N

N
N

HAL

open science

A Hungarian Algorithm for Error-Correcting Graph
Matching

Sébastien Bougleux, Benoit Galtizere, Luc Brun

» To cite this version:

Sébastien Bougleux, Benoit Gaiizére, Luc Brun. A Hungarian Algorithm for Error-Correcting Graph
Matching. 11th TAPR-TC-15 International Workshop on Graph-Based Representation in Pattern
Recognition (GbRPR 2017), Pasquale Foggia, May 2017, AnaCapri, Italy. pp.118-127, 10.1007/978-

3-319-58961-9 11 . hal-01540920

HAL Id: hal-01540920
https://hal.science/hal-01540920

Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01540920
https://hal.archives-ouvertes.fr

A Hungarian Algorithm for Error-Correcting
Graph Matching*

Sébastien Bougleux', Benoit Gaiizere?, and Luc Brun'

! Normandie Univ, CNRS - ENSICAEN - UNICAEN, Caen, France
2 Normandie Univ, INSA de Rouen, France

Abstract. Bipartite graph matching algorithms become more and more
popular to solve error-correcting graph matching problems and to ap-
proximate the graph edit distance of two graphs. However, the memory
requirements and execution times of this method are respectively pro-
portional to (n + m)? and (n + m)® where n and m are the order of
the graphs. Subsequent developments reduced these complexities. How-
ever, these improvements are valid only under some constraints on the
parameters of the graph edit distance. We propose in this paper a new
formulation of the bipartite graph matching algorithm designed to solve
efficiently the associated graph edit distance problem. The resulting al-
gorithm requires O(nm) memory space and O(min(n, m)? max(n, m))
execution times.

Keywords: Graph edit distance, Bipartite matching, Error-correcting
matching, Hungarian algorithm

1 Introduction

Computing an efficient similarity or dissimilarity measure between graphs is a
major problem in structural pattern recognition. The graph edit distance (GED),
developed in the context of error-correcting graph matching, provides such a
measure. [t may be understood as the minimal amount of distortion required to
transform one graph into another, by a sequence of edit operations applied on
nodes and edges, restricted here to substitutions, insertions and removals. Such
a sequence is called an edit path. Each possible edit operation is penalized by a
non-negative cost, and the integration of these costs over an edit path defines the
length (or the cost) of this path. An edit path having a minimal length, among
all edit paths transforming one graph into another one defines the GED between
these two graphs. Since computing the GED is NP-complete, it is restricted to
rather small graphs. So several approaches have been proposed to approximate
the GED efficiently and to process larger graphs.

In this paper, graphs are assumed to be simple (no loop nor multiple edge),
and each element of the two graphs can be edited only once (no composition

* Appears in International Workshop on Graph-Based Representations in Pattern
Recognition (GbRPR), LNCS 10310, pp 118-127, Springer, 2017 (http://doi.org/
10.1007/978-3-319-58961-9_11))

http://doi.org/10.1007/978-3-319-58961-9_11
http://doi.org/10.1007/978-3-319-58961-9_11

2 S. Bougleux, B. Gaiizere, L. Brun

of edit operations). Under these hypotheses, each node of a graph G; can be
either substituted once to a node of another graph G5, or removed. Similarly,
any node of Gy may be substituted once, or inserted. Since each node of G,
and (9 is transformed only once, such operations on nodes can be encoded
by a (n+m) x (n+m) permutation matrix X [12], where n and m denote the
orders of (G; and Gs. The costs related to these operations can be encoded
by a (n+m) x (n+m) cost matrix C. Using different heuristics [I2I0] to design
matrix C, an approximation of the GED can be obtained by solving a linear sum
assignment problem (LSAP), i.e. by computing an optimal permutation matrix
X, for instance with the Hungarian algorithm in O((n +m)3) time complexity.

However, matrix C contains an important amount of redundant information
mainly used to transform the initial graph edit distance problem into a bipartite
matching problem (LSAP). The storage of these additional information induces
important memory requirements and increases the size of matrix C, which de-
termines the complexity of the algorithm. Moreover, the resulting matrix X may
contain some useless operations. F. Serratosa [I3] proposed to reduce the size
of matrix C in the special case where the graph edit distance fulfills all the
axioms of a distance. Such an assumption induces several constraints of the el-
ementary edit costs. Assuming these constraints, Serratosa proposed either to
store a n X m rectangular cost matrix whose optimal solution may be found
in O(min(n, m)? max(n,m)) using the Bourgeois’ adaption [4] of the Hungarian
algorithm or to store a max(n,m) X max(n,m) cost matrix [14] whose optimal
solution may be found by combining the Jonker-Volgenant [8] and Hungarian
algorithms. The overall complexity of this last approach is O(max(n,m)3).

Following [12], the approach proposed in this paper approximates the graph
edit distance by the Hungarian algorithm. However, our method reformulates
the basic problem, hence leading to a (n 4+ 1) x (m + 1) cost matrix [2]. Note
that a similar formulation has been proposed by [7]. However, this formulation
is combined with a Jonker-Volegenant matrix reduction and the classical Hun-
garian algorithm, hence leading to a O((n +m)3) overall complexity. In this
paper we investigates the basic principles of the Hungarian algorithm in order
to adapt it to this new formulation. Such an extension is detailed in Section
after a short introduction to the Hungarian algorithm in Section 2] The resulting
algorithm has a worst case complexity of O(min(n, m)? max(n,m)). Conversely
to the methods [I3] proposed by Serratosa, our method only assumes that the
edit costs are non negative. We also provide in Section [f] accuracy and execution
times of a previously published quadratic minimizer [2/3] of the GED combined
with our new Hungarian algorithm.

2 Bipartite Matching and Hungarian Algorithm

Preliminary definitions. Given a bipartite graph (UUV, E), a matching M is a
subset of E such that each node in U UV is incident to at most one edge of M.
It defines a bijective mapping between a subset of U and a subset of V. An edge
is matching edge if it is in M, else it is an unmatching edge. A node incident to

A Hungarian Algorithm for Error-Correcting Graph Matching 3

an edge of M is covered by M, and otherwise uncovered. If all nodes of both sets
are covered, the two sets have the same size and the matching is called perfect.
It defines a bijection between U and V', also called an assignment.

Consider a matching M with at least two uncovered nodes, one in each set.
A path in the bipartite graph is called alternating if it alternates between un-
matching and matching edges. An alternating path that begins and ends with
uncovered nodes is called augmenting. If an augmenting path P exists, a new
matching is obtained from M by removing the matching edges of P and by insert-
ing the unmatching ones. The new matching augments the number of matching
edges by one, and the number of covered nodes by two.

Linear sum assignment problem and its dual. Consider two sets U and V' with
the same size n. Each assignment of an element i € U to an element j €V is pe-
nalized by a non—negativeﬂ cost ¢; ;. All costs are encoded through a n x n matrix
C=(cij)@i.j)euxv, i-e. a node-node cost matrix associated with the complete
bipartite graph (UUV,U x V). When the assignment of a node i to a node j is
forbidden, the cost of the edge (i,7) is commonly set to a large value w, larger
than all costs. The linear sum assignment problem (LSAP), or minimal-cost per-
fect matching problem, consists in finding a perfect matching having a minimal
cost L, among all perfect matchings:

arg}r{nin L(X,C) =) cijry; « Xef{0,1}", X1=1,X"1=1, (1)

i=1 j=1

where X defines the node-node adjacency matrix of a perfect matching M
(;;=11f (4,5) € M and x; ; =0 else), i. e. a permutation matriz.

Several algorithms have been developed to find a solution to the LSAP [5].
Among them, the Hungarian algorithm is commonly used to compute approxi-
mate GED [I2IT3/T4J6l2]. When it is properly implemented, it finds a solution
in O(n?®) in time and in O(n?) in space [95], in worst-case.

The Hungarian algorithm uses a primal-dual approach to find a solution to
the LSAP and its dual problem, known as the maximum labeling problem:

argmax {lTu +17v : u,v>0, ul? +vi1f < C} (2)

(u,v)

where vectors u= (u;);=1,.., and v=(v;),=1,.. . associate a label (or capacity)
to each node of U UV. A pair (u,v) satisfying the constraint ul” +v17 < C is
called a feasible node labeling. A pair (X, (u,v)) solves the LSAP and its dual
iff it verifies the complementary slackness condition:

V(Z,]) cU x ‘/, ((xivj = 1) A (Ul +v; = cz-yj))\/((xiyj = 0) A (ul + v < Ciyj)) (3)

More generally, given a feasible node labeling, let E°={(i,j) €U xV : Cij =
u; 4+ v;}, the graph induced by this set is called the equality subgraph. When E°
contains an optimal perfect matching, it contains also all other ones.

3 if some costs are negative, all costs are shifted by —min; ;{c; ;} [5]

4 S. Bougleux, B. Gaiizere, L. Brun

Hungarian algorithm Given a cost matrix C, an initial feasible node labeling
(u,v) and an associated matching M (included in the equality subgraph), the
Hungarian algorithm proceeds by iteratively updating M and (u,v) such that
two more nodes are covered at each iteration. It is realized by growing a tree
of alternating paths in the equality subgraph, called Hungarian tree, until an
augmenting path is found. At each iteration of the growing process, the tree is
augmented by a pair of unmatching and matching edges of the equality subgraph.
If this is not possible, because the equality subgraph does not contain enough
unmatching edges, the feasible node labeling is revised. We describe the efficient
version detailed in [95]. The tree is represented by matching edges and by a
predecessor array, denoted by pred, which encodes the predecessor (a node of
U) of each node of V. Nodes encountered in the tree are encoded by the sets
Ty CU and Ty C V. The efficiency of the algorithm relies on maintaining slack
variables during the search for an augmenting path: Vj € V\Ty, slack; =
min{¢; ; —u; —v;, i € Ty}

1. If all nodes of U are covered by M, a pair of solutions is found. Else, initialize
a Hungarian tree rooted in an uncovered node i € U: Ty = {i} and Ty =0.
Also, initialize all slack values to +oo.

2. Grow the Hungarian tree in the equality subgraph from a leaf node i € Ty:
(a) Update neighbors of ¢ to add unmatching edges (4, j) to the tree:

if ¢;; —u; —v; <slack; then

slack; < ¢; ; —u; — v

VieV\Ty, (4)

pred; <
if slack; = 0 then Ty < Ty U {j}

(b) If there is no leaf node in Ty, the tree cannot grow anymore. The dual
variables are updated to add at least one unmatching edge in the equality
subgraph and in the tree:

0 = min {slack;, j € V\Ty}
VieTy, u; < u; +0
VjeTy, Uj<—7)j—6

-
T =&

. slack; < slack; — ¢
vj e VAT, {if slack; = 0 then Ty < Ty U {j}

— o~ o~ o~

(c) If there is an uncovered leaf node j € Ty, an augmenting path is found,
go to step [3| Else, the tree is extended with the unmatching edge (3, j)
followed by the matching edge (I,7) by inserting [into Ty. Then go to
step [2a] with i <.

3. Update the matching by backtracking in the tree from the node j € V found
in step[2dto the root, i. e. by traversing an augmenting path. Along this path,
each matching edge is removed from the matching and each unmatching edge
is inserted. Then go to step

A Hungarian Algorithm for Error-Correcting Graph Matching 5

An initial feasible labeling is usually given by u; < min{¢; ;, Vj€V} VieU,
and v; < min{¢; ; — u;, Vie U} Vj € V. A matching is then deduced from this
labeling by traversing the equality subgraph. More sophisticated methods, such
as the one proposed by Jonker and Volgenant [8lJ5] can also be used.

3 Proposed Adaptation of the Hungarian Algorithm

Error-correcting matching and minimal-cost problem. An error-correcting match-
ing from a set U to a set V transforms U into V' by editing their elements, to-
gether with their attributes. Edit operations are restricted here to substitutions,
removals and insertions. Let U =U U {e} and V<=V U{e} be the sets extended
by the null element e. Consider the complete bipartite graph (UcUV®, U x V).
An error-correcting matching in this graph is a subset of edges connecting each
node in U to a unique node of V' (substituted by) or to € (removed), and similarly,
each node in V' to a unique node of U (substituted to) or to e (inserted). Null
nodes are unconstrained, they can be connected to zero or more nodes. By con-
sidering node-node matrices associated to bipartite graphs, all error-correcting
matching are represented by the set of binary matrices:

u; ., ={ Xe{o, 1Ml 1 =0, (9)

Vi=1l..m Y leg =1, Vi=1..n Y0 e, =1 }(10)
Null elements correspond to the last row and the last column. As observed in
Eq. they are unconstrained.
Let C bea (n+1) x (m+1) cost matrix associated to the complete bipartite
graph, i. e. a non-negative cost for each substitution, removal and insertion:

(11)

The cost of an error-correcting bipartite matching is then written as

n+1m+1
L(X,C) = E E Ci,jTij = E E Ci,jTi,j + E Ciyeim+1 + E Ce,jTnt1,j
i=1 j=1 i=1 j=1

Transforming U into V', with minimum cost, consists in finding an error-correcting
bipartite matching having a minimal cost:

argmm {LX,C), XelI,,,} (12)

This is a linear sum assignment problem with error-correction (LSAPE). Its dual
problem, given by max {lTu +17v s w1t +v1T < C, Upt1 = Umy1 = 0} ,is

(a,v)

6 S. Bougleux, B. Gaiizeére, L. Brun

1 2 3 ¢ 1 2 3 ¢ 1 2 3 ¢ 1 2 3 ¢ 1 2 3 ¢
1 (A4 1 1 A} A} A N4 1 ’ A} \
! 1 Y ! ' ' \ v 1 ' ’ E IS
! ' A ! ' ' \ A A ! 1 ’ \ \
1 AR 1 \ Y VAR 1 1 N R
® O e e O O e e O o o (@)
1 2 3 4 ¢ 1 2 3 4 ¢ 1 2 3 4 ¢ 1 2 3 4 ¢ 1 2 3 4 ¢
(a) (b) (c) (d) (e)

Fig. 1. (a) An incomplete error-correcting matching (solid) and the other edges of the
inequality subgraph (dashed). (b) An augmenting path between two uncovered nodes.
(¢) The new matching obtained by interchanging matching and unmatching edges along
this path. (d,e) An augmenting path ending by a null node.

similar to the labeling problem dual to the LSAP, with two elements constrained
to be null (the null elements). Based on these formulations of the LSAPE and
its dual, it is not difficult to show that the framework used to analyze and solve
the LSAP and its dual problem still apply. The Hungarian algorithm can thus
be adapted to find a pair of the primal and dual solutions satisfying Eq. [3| The
adaptation concerns the processing of null nodes, since they are unconstrained.
While the notion of alternating path and Hungarian tree are unchanged, this
modifies the notion of augmenting paths as follows.

Augmenting paths. Since null nodes are always unconstrained, any path contain-
ing a null node ends by this node. This is equivalent to consider null nodes as
never covered. As before (Sec. , an augmenting path can end with an uncov-
ered node (Fig. [T(a)), which may thus be a null node (Fig. [[{d)). In this last
case, the new matching contains one more covered node and one more matching
edge. An augmenting path can also end with a null node incident to a match-
ing edge (Fig. [Ife)). In this case, the new matching augments the number of
covered nodes by one while the number of matching edges remains the same.
So an augmenting path can be constructed by growing a Hungarian tree until
an uncovered node is encountered, including null nodes. Null nodes do not need
to be explicitly represented in the tree to find an augmenting path (always leaf
nodes). This allows to modify the Hungarian algorithm as follows.

Hungarian algorithm. Given two sets U and V, and a (n+1) x (m+1) edit
cost matrix (Eq. C, consider an initiallﬂ feasible node labeling (u,v) and
an associated incomplete error-correcting matching M (all nodes are not yet
covered). We complete the Hungarian algorithm described in Section [2fin order
to treat the case of null nodes independently, without altering the global process.
To this, the growing of the Hungarian is stopped when a null node is encountered:

4 The Jonker-Volgenant algorithm proposed in [7] can be used to provide a good
initialization. Here we adapt the basic one (Sec. [): u; ¢ min{ci;, Vj €V} Vie U,
and v; < min{c; ; — u;, Vi€ U} Vj €V, with tun41 =vm+1=0. An error-correcting
matching is then deduced as in Sec. El by traversing the equality subgraph.

A Hungarian Algorithm for Error-Correcting Graph Matching 7

— A null node incident to a matching edge (here an insertion) can be detected
in Eq. 4| and Eq. [8] of Step [2| by replacing the instruction Ty < Ty U {j} by:

if (e,7) € M go to step 3] else Ty < Ty U{j}. (13)

— A null node incident to an unmatching edge (here a removal) can be detected
in Step when there is an edge (I,€) ¢ M in the equality subgraph, i. e. if
ci,e =u;. If this is the case, the algorithm goes to Step [3| instead of going to
Step A null node incident to an unmatching edge can also be detected
after the update of the dual variables in Step 2D] as detailed below.

Dual variables are updated (step such that costs associated to null nodes
are also taken into account. Therefore, Eq. [5]is replaced by:

0 = min { min { slack;, j € V\Tv}, min{¢;c —u;, i€Ty}}. (14)

Then, after Eq.[f]and Eq.[7] and just before Eq.[§] if the minimum 4 is obtained
from an unmatching edges (i, €), an augmenting path is found and the algorithm
goes to Step [3

The proposed modifications allow to cover all nodes of U. Some nodes of V'
may not be covered, which occurs if n < m or if at least one node in U is assigned
to a null node. To find a minimal-cost error-correcting matching, the modified
Hungarian algorithm is completed by the following step to cover all nodes of V:

4 When all nodes of U are covered, swap the sets U and V', and go to Step
with CT and (v, u) as initial feasible node labeling.

The proposed algorithm finds a minimal-cost error-correcting matching in
O(min{n, m}* max{n, m}) in time and O(nm) in space, see [1] for a proof. These
complexities are similar to the ones obtained in [4] for solving the LSAP with
rectangular cost matrices.

4 Experiments

Bipartite GED. The other formulations of the LSAPE (Sec. [I]), transform the
problem into a LSAP with a square cost matrix for BP [12] and SFBP [14], or
with a rectangular one for FBP [I3]. The Hungarian algorithm used in these
works [12], differs from the algorithm presented in Section [2[on two aspects:
several Hungarian trees are grown at each iteration, and the cost matrix is
updated instead of the dual variables. As already discussed [9l5], the version
described in this paper has lower execution times. So we have repeated the
experiments carried out in [I4] on artificially created graphs, with the Hungarian
algorithm of Section [2] for solving BP and SFBP. Note that our implementation
of the Hungarian algorithm is optimized such that forbidden assignments (with
a cost equal to w) are not treated. As already observed in [I4], all the methods
lead to a similar approximation of the GED. This is also the case of the approach
proposed in this paper (denoted by BPE). A more interesting behavior concerns

8 S. Bougleux, B. Gaiizeére, L. Brun

* BP
+ SFBP
O FBP

0.01751

time (in s)

0.015-

0.01251

0.011

0.0075-

time (s) of FBP PD

0.0051

L L L L i L L i L i
0 20 40 60 80 100 80 60 40 20 0
size of V, with |V, |=100, and then size of V, with [V,|=100

(b)

Fig. 2. Computational time of the bipartite GED with respect to the graphs’ order.

the computational time. Fig. a) shows the average run time of 10 computations
of FBP, with respect to the order of the graphs. Contrary to what was observed
in [I4], the shape of the run time surface is symmetric. The run time surface
of the other algorithms (BP, SFBP and BPE) have a similar pyramidal shape.
As illustrated in Fig. b)7 BP and SFBP have a similar behavior, with an
asymmetry, and are less efficient than FBP and BPE. Observe that these two
last approaches have also a similar behavior. Contrary to FBP, BPE does not
impose any constraint on the costs.

IPFP and GNCCP. As illustrated in [23], LSAP methods may also be the
core component of different solvers of quadratic programming formulations of
the GED. A first method [2] called QAP consists in adapting the IPFP algo-
rithm [I0] to the computation of the quadratic formulation of GED. Basically,
IPFP iterates over LSAP resolutions to compute a gradient direction leading
to an approximate solution of a relaxed version of the quadratic problem. The
second proposition [2] uses a convex-concave relaxation of the IPFP approach
to tackle drawbacks induced by the influence of initialization and by the final
projection step from a stochastic matrix to a mapping one. This approach, de-
noted GNCCP, iterates over a slightly modified version of IPFP which iterates
over LSAP resolutions. Therefore, these two contributions use LSAP as a core
component in their respective algorithms. In these experiments, we evaluate the
gain obtained by the use of our new algorithm (LSAPE) to resolve LSAP steps
in QAP [3] and GNCCP (new in this paper) approaches instead of the classic
Hungarian algorithm.

Both algorithms are evaluated on real world chemical datasetsﬂ composed
of different kinds of molecules : Alkane and Acyclic are represented as acyclic
graphs of about 8 nodes in average, whereas MAO and PAH are composed of

® Datasets are available at https://iapr-tci15.greyc.fr/links.html

https://iapr-tc15.greyc.fr/links.html

A Hungarian Algorithm for Error-Correcting Graph Matching 9

Table 1. Accuracy and complexity scores. d and ¢t denote respectively the average edit
distance and computational time (in seconds).

Algorithm Alkane Acyclic MAO PAH

d t d t d t d t
A* 15.47 1.29 17.33 6.02 - - - -
Riesen and Bunke [12] 35.16 0.00135 35.43 0.00109 105 0.00551 138 0.00692
LSAP [6] 34.51 0.00205 32.52 0.00181 56.89 0.02218 123.6 0.03342
LSAPE 34.51 0.00203 32.61 0.00179 56.92 0.02212 123.8 0.03338
QAP [2] 19.28 0.00925 20.51 0.00711 32.97 0.04158 48.5 0.08285
QAPE [3] 19.33 0.00553 20.43 0.00489 32.94 0.03017 48.9 0.04832
Neuhaus [11] 20.5 0.07 25.7 0.0424 59.1 7 52.9 8.2
GNCCP [2] 16.54 0.3474 18.36 0.2481 32.14 4.128 39.2 6.141
GNCCPE 16.83 0.116 19.09 0.07638 32.92 0.4673 38.7 0.8623

larger graphs, with an average size of 20 nodes. As in [2J6], the cost of substituting
nodes and edges has been set to 1, and to 3 for insertions and deletions.

Table [I] shows average edit distances and computational times obtained by
different approaches on the four chemical datasets. A* approach, on the first
line, computes the exact graph edit distance and constitutes a reference for
approximation methods. However, due to its high complexity, exact graph edit
distances have been only computed for Alkane and Acyclic datasets. The first
block of three methods, from line 2 to 4, corresponds to methods based on
the bipartite approach. The line denoted as Riesen and Bunke corresponds to
the original method proposed in [12], while the two others use a different cost
matrix [6] using respectively LSAP and LSAPE algorithms. The next block, lines
5 to 7, corresponds to methods based on the quadratic formulation of the graph
edit distance. QAP and QAPE [3] use IPFP algorithm with respectively LSAP
and LSAPE algorithms. The line denoted as ”Neuhaus” corresponds to another
quadratic approach [II] which does not handle insertions and removals of nodes
during the optimization process. Finally, the last block corresponds to GNCCP
approach [2] using LSAP and LSAPE algorithms.

As expected, approximations of graph edit distances are not significantly
different using either LSAP or LSAPE approaches. Conversely, as previously
observed [2I3], methods based on a quadratic formulation obtain better approx-
imations than the ones based on a linear approximation. From a computational
point of view, quadratic approaches require more computational time. However,
using LSAPE instead of LSAP algorithm leads to a significant improvement on
computational times. This gain almost reaches 10 times with MAO dataset. On
MAO and PAH datasets, executions times of LSAP and QAPE methods are
comparable. Note that we only observe a very tight improvement using LSAPE
instead of LSAP within the original bipartite approach (lines 3 and 4). This lim-

10 S. Bougleux, B. Gaiizere, L. Brun

ited gain can be explained by the fact that most of computational time is spent
in computing the cost matrix rather than optimizing the mapping problem.

5 Conclusion

We have presented in this paper a new type of linear sum assignment problem
designed to solve efficiently the bipartite graph edit distance. The resulting algo-
rithm only supposes that the basic costs are non negative. It requires the storage
of an (n+1) x (m+ 1) matrix, n and m being the orders of both graphs and has
a time complexity of O(min(n,m)? max(n, m)). This algorithm may be applied
once to obtain a rough estimate of the edit distance or be integrated into more
complex iterative quadratic solvers. The speed-up obtained by our algorithm is
significant in this last case and opens the way to the computation of the graph
edit distance on larger graphs.

References

1. Bougleux, S., Brun, L.: Linear sum assignment with edition. Tech. rep., Normandie
Univ, GREYC UMR 6072, Caen, France (2016)

2. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaiizere, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recognition Letters 87,
38-46 (2017)

3. Bougleux, S., Gaiizeére, B., Brun, L.: Graph edit distance as a quadratic program.
In: International Conference on Pattern Recognition. IEEE (2016)

4. Bourgeois, F., Lassalle, J.: An extension of the Munkres algorithm for the assign-
ment problem to rectangular matrices. Commun. ACM 14, 802-804 (1971)

5. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)

6. Gaiizere, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Structural, Syntactic, and Sta-
tistical Pattern Recognition. LNCS, vol. 8621, pp. 73-82 (2014)

7. Jones, W., Chawdhary, A., King, A.: Revisiting Volgenant-Jonker for approximat-
ing graph edit distance. In: Graph-Based Representations in Pattern Recognition.
LNCS, vol. 9069, pp. 98-107. Springer Int. Pub. (2015)

8. Jonker, R., Volgenant, A.: Improving the hungarian assignment algorithm. Oper.
Res. Lett. (5), 171-175 (1986)

9. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York (1976)

10. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point
method for graph matching and map inference. In: Advances in Neural Information
Processing Systems, vol. 22, pp. 1114-1122 (2009)

11. Neuhaus, M., Bunke, H.: A quadratic programming approach to the graph edit
distance problem. In: Graph-Based Representations in Pattern Recognition. LNCS,
vol. 4538, pp. 92-102. Springer Berlin Heidelberg (2007)

12. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27, 950-959 (2009)

13. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognition
Letters 45, 244-250 (2014)

14. Serratosa, F.: Speeding up fast bipartite graph matching through a new cost ma-
trix. Int. Journal of Pattern Recognition 29(2) (2015)

	Lecture Notes in Computer Science
	Introduction
	Bipartite Matching and Hungarian Algorithm
	Proposed Adaptation of the Hungarian Algorithm
	Experiments
	Conclusion

