppose, up to extraction, that it weakly converges

ψn ⇀ ψ∞ ∈ H
1
2 .

Generally speaking, the invariance by scaling prevents the strong conver-
gence and we have the profile decomposition

ψn = ψ∞ +

N∑
k=1

ωkn + o(1) in H
1
2 (R2,C2) (12)

where N ∈ N and ωkn is a properly rescaled H̊
1
2 (R2,C2)-solution of the limit

equation

Dϕ = |ϕ|2ϕ
centered around points akn → ak ∈ R2, as n→ +∞, for 1 6 k 6 N .
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The bubbles ωkn are in a finite number, since one can prove a uniform lower
bound for their energy. Moreover, this implies that we have compactness
only in a suitable energy range and gives a treshold value for the appearance
of bubbles in min-max methods (see [22]).

Then in terms of L4-norms, there holds

|ψn|4dx ⇀ |ψ∞|4dx+
N∑
k=1

νkδak (13)

weakly in the sense of measures. Here νk > 0 and the δak are delta measures
concentrated at ak.

Morever, since we are essentially working with radial functions, it’s not
hard to see that the blow-up can only occur at the origin, that is, we actually
have

|ψn|4dx ⇀ |ψ∞|4dx+ νδ0 (14)

with ν > 0 and δ0 being the delta concentrated at the origin.
We thus conclude that in order to recover compactness for the variational

problem one should be able to control the behavior of Palais-Smale sequences
near the origin.

However, our proof is based on a shooting method and thus not varia-
tional. In this case the concentration phenomenon (14) manifests itself in
the difficulty of controlling the behavior of solutions of the resulting dy-
namical system when initial data are large. This makes the analysis quite
delicate and requires a careful asymptotic expansion of the solution, after a
suitable rescaling (see section 3.2).

We mention that the first rigorous existence result of stationary solu-
tions for the Dirac equation via shooting methods is due to Cazenave and
Vazquez [6], who studied the Soler model for elementary fermions. Sub-
sequently, those methods have been used to prove the existence of excited
states [3] for the Soler model and in mean field theories for nucleons (see e.g.
[11],[18], [10] and references therein). We remark that a variational proof has
been given by Esteban and Séré in [12], under fairly general assumptions on
the self-interaction. In particular, after a suitable radial ansatz, they prove
a multiplicity result exploiting the Lorentz-invariance. Remarkably, their
method works without any growth assumption on the nonlinearity. How-
ever, the proof is designed to deal with the Lorentz-invariant form of the
nonlinear term and is not applicable in our case. In [9] Ding and Wei proved
an existence result for the 3D Dirac equation with a subcritical Kerr-type
interaction. The case of of a critical nonlinearity in 3D has been inves-
tigated by Ding and Ruf [8] in the semiclassical regime, using variational
techniques. They take advantage of the presence of a negative potential to
prove compactness properties. However, in this paper we deal with a critical
Kerr nonlinearity without additional assumptions and so we need to adopt
a different strategy.

3. Existence by shooting method

To begin with, we first convert the equation into a dynamical system
thanks to a particular ansatz. Then we will give some qualitative properties
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of the flow, particularly useful in understanding the long-time behavior of
the system.

Passing to polar coordinates in R2 (x, y) 7→ (r, ϑ), the equation

(D +mσ3 − ω)ψ − |ψ|2ψ = 0

reads as


−e−iϑ

(
i∂r +

∂ϑ
r

)
ψ2 =

(
|ψ1|2 + |ψ2|2

)
ψ1 − (m− ω)ψ1,

−eiϑ
(
i∂r −

∂ϑ
r

)
ψ1 = −

(
|ψ1|2 + |ψ2|2

)
ψ2 − (m+ ω)ψ2.

(15)

where ψ =

(
ψ1

ψ2

)
∈ C2, and this suggests the following ansatz (see [7]):

ψ(r, ϑ) =

(
v(r)eiSϑ

iu(r)ei(S+1)ϑ

)
(16)

with u and v real-valued and S ∈ Z. In the sequel, we set S = 0.
Plugging the above ansatz into the equation one gets u̇+

u

r
= (u2 + v2)v − (m− ω)v

v̇ = −(u2 + v2)u− (m+ ω)u
(17)

Thus we are lead to study the flow of the above system.
In particular, since we are looking for localized states, we are interested

in solutions to (17) such that

(u(r), v(r))→ (0, 0) as r → +∞

In order to avoid singularities and to get non-trivial solutions, we choose
as initial conditions

u(0) = 0 , v(0) = λ 6= 0

Moreover, the symmetry of the system allows us to consider only the case
λ > 0.

Studying the long-time behavior of the flow of (17) it is useful to introduce
the following system {

u̇ = (u2 + v2)v − (m− ω)v

v̇ = −(u2 + v2)u− (m+ ω)u
(18)

Heuristically, (17) should reduce to (18) in the limit r → +∞ (u being
bounded), that is, dropping the singular term in the first equation.

As one can easily check, (18) is the hamiltonian system associated with
the function

H(u, v) =
(u2 + v2)2

4
+
m

2
(u2 − v2) +

ω

2
(u2 + v2) (19)

It’s easy to see that the level sets of the hamiltonian

{H(u, v) = c}

are compact, for all c ∈ R, so that the flow is globally defined.
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The equilibria of the hamiltonian flow are the points

(0, 0), (0,±
√
m− ω) (20)

and there holds
H(0, 0) = 0, H(0,±

√
m− ω) < 0 (21)

Local existence and uniqueness of solutions of (17) are guaranteed by the
following

Lemma 4. Let λ > 0. There exist 0 < Rλ 6 +∞ and (u, v) ∈ C1([0, Rλ),R2)
unique maximal solution to (17), which depends continuously on λ and uni-
formly on [0, R] for any 0 < R < Rλ.

Proof. We can rewrite the system in integral form as
u(r) =

1

r

ˆ r

0
sv(s)[u2(s) + v2(s)− (m− ω)]ds

v(r) = λ−
ˆ r

0
u(s)[(u2(s) + v2(s)) + (m+ ω)]ds

(22)

where the r.h.s. is a Lipschitz continuous function. Then the claim follows
by a contraction mapping argument, as in [6]. �

Given λ > 0, define

Hλ(r) := H(uλ(r), vλ(r)) , r ∈ [0, Rλ) (23)

where (uλ, vλ) is the solution of (17) such that (u(0), v(0)) = (0, λ).
A simple computation gives

Ḣλ(r) = −
u2λ
r

(m+ ω + u2λ(r) + v2λ(r)) 6 0 , ∀r ∈ [0, Rλ) (24)

so that the energy H is non-increasing along the solutions of (17).
This implies that ∀r ∈ [0, Rx), (uλ(r), vλ(r)) ∈ {H(u, v) 6 H(0, λ)}, the

latter being a compact set. Thus there holds

Lemma 5. Every solution to (17) is global.

Remark 6. The above result is in contrast with the case of the models usual
considered in 3D ([3]), where the energy has no definite sign and blow-up
may occur.

The following lemma indeed shows that the solutions to (17) are close to
the hamiltonian flow (18) as r → +∞. The proof is the same as the one
given in [6].

Lemma 7. Let (f, g) be the solution of (18) with initial data (f0, g0). Let
(u0n, v0n) and ρn be such that

ρn
n→+∞−−−−−→ +∞ and (un, vn)

n→+∞−−−−−→ (f0, g0)

Consider the solution of u̇n +
un

r + ρn
= (u2n + v2n)vn − (m− ω)vn

v̇n = −(u2n + v2n)un − (m+ ω)un

such that un(0) = u0n and vn(0) = v0n.
Then (un, vn) converges to (f, g) uniformly on bounded intervals.



8 W. BORRELLI

Since we know from (24) that the energy Hλ decreases along the flow of
(17) and that each solution is bounded, Lemma (7) allows us to conclude (see
the proof of Lemma (9)) that any solution must tend to an equilibrium of
the hamiltonian flow (18). Thus a solution eventually entering the negative
energy region

{H(u, v) < 0}

will converge to

(0,±
√
m− ω)

spiraling toward that point. A proof of this property follows along the same
lines of the analogous one given in [11]. This is illustrated by the following
picture:

Figure 1. The energy level {H = 0} and two solutions en-
tering the negative energy set {H < 0}.

If, on the contrary, there holds

Hλ(r) > 0, ∀r > 0

then necessarily the solution tends to the origin, thus corresponding to a
localized solution of our PDE.

3.1. The shooting method. In our proof we use some ideas from [18],
[19].
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Definition 1. Put I−1 = ∅. For k ∈ N we define

Ak =

{
λ > 0 : lim

r→+∞
Hλ(r) < 0, vλ changes sign k times on (0,+∞)

}
Ik =

{
λ > 0 : lim

r→+∞
(uλ(r), vλ(r)) = (0, 0), vλ changes sign k times on (0,+∞)

}
.

(25)

It is immediate so see that

A0 6= ∅

as it includes the interval
(

0,
√

2(m− ω
]
, since

{0} ×
(

0,
√

2(m− ω)
]
⊆ {(u, v) ∈ R2 : H(u, v) 6 0}

Moreover, numerical simulations indicates that the set A0 is bounded and
that A1 is non-empty and unbounded. This implies that I0 is non empty (see
11). Solutions tending to the origin are expected to appear in the shooting
procedure when λ passes from Ak to Ak+1, as in (Figure 1).

Remark 8. We found no numerical evidence for the existence of excited
states. This may lead to conjecture that there are no nodal solutions, that is
Ik = ∅ for k > 1. The absence of excited states is compatible with the bub-
bling phenomenon (see the Introduction), which might prevent the existence
of those solutions. However in 3D Lorentz-invariant models ([10],[3]) it is
known that they exist.

In this section we show that I0 is non empty, thus proving (Theorem 1).
This will be achieved in several intermediate steps.

We start with some preliminary lemmas, which are an adaptation of anal-
ogous results from [18].

Lemma 9. Let (uλ, vλ) be a solution of (17) such that vλ changes sign a
finite number of times and

lim
r→+∞

Hλ(r) > 0

then

|uλ(r)|+ |vλ(r)| 6 Ce−(m−ω
2 )r , ∀r > 0 (26)

and thus

lim
r→+∞

(uλ(r), vλ(r)) = (0, 0)

Proof. We start by showing that under the above assumptions there exists
R ∈ (0,+∞) such that

uλ(r)vλ(r) > 0 , ∀r > R (27)

Since vλ changes sign a finite number of times, we may suppose w.l.o.g. that
for some R > 0

vλ(r) > 0 , ∀r > R
We have to prove that ∃R < R < +∞ such that

uλ(r) > 0 , ∀r > R
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Assume, by contradiction, that

uλ(r) < 0 , ∀r > R

Then the second equation of (17) implies that v̇λ(r) > 0, ∀r > R, and vλ is
increasing for r > R. Thus

lim
r→+∞

vλ(r) = δ ∈ (0,+∞]

Indeed, we cannot have δ = +∞ as in that case

lim
r→+∞

Hλ(r) = +∞

contradicting the fact that Hλ is decreasing along solutions of (17).
Let (ρn)n ⊆ R be a sequence such that

lim
n→+∞

ρn = +∞ , lim
n→+∞

ux(ρn) = λ

for some λ ∈ R, and consider the solution (U, V ) of (18) such that

(U(0), V (0)) = (λ, δ)

By (7), it follows that (uλ(ρn + ∗), vλ(ρn + ∗)) converges uniformly to
(U, V ) on bounded intervals. Since

lim
n→+∞

vλ(ρn + r) = δ , ∀r > 0

we have V (r) = δ, for any r > 0. The second equation of (18) implies that
U(r) = 0 for all r > 0.

We conclude that (U, V ) is an equilibrium of the hamiltonian flow (18).
Since δ > 0,

(λ, δ) = (0,
√
m− ω)

This is absurd, since we would have

0 6 lim
r→+∞

Hλ(r) 6 H
(
0,
√
m− ω

)
< 0

Thus there exists R ∈ (R,+∞) such that uλ(R) = 0. Note that we have

u̇λ(R) > 0

Indeed, u̇λ(R) = vx(R)
[
v2λ(R)− (m− ω)

]
> 0 where the term in the r.h.s. is

positive, otherwise the point (0, vλ(R)) would belong to the negative energy
region, contradicting our assumptions on Hλ(r).

Now suppose that there exists R < R < R′ such that uλ(R′) = 0 and
uλ(r) > 0 on (R,R′). This implies that u̇λ is negative in a left neighborhood
of R′. By the first equation of (17), we get

v2λ(R′)− (m− ω) 6 0

Then (0, vλ(R′)) ∈ {H(u, v) < 0}, and this is absurd as already remarked.
We thus conclude that

uλ(r) > 0 , ∀r > R (28)

The second equation of (17) shows that vλ is decreasing on (R,+∞) and
by (7), arguing as above, it can be proved that

lim
r→+∞

(uλ(r), vλ(r)) = (0, 0) (29)

We now prove the exponential decay.
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By (17), (72), (28), we have for all r > R u̇λ 6
(m− ω)

2
vλ − (m− ω)vx

v̇ 6 −(m+ ω)uλ

(30)

Then
d

dr
(uλ + vλ) 6 −(m− ω)

2
(uλ + vλ)

for all r > R. Then the claim follows, since

uλ(r), vλ(r) > 0, ∀r > R.
�

Lemma 10. There exists a constant C0 > 0 such that, if for some R > 1

(1) Hλ(R) < C0
R ;

(2) uλ(R)vλ(R) > 0 and v2λ(R) < 2(m− ω);
(3) vλ changes sign k times on [0, R];

then λ ∈ Ak ∪ Ik ∪Ak+1.

Proof. Suppose, by contradiction, that λ /∈ Ak ∪ Ik ∪Ak+1.
W.l.o.g. we can assume that uλ(R) > 0 and vλ(R) > 0. Let

R := inf{r > R : uλ(r) 6 0} ∈ (R,+∞]

Note that vλ changes sign exactly once in (R,R). Indeed, as long as uλ > 0
the second equation of (17) shows that vλ is decreasing. Moreover we cannot
have vλ(r) > 0 for all (R,R), as in that case the solution would enter
the negative energy zone or tend to the origin. This is impossible, since
λ /∈ Ak ∪ Ik.

Now suppose that R = +∞. We have seen that there exists R < R̃ < +∞
such that vλ < 0 on (R̃, R). Arguing as in the proof of (Lemma 9), one easily
sees that

lim
r→+∞

vλ(r) = δ ∈ (−∞, 0)

Moreover, the solution tends to an equilibrium (λ, δ) of the hamiltonian
system (18), as r −→ +∞.

Thus (λ, δ) = (0,−
√
m− ω), giving a contradiction,as

0 6 lim
r→+∞

Hλ(r) = H
(

0,−
√

(m− ω)
)
< 0

Then R < +∞ and we have

uλ(R) = 0 , vλ(R) 6 −
√

2(m− ω)

since we must have Hλ(R) > 0.
Let R < R1 < R2 < R be such that

vλ(R1) = −
√
m− ω

2
, vλ(R2) = −

√
m− ω (31)

Since R > 1, we have Hλ(R) < C0 and if C0 is sufficiently small we have
that

uλ(r) 6
√
m− ω , ∀r ∈ [R1, R2] (32)
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We have, since vλ is decreasing and by (17,46,31)
√
m− ω

2
= vλ(R1)− vλ(R2) = −

ˆ R2

R1

v̇λ(r)dr =

ˆ R2

R1

√
m− ω (3m− ω) dr

and then

(R2 −R1) >
1

2(3m− ω)
(33)

Moreover, a simple computation gives

1

r

d

dr

(
r2Hλ(r)

)
= 2Hλ(r) + rḢλ(r) = −

u4λ(r)

2
+
v2λ(r)

2

[
v2λ(r)− 2(m− ω)

]
(34)

and then
d

dr

(
r2Hλ(r)

)
< 0 , ∀r ∈ [R,R2] (35)

By (31,34) we have

(R2)
2Hλ(R2)− (R1)

2Hλ(R1) 6 −
ˆ R2

R1

(m− ω)2

2
rdr

= −(m− ω)2

4
(R2 +R1)(R2 −R1)

6 − (m− ω)2

4(3m− ω)
R

(36)

Since the map r 7→ r2Hλ(r) is decreasing on [R,R2] by (35), then (36)
implies that

(R2)
2Hλ(R2) 6 (R1)

2Hλ(R1)−
(m− ω)2

4(3m− ω)
R

6 R2

(
Hλ(R)− (m− ω)2

4R(3m− ω)

)
6 0

(37)

if C0 6
(m−ω)2
4(3m−ω) . Then

Hλ(R2) 6 0

reaching a contradiction, and the lemma is proved. �

The next lemma gives the main properties of the sets Ak and Ik.

Lemma 11. For all k ∈ N we have

(1) Ak is an open set;
(2) if λ ∈ Ik then there exists ε > 0 such that (λ− ε, λ+ ε) ⊆ Ak ∪ Ik ∪

Ak+1;
(3) if Ak 6= ∅ and it is bounded, we have supAk ∈ Ik;
(4) if Ik 6= ∅ and it is bounded, then sup Ik ∈ Ik.

Proof. (1) It follows from the continuity of the flow (17) w.r.t. the initial
datum (Lemma 4);

(2) Let λ ∈ Ik. By Lemma (9)

|uλ(r)|+ |vλ(r)| 6 C exp

(
−m− ω

2
r

)
, ∀r > 0
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and then, given C0 > 0 as in Lemma (34), ∃R > 1 such thatHλ(R) <
C0
R , uλ(R)vλ(R) > 0 and vλ changes sign k times on [0, R].

The continuity of the flow (17) implies that the same holds for
an initial datum y ∈ (λ − ε, λ + ε) for ε > 0 small. The claim then
follows by Lemma (34).

(3) Let λ = supAk and (λi) ⊆ Ak such that limi→+∞ λi = λ.
If we suppose that λ ∈ Ar for some r ∈ N, then by continuity of

the flow we also have λi ∈ Ar, for i large. This implies that r = k,
that is, λ ∈ Ak which is absurd because Ak is an open set, by point
(1).

Thus there holds λ ∈ Is, for some s ∈ N, and by point (2) there
exists ε > 0 such that

λ ∈ As ∪ Is ∪As+1

which implies that the same holds for λi, provided i is large. Then,
as before, we have s = k.

Moreover, as already remarked

λ /∈
⋃
j∈N

Aj

and then the claim follows.
(4) Arguing as in the proof of point (3) we get that

sup Ik ∈ Ir

for some r ∈ N. Then we conclude as before, using point (2).
�

We want to prove that the set A0 is bounded, showing that if λ > 0 is
large enough then there exists Rλ > 0 such that vλ(Rλ) = 0, as strongly
suggested by numerical simulations:

To do so we relate solutions corresponding to such data to those of a
limiting problem, inspired by [19].

3.2. Asymptotic expansion. In this section we provide, after a suitable
scaling, a precise asymptotic expansion that will allow us to control the
behavior of the solution in term of the initial datum.

Put ε = λ−1 and consider the following rescaling{
Uε(r) = εuλ(ε2r)

Vε(r) = εvλ(ε2r)
(38)

Using (17) we find the system for (Uε, Vε): U̇ε +
Uε
r

= (U2
ε + V 2

ε )Vε − ε2(m− ω)Vε

V̇ε = −(U2
ε + V 2

ε )Uε − ε2(m+ ω)Uε

(39)

together with the initial conditions Uε(0) = 0, Vε(0) = 1.
The limiting problem as ε→ 0 (and thus λ→ +∞) is
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Figure 2. A solution entering the lower half-plane {v < 0}.

 U̇0 +
U0

r
= (U2

0 + V 2
0 )V0

V̇0 = −(U2
0 + V 2

0 )U0

(40)

with U0(0) = 0, V0(0) = 1.
As in [2] we consider the family of spinors given by

ϕ(y) = f(y)(1− y) · ϕ0 y ∈ R2 (41)

where ϕ0 ∈ C2, f(y) = 2
1+|y|2 and the dot represents the Clifford product.

It can be easily checked that they are H̊
1
2 (R2,C2)-solutions to the follow-

ing Dirac equation
Dϕ = |ϕ|2ϕ (42)

Remark 12. The spin structure of euclidean spaces is quite explicit and the
spinors given in (41) can be rewritten in matrix notation, as

ϕ(y) = f(y)(12 + iy1σ1 + iy2σ2) · ϕ0 y ∈ R2

12 and σi being the identity and the Pauli matrices, respectively.
See [17] for more details.

A straightforward (but tedious) computation shows that the spinors de-
fined in (41) are of the form of the ansatz (16), thus being solutions to the
system (40). Exploiting the conformal invariance of (42) (see [16]) one can
easily see that the solution matching the above initial conditions is
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(
U0(r) =

2r

4 + r2
, V0(r) =

4

4 + r2

)
(43)

Lemma 13. We have

(Uε, Vε)
ε→0−−−→ (U0, V0)

uniformly on [0, T ], for all T > 0, where (U0, V0) is the solutions to the
limiting problem (40).

Proof. Fix T > 0 and let r ∈ [0, T ].
Remark that the system (39) is equivalent to

Uε(r) =
1

r

ˆ r

0
sVε(s)[U

2
ε (s) + V 2

ε (s)− ε2(m− ω)]ds

Vε(r) = 1−
ˆ r

0
Uε(s)[(U

2
ε (s) + V 2

ε (s)) + ε2(m+ ω)]ds

(44)

Similarly, we can rewrite (40) as
U0(r) =

1

r

ˆ r

0
sV0(s)(U

2
0 (s) + V 2

ε (s))ds

V0(r) = 1−
ˆ r

0
U0(s)(U

2
0 (s) + V 2

0 (s))ds

(45)

Arguing as for (17), for each fixed ε > 0 we associate a hamiltonian to
the system (39)

H̃ε(U, V ) :=
(U2 + V 2)2

4
+ ε2

m

2
(U2 − V 2) + ε2

ω

2
(U2 + V 2)

It’s easy to see that H̃ε is decreasing along the flow, so that

H̃ε(Uε(r), Vε(r)) 6 H̃ε(0, 1) 6 1 ∀r > 0.

The coercivity of Hε then implies that

|Uε(r)|+ |Vε(r)| 6 C ∀r > 0 (46)

for some C > 0 independent of ε.
By (44,45) and since r ∈ [0, T ] we get

|Uε(r)− U0(r)|+|Vε(r)− V0(r)| 6
ˆ r

0

∣∣Vε(V 2
ε + U2

ε )− V0(V 2
0 + U2

0 )
∣∣ ds

+

ˆ r

0

∣∣Uε(V 2
ε + U2

ε )− U0(V
2
0 + U2

0 )
∣∣ ds+ 2ε2mT

(47)

It’s not hard to see that the first two integrands in the r.h.s of the above
inequality are locally Lipschitz. Then by (46) we have

|Uε(r)− U0(r)|+ |Vε(r)− V0(r)| .
ˆ r

0
(|Uε − U0|+ |Vε − V0|) ds+ 2ε2mT

(48)
Since r ∈ [0, T ], the Gronwall lemma gives

|Uε(r)− U0(r)|+ |Vε(r)− V0(r)| . ε2 (49)

thus proving the claim. �
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The above results is not enough to conclude that Vε changes sign, since
V0 > 0 for all r > 0.

We obtain a more refined analysis of the behavior of the solution thanks
to a continuity argument.

We consider the solution (Uε, Vε) as a perturbation of (U0, V0), as follows:{
Uε(r) = U0(r) + ε2h1(r) + ε4h2(r, ε)

Vε(r) = V0(r) + ε2k1(r) + ε4k2(r, ε)
(50)

and substituting into (39) we get the following linear system for ε2-order
terms  ḣ1 +

h1
r

= −(m− ω)V0 + 2U0V0h1 + (U2
0 + 3V 2

0 )k1

k̇1 = −(m+ ω)U0 − 2U0V0k1 − (3U2
0 + V 2

0 )h1

(51)

and we impose the initial conditions

h1(0) = 0 , k1(0) = 0 (52)

Rewriting (51) in integral form, as in (22), we have:
|h1(r)| 6

ˆ r

0
(m− ω)V0ds+

ˆ r

0

[
2U0V0|h1|+ (U2

0 + 3V 2
0 )|k1|

]
ds

|k1(r)| 6
ˆ r

0
(m+ ω)U0ds+

ˆ r

0

[
2U0V0|k1|+ (3U2

0 + V 2
0 )|h1|

]
ds

(53)

Remark that

U0V0(r) + V 2
0 (r) 6 U2

0 (r) 6 V0 , ∀r > 2

and that

V0 ∈ L1(R+).

Moreover, there holds

U0(r) =
2r

4 + r2
∼ 2

r
as r −→ +∞. (54)

Then summing up both sides of (53) we get:

|h1(r)|+ |k1(r)| .
ˆ r

0
U0ds+

ˆ r

0
(|h1|+ |k1|)V0ds (55)

The Gronwall inequality thus gives:

|h1(r)|+ |k1(r)| .
(ˆ r

0
U0ds

)
exp

(
C

ˆ r

0
V0ds

)
.
ˆ r

0
U0ds (56)

where C > 0 is a constant.
By (54) we can thus conclude that

|h1(r)|+ |k1(r)| . ln(r) as r −→ +∞ (57)

The above estimates imply that

2U0V0k1, (3U
2
0 + V 2

0 )h1 ∈ L1(R+)

and then integrating the second equation in (51) we get

h1(r) ∼ − ln(r) as r −→ +∞ (58)

We now have to deal with remainder terms in (50).
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In particular, we want to analyze the behavior of those terms on the
time interval

(
0, 1ε
)
, thanks to a continuity argument based on the Gronwall

inequality.
Let

rε := sup
{
r ∈

[
0, ε−1

)
: |h2(r, ε)|+ |k2(r, ε)| < ε−

3
2

}
(59)

Since h2(0, ε) = k2(0, ε) = 0, by continuity it’s evident that

rε > 0

As shown in the Appendix using the equations for h2 and k2 one gets the
following estimates:

|h2(r, ε)|+ |k2(r, ε)| .
1

ε
ln

(
1

ε

)
+

ˆ r

0

(
V0(s) + ε2

)
(|h2(s, ε)|+ |k2(s, ε)|) ds

(60)
for 0 < r < rε 6 1

ε .
The Gronwall estimates then gives:

|h2(r, ε)|+ |k2(r, ε)| .
1

ε
ln

(
1

ε

)
exp

(
C

ˆ r

0

(
ε2 + V0(s)

)
ds

)
(61)

for some C > 0.
Since r < 1

ε and V0 ∈ L1(R+) we eventually have:

|h2(r, ε)|+ |k2(r, ε)| .
1

ε
ln

(
1

ε

)
(62)

Now, if we suppose that

rε <
1

ε
by (62) and by continuity there exists δ > 0 such that

1

ε
ln

(
1

ε

)
. |h2(r, ε)|+ |k2(r, ε)| 6 ε−

3
2

for all r ∈ [rε, rε + δ), thus contradicting the definition in (59).
Then there holds:

|h2(r, ε)|+ |k2(r, ε)| < ε−
3
2 , ∀r ∈

(
0,

1

ε

)
(63)

Recall that the second equation in (50) reads as

Vε(r) = V0(r) + ε2k1(r) + ε4k2(r, ε)

By (62) and (43) we see that

V0 = O(ε2) , k2 = o(ε2) as r →
(

1

ε

)−
Then by (58) we get

Vε(r) ∼ −ε2 ln
1

ε
as r →

(
1

ε

)−
(64)

Thus we have

Vε(Rε) = 0 for some Rε ∈
(

0,
1

ε

)
(65)
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In view of the scaling (38), we conclude that for large initial data λ > 0,
the corresponding solution (uλ, vλ) of (17) has at least one node.

This proves the following (recall the definition (11))

Lemma 14. The set A0 is bounded.

Then by (Lemma 11) we have that I0 6= ∅, that is the system (17) admits
a solution without nodes, tending to (0, 0) as r → +∞, which correspond
to a localised solution of equation (4). The exponential decay follows by
(Lemma 9). This proves (Theorem 1).

Appendix

In this section we prove the estimates (60) for remainder terms in (50).
For the sake of brevity we only deal with k2. The estimate for h2 follows

along the same lines with obvious modifications.
Inserting the ansatz (50) into the system (39), using equations (43) and

(51) and imposing the initial condition we get the following equation
d

dr
k2(r, ε) = K0(r) + ε2K2(r) + ε4K4(r) + ε6K6(r) + ε8K8(r)

k2(0, ε) = 0
(66)

for all ε > 0. Note that the Kis do not depend on ε.
The terms in the r.h.s. are given by



K0 = −
(
2U2

0 + V 2
0 + 2U0V0

)
h2 − U0

(
3h21 + k21

)
− 2V0h1k1 − (m+ ω)h1

K2 = −U0 (4h1h2 + 2k1k2)− (h31 + h1k
2
1)− 2V0(h1k2 + k1h2)− (m+ ω)h2

K4 = −
(
U0(2h

2
2 + k22) + 2V0h2k2

)
− (2h1k1k2 + 2h21h2 + k21h2)

K6 = −h1h22 − k1k22 − h1h22 − k1k2h2
K8 = −h32 − h2k22

(67)
Our aim is to estimate |k2(r, ε)| for 0 < r < r (see (59)) and 0 < ε� 1.

This is achieved integrating (66) and estimating the integral of the abso-
lute value of each term in (67).

Remark that, by the definition of (U0, V0), (43)

2U2
0 + V 2

0 + 2U0V0 6 V0 ∈ L1(R+) (68)

Moreover, (57) and (54) imply that U0

(
3h21 + k21

)
/∈ L1(R+) and then

ˆ r

0
U0

∣∣3h21 + k21
∣∣ ds . ˆ 1

ε

1

ln(s)

s
ds . ε−

1
4 (69)

By the above remarks and (57), we have

V0h1k1 ∈ L1(R+) (70)

and ˆ r

0
|h1|ds = O(r ln(r)), as r → +∞ (71)
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Collecting the above esimates we getˆ r

0
|K0|ds .

ˆ r

0
V0|h2|ds+ ε−1| ln(ε)| (72)

The second term is estimated as follows.
Recall that

|h2(r)|+ |k2(r)| 6 ε−
3
2 (73)

for 0 < r 6 r. Then by (68) we have

ˆ r

0
U0 |4h1h2 + 2k1k2| ds . ε−

3
2

ˆ 1
ε

1

ln(s)

s
ds . ε−

7
4 (74)

Using again (57), it’s not hard to see that

ˆ r

0
|h31 + h1k

2
1|ds . ε−

5
4 (75)

Since
V0h1, V0k1 ∈ L1(R+)

by (73) we have ˆ r

0
V0 (|h1k2|+ |k1h2|) ds . ε−

3
2 (76)

We then conclude that ˆ r

0
|K2|ds . ε−

7
4 +

ˆ r

0
|h2|ds (77)

Let’s turn to the third term.
By (68) and (73) and since U0(r) = 2r

4+r2
, we get

ˆ r

0
|U0(2h

2
2 + k22) + 2V0h2k2|ds . ε−3

ˆ 1
ε

1
U0ds . ε

−3| ln(ε)| (78)

Using (57) and (73) we can estimateˆ r

0
|K4|ds . ε−3| ln(ε)|+ ε−

5
4 . ε−3| ln(ε)| (79)

All the terms appearing inK6 have the same behavior, so that by (57),(73)
and above estimates it’s easy to see that

ˆ r

0
|K6|ds . ε−4| ln(ε)| (80)

Lastly, by (73) we can estimateˆ r

0
|K8|ds . ε−

11
2 (81)

Combining (72,77,79,80,81), integrating (67) gives

|k2(r, ε)| . ε−1| ln(ε)|+
ˆ r

0
(V0(s) + ε2)|h2(s, ε)|ds (82)

Analogous estimates can be worked out for h2, obtaining

|h2(r, ε)| . ε−1| ln(ε)|+
ˆ r

0
(V0(s) + ε2)|k2(s, ε)|ds (83)
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and the claimed inequality (60) follows by summing up the last two esti-
mates.
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